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1 Introduction

This paper describes the gegravity Python package, which is a set of tools used to estimate
general equilibrium (GE) structural gravity models and simulate counterfactual experiments.
The package is based on the well established version of the gravity model described by Yotov
et al. (2016). It implements the structural GE gravity model in a general, robust, and easy
to use manner in an effort to make GE gravity modeling more accessible to researchers and
policy analysts. The package is publicly available and free to use although I ask that users
please cite this paper.

The package provides several useful tools for structural gravity modeling. First, it com-
putes theory consistent estimates of the structural multilateral resistance terms of Anderson
and van Wincoop (2003) from standard econometric gravity results. Second, it simulates GE
effects from counterfactual experiments such as new trade agreements or changes to other
types of trade costs. The model can be flexibly used to study aggregate or sector level trade
as well as many different types of trade costs and policies. The use of structural gravity mod-
els to conduct counterfactual policy experiments is a recent but growing trend. Researchers
and policy institutes have used similar models to estimate the effects of a wide range of
economic policies, including free trade agreements (Anderson and Yotov, 2016; Baier et al.,
2019), Brexit (Brakman et al., 2018), China’s Belt and Road Initiative (Kohl, 2019), lan-
guage diversity (Gurevich et al., 2021), food safety requirements (Zongo and Larue, 2019),
and maximum residue limits for pesticides (U.S. International Trade Commission, 2021).

Third, the package contains tools for conducting Monte Carlo simulations that provide
a means to compute standard errors and other measures of statistical precision for the
GE model results. The package’s MonteCarloGE model generates a sample of trade cost
parameters derived from an econometrically estimated gravity model and simulates a GE
gravity model for each sample. This creates a sample distribution of GE results from which
to produce various sample statistics. Ultimately, the Monte Carlo tools allow users to
translate the inherent statistical imprecision in econometric gravity estimates of factors like
distance or preferential trade agreements into corresponding measures of statistical accuracy
in the GE results.

The gegravity package is one of many recent software tools for conducting gravity
analysis. Most of these tools aid in the robust and fast econometric estimation of gravity
models, especially those with high dimensional fixed effects. In Stata, these packages include
ppml (Santos Silva and Tenreyro, 2015), ppmlhdfe (Correia et al., 2019), and ppml_panel_sg

(Larch et al., 2019). In R, there is the similar R_glmhdfe package (Hinz et al., 2019). A
few other packages have provided more comprehensive gravity modeling tools, such as the
gravity package in R (Woelwer et al., 2020) and the gme package in Python (Herman et al.,
2018). Unlike most of these tools, the gegravity package is not primarily an econometric
package. Instead, it solves GE gravity models and conducts counterfactual experiments,
often using econometrically estimated parameter values produced from these other tools.

To my knowledge, the only other GE gravity programming tools available are the .do
files accompanying the methodological work of Yotov et al. (2016) and Anderson et al.
(2018) and the GE_gravity Stata package of Zylkin (2019). The two methodological works
describe GE gravity models and a “GEPPML” approach for implementing them (the model
and implementation are described in more detail in section 3). The accompanying .do files
provide example implementations and could be modified for use in other applications. The
GE_gravity package is a more general implementation of a similar gravity model in Stata.

The gegravity Python package follows this work and offers several notable advantages.
First, it is implemented in Python and therefore represents a free and flexible alternative to
using Stata. Second, it is a general implementation that can be readily applied to different
baseline data sets and counterfactual experiments with ease. Third, it is a parsimonious
implementation, allowing users to conduct complex analyses with a limited number of com-
mands. Fourth, it contains a a collection of other tools to help users understand, analyze,
and extend their analysis. Similarly, it can be used in conjunction with the vast number of
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Python libraries available.
The remainder of this paper is structured as follows. Section 2 provides a “quick start”

guide to installing and using the main features of the package. Section 3 details the under-
lying structural model and the technical details of how it was implemented in the package.
Section 3 describes the main model in the package—OneSectorGE—and its input require-
ments, use, outputs, and extensions. Section 5 describes the Monte Carlo gravity model.
Finally, section 6 concludes.

In addition to the content in this paper, up-to-date technical documentation for the
package as well as additional examples can be found at the packages’s webpage, https:

//peter-herman.github.io/gegravity/.

2 Quick start

2.1 Installation

The gegravity package is available from the conventional Python package repository, pypi.
org. It can be installed using the following pip command.

pip install gegravity

This will install the gegravity package as well as any necessary dependencies if they are
not already installed.

2.2 Simple example

The following is a simple example of how to conduct a GE gravity analy-
sis using the gegravity package. A copy of the code containing all com-
mands in these examples can be found at https://gist.github.com/peter-herman/

faeea8ec032c4c2c13bcbc9c400cca9b.
The first step in setting up a gegravity analysis is to load a few needed packages. The

first is the popular pandas data manipulation package (McKinney, 2010), the second is the
econometric gravity package gme (Herman et al., 2018), and the third is the gegravity

package.

import pandas as pd

import gme as gme

import gegravity as ge

Next, load the data needed to both estimate trade costs using an econometric gravity
model and parameterize the baseline GE gravity model. This example uses a simple cross-
section dataset containing trade flows between 30 countries in 2006, output and expenditure
values for each country, and a collection of typical trade cost variables such as distance and
preferential trade agreements (PTAs).1 A copy of this example dataset can be downloaded
from https://gist.github.com/peter-herman/13b056e52105008c53faa482db67ed4a.

gravity_data_location = "C:// sample_data_set.csv"

grav_data = pd.read_csv(gravity_data_location)

1The trade, output, and expenditure data was derived from the example data provided by Yotov et al.
(2016) (https://vi.unctad.org/tpa/web/vol2/vol2home.html). The gravity variables were sourced from
the Dynamic Gravity dataset of Gurevich and Herman (2018) (https://www.usitc.gov/data/gravity/dgd.
htm).
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The gegravity package relies heavily on the gme package, which contains a collection of
gravity modeling tools.2 These tools perform typical gravity estimation tasks and provide a
gravity model structure that is used by the gegravity package. Using the gme package, we
can structure the gravity data, define an econometric gravity model, estimate the model us-
ing Poisson Pseudo Maximum Likelihood (PPML), and store all relevant inputs and outputs
in a single convenient Python object that is used by gegravity.

Begin by defining the estimation data structure using the loaded data. This requires the
user to specify the columns in which certain variables can be found such as the importer,
exporter, and year identifiers as well as the trade flows. After the data structure is defined,
create and estimate an econometric gravity model. Doing so requires the user to specify the
data structure to use; the column to use as the “left hand side” (LHS), dependent variable;
the columns to use as “right hand side” (RHS), independent variables; and the type of fixed
effects to add to the model (importer and exporter, in this example). Once defined, the
model can be estimated and results printed to the console. Table 1 presents an abbreviated
table of those results.3

# Define GME Estimation Data

gme_data = gme.EstimationData(grav_data ,

imp_var_name="importer",

exp_var_name="exporter",

year_var_name = "year",

trade_var_name="trade")

# Create Gravity Model

gme_model = gme.EstimationModel(gme_data ,

lhs_var="trade",

rhs_var=["pta", "contiguity", "common_language",

"lndist", "international"],

fixed_effects=[["exporter"], ["importer"]])

# Estimate gravity model with PPML

gme_model.estimate ()

# Print results table

gme_model.results_dict["all"].summary ()

With the gravity model econometrically estimated, which provides the basis for con-
structing bilateral trade costs, we can define the gegravity GE model. The GE model,
OneSectorGE, utilizes the information that is already stored in the EstimationModel, which
includes the estimating data, trade cost parameter estimates, and other information like col-
umn identifiers. Given that, defining the GE model requires only the specification of a few
more inputs such as the year to use (the GE model is static and based on a single year), the
columns containing output and expenditures, a reference importer to use (see section 3.2
for details), and an elasticity of substitution (sigma).

ge_model = ge.OneSectorGE(gme_model , year = "2006",

expend_var_name = "E",

output_var_name = "Y",

reference_importer = "DEU",

sigma = 5)

The next step is to build the baseline model. This step constructs some needed parame-
ters from the input data and, most importantly, estimates the baseline outward (OMR) and
inward (IMR) multilateral resistance terms. In building the baseline, an important model
argument is the OMR rescaling factor, which can help the model solve numerically. This
rescale factor is discussed more extensively in section 4.3.1. As the model solves, some basic

2For details, see https://www.usitc.gov/data/gravity/gme_docs/.
3A similarly formatted table of results can be created using the gme.EstimationModel.

format_regression_table() method.
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Table 1: Gravity econometric esti-
mates

Variable (1)

common language 0.039
(0.084)

contiguity 0.885∗∗∗

(0.131)
international -3.422∗∗∗

(0.215)
lndist -0.376∗∗∗

(0.072)
pta 0.482∗∗∗

(0.109)

AIC 3229449.511
BIC 3215497.239
Obs. 870

This table presents the econometric
estimates from the example in sec-
tion 2.2. Robust standard errors in
parentheses. ∗∗∗p < 0.01, ∗∗p < 0.05,
∗p < 0.10.

Table 2: Baseline multilateral
resistance estimates

OMR IMR

AUS 3.58 1.42
AUT 3.41 1.22
BEL 2.93 1.05
BRA 3.59 1.29
CAN 3.31 1.34
CHE 3.18 1.14
CHN 3.12 0.97
DEU 2.92 1.00
DNK 3.54 1.28
ESP 3.21 1.22
FIN 3.69 1.32
FRA 3.11 1.13

This table presents the baseline
multilateral resistance term esti-
mate for a subset of countries.

feedback is printed to the screen indicating if there were any issues with computing the
baseline model. After the model solves and the baseline is constructed, the baseline IMR
and OMR terms can be retrieved from the model. A subset of these terms are presented in
table 2.

ge_model.build_baseline(omr_rescale=10)

print(ge_model.baseline_mr)

With the baseline solved, the model can be used to conduct counterfactual policy exper-
iments. An experiment modifies some of the trade cost measures (e.g. distance, contiguity,
common language, pta, or international border) for certain countries and solves a counter-
factual version of the model based on these alternative trade costs. In this example, we
simulate the effects of a hypothetical Canada-Japan preferential trade agreement by set-
ting the variable “pta” equal to 1 for Canadian exports to Japan and Japanese exports to
Canada. This change is made in a copy of the baseline dataset, which is then supplied to
the model as the “experiment dataset”.4

# Get a copy of the data

exp_data = ge_model.baseline_data.copy()

# Modify the desired cost measures

exp_data.loc[(exp_data["importer"]=="CAN") &

(exp_data["exporter"]=="JPN"), "pta"] = 1

exp_data.loc[(exp_data["importer"]=="JPN") &

(exp_data["exporter"]=="CAN"), "pta"] = 1

# Supply the counterfactual data to the model

ge_model.define_experiment(exp_data)

With the experiment defined, the counterfactual model can be solved. As with the
baseline, feedback will be printed to the console as the model solves and will indicate any
issues with the solution.

ge_model.simulate ()

4Making a “deep” copy() here is important as it insures that the baseline data is not modified too. A
deep copy creates a new data object instead of just a reference to the original.
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Finally, with the model solved, a wide variety of results can be returned from the model.
At the country level, the model determines percentage change in factors such as total imports
and exports, factory gate prices, real GDP, terms of trade, and the multilateral resistances.5

It also produces counterfactual bilateral trade flows between each country pair and the
estimated percentage change from the baseline. A more detailed description of the types
of results that are produced can be found in section 4.4. Finally, users can output all the
results and model diagnostics to a collection csv files for storage and analysis outside of
Python.

country_results = ge_model.country_results

bilateral_results = ge_model.bilateral_trade_results

ge_model.export_results(directory="C:// examples //",

name="CAN_JPN_PTA_experiment")

For illustration, a subset of the results contained in ge_model.country_results is pre-
sented in table 3. The results demonstrate the types of information that can be gleaned
from GE gravity analysis. The largest effects of the hypothetical policy change are for
Canada and Japan, as would be expected. Both countries experience lower prices, higher
GDP, and greater trade. For example, under the counterfactual experiment, Canada’s ex-
ports increase by 1.6 percent and real GDP increases by 0.4 percent. The rest of the world
experiences much smaller impacts that depend primarily on their relationships with the
Canada and Japan. For example, the United States and Mexico both experience relatively
large changes, which can be explained by the close economic ties with both Japan and—in
particular—Canada.

3 Theory and implementation

3.1 Theory

The OneSectorGE model in the gegravity package replicates the structural model of Yotov
et al. (2016). That model is based on the earlier demand-side, constant elasticity of sub-
stitution (CES)-Armington structural gravity model of Anderson and van Wincoop (2003).
As shown by Arkolakis et al. (2012), the structural gravity model can be derived from a
wide range of different trade models such as the canonical supply-side, Ricardian version
of Eaton and Kortum (2002). Thus, this particular version of the model can be considered
reflective of a much more general class of trade models. For the sake of parsimony, I keep
the theoretical discussion short as the gegravity package is merely an implementation of
an existing model and makes no theoretical contributions of its own. For more details and
discussion of the model, I refer the reader to Yotov et al. (2016) and Anderson et al. (2018).

The model system takes the following form:

Xij =
YiEj
Y

(
τij

ΠiPj

)1−σ

, (1)

Π1−σ
i =

∑
j

(
τij
Pj

)1−σ
Ej
Y
, (2)

P 1−σ
j =

∑
i

(
τij
Πi

)1−σ
Yi
Y
, (3)

pi =

(
Yi
Y

) 1
1−σ 1

γiΠi
, (4)

5Specifically, each change is calculated as 100×[counterfactual - baseline]/baseline.
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Table 3: gegravity modeled effects of a Canada-Japan trade
agreement

Factory Real Foreign Foreign
gate price IMR OMR GDP exports imports

AUS 0.004 0.011 -0.004 -0.007 -0.088 -0.035
AUT -0.003 0.002 0.003 -0.005 -0.035 -0.027
BEL -0.002 0.000 0.002 -0.003 -0.038 -0.031
BRA -0.006 0.000 0.006 -0.006 -0.080 -0.067
CAN -0.134 -0.566 0.134 0.435 1.635 1.564
CHE -0.003 0.001 0.003 -0.004 -0.035 -0.028
CHN 0.009 0.011 -0.009 -0.003 -0.036 -0.067
DEU -0.002 0.000 0.002 -0.002 -0.036 -0.035
DNK -0.004 0.003 0.004 -0.007 -0.040 -0.029
ESP -0.002 0.002 0.002 -0.004 -0.053 -0.034
FIN -0.004 0.004 0.004 -0.008 -0.045 -0.035
FRA -0.002 0.001 0.002 -0.003 -0.040 -0.031
GBR -0.002 0.002 0.002 -0.003 -0.058 -0.036
HKG 0.019 0.020 -0.019 -0.001 -0.071 0.022
IDN 0.005 0.013 -0.005 -0.008 -0.040 -0.026
IND 0.004 0.009 -0.004 -0.006 -0.050 -0.032
IRL -0.006 0.001 0.006 -0.007 -0.040 -0.041
ITA -0.002 0.001 0.002 -0.003 -0.045 -0.037
JPN 0.249 0.192 -0.248 0.056 1.289 2.405
KOR 0.013 0.018 -0.013 -0.004 -0.045 -0.052
MEX -0.020 -0.007 0.020 -0.013 -0.103 -0.078
MYS 0.011 0.019 -0.011 -0.008 -0.026 -0.018
NLD -0.002 0.001 0.002 -0.003 -0.039 -0.031
POL -0.003 0.003 0.003 -0.006 -0.042 -0.030
SGP 0.011 0.013 -0.011 -0.003 -0.038 -0.036
SWE -0.004 0.003 0.004 -0.007 -0.045 -0.038
THA 0.005 0.012 -0.005 -0.007 -0.036 -0.028
TUR -0.001 0.005 0.001 -0.006 -0.052 -0.033
USA -0.041 -0.034 0.041 -0.008 -0.395 -0.193
ZAF -0.001 0.006 0.001 -0.007 -0.061 -0.040

This table presents the estimated results from the OneSectorGE ex-
ample in section 2.2. All values reflect percentage changes in the
counterfactual experiment relative to the baseline model.
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Ei = φiYi = φipiQi. (5)

Equation (1) is a typical gravity equation, which relates bilateral trade (Xij) between ex-
porter i and importer j to exporter output (Yi), importer expenditures (Ej), global output
(Y ), bilateral trade costs (τij), the elasticity of substitution (σ), and outward and inward
multilateral resistances (Πi and Pj , respectively). The multilateral resistance (MR) terms
are defined by equations (2) and (3). These terms can be thought of as aggregate trade cost
or price indices for the exporter and importer. Equation (4) defines factory gate prices (pi),
which are determined by output, OMRs, and the CES preference parameter (γi). Finally,
equation (5) determines expenditures and provides a market clearing condition. Expendi-
tures are determined as a fixed ratio (φi) of the value of domestic production. Domestic
production is defined by the product of output quantity (Qi) and factory gate prices. In
this version of the model, output quantity is fixed/exogenous and all changes in the value
of output are captured though the price term.

Throughout, the notation above is used to denote baseline variable values. Counterfac-
tual versions of each variable are denoted with an ∗. For example, counterfactual trade costs
are written as τ∗ij .

3.2 Technical implementation

The gegravity packages solves the structural gravity model in six main steps, described
below. Unlike the implementations described by Yotov et al. (2016) and Anderson et al.
(2018), which solve the model via an custom iterative procedure that the authors refer
to as “GEPPML”, the gegravity package solves the model system using standard non-
linear solvers. Specifically, gegravity uses the root function in the Python scipy package
(Virtanen et al., 2020).6 Because of this difference in implementation and other numerical
reasons like float precision, model results may not perfectly match between the gegravity

package and other implementations but should be very similar.
The gegravity packages solves the structural model in the following steps.

1. Initialize model: The first step defines and initializes the model. This step con-
structs key parameters and the baseline trade costs from the user-supplied informa-
tion. Baseline trade costs are computed as τ1−σij = exp

(∑
k βkZ

k
ij

)
, where Zij is a

collection of different trade cost proxies denoted by k—such as distance, trade agree-
ments, and common languages—and β denotes a corresponding coefficient estimate
from an econometric gravity model (see section 4.1.2). This step also checks to ensure
that certain data is supplied and complete, such as trade flows, parameter values,
expenditure values, and output values. This process is completed when the model is
first defined via the OneSectorGE class.

2. Solve for baseline MRs: This step solves for the baseline IMR and OMR terms
(Pj and Πi, respectively). While standard econometric estimations of gravity models
typically include controls for MRs in the form of importer(-year) and exporter(-year)
fixed effects, these estimates are not equivalent to the important structural MRs.
This step constructs the actual baseline structural terms using the baseline trade
cost estimates supplied to the model, cost and expenditure data, and the elasticity
of substitution. Specifically, it solves the system given by equations (2), and (3) for
all Πi and Pj . This step also calibrates the CES preference parameter (γi) based on
the assumption that baseline factory gate prices are normalised to 1. This process is
completed as part of the OneSectorGE.build_baseline method.

3. Define counterfactual experiment: This step establishes the counterfactual ex-
periment. The user supplies a counterfactual dataset of cost information (Z∗

ij) and

6https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.root.html
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counterfactual trade costs are constructed using the new cost data in conjunction
with the original cost parameter estimates (τ∗ij

1−σ = exp
[∑

k βkZ
∗k
ij

]
). This process

is completed as part of the OneSectorGE.define_experiment method.

4. Solve for “conditional” counterfactual MRs: This step reconstructs “condi-
tional” MRs for the counterfactual version of the model. “Conditional” refers to the
fact that these terms are constructed while holding prices fixed at their baseline values,
thereby producing partial equilibrium MRs. While these values can be accessed by
users and are included with some of the results, their primary purpose is to provide
initial values that aid in solving the full GE model. The model conditional MRs are
derived by solving for the MR terms that satisfy equations (2) and (3) with τ∗ij in
place of τij . This process is completed as part of the OneSectorGE.simulate method.

5. Solve full counterfactual GE model: This step solves for the full GE model and
derives counterfactual IMRs (P ∗

j ), OMRs (Π∗
i ), factory gate prices (p∗i ). Unlike in

the previous “conditional” step, these terms are those that jointly solve the system
described by equations (2), (3), (4), and (5). Again, the solution to this system system
is based on the counterfactual trade costs, τ∗ij . This process is completed as part of
the OneSectorGE.simulate method.

6. Construct other results: Finally, with the model solved for the counterfactual MR
terms and factory gate prices, other counterfactual elements are constructed. This
step produces a variety of counterfactual outcomes such as bilateral trade flows (X∗

ij),
outputs (Y ∗

i ), and expenditures (E∗
j ). It also produces a collection of other results

such as total counterfactual imports or exports, real GDP, and terms of trade. In
most cases, the model also computes percentage changes in these results between the
baseline and counterfactual experiment. This process is also completed as part of the
OneSectorGE.simulate method.

An important caveat to note is that the model system is not uniquely determined on
its own. The MR terms need to be pinned to a particular normalizing value because linear
transformations of the terms can solve the system. To do so, a “reference importer” must be
selected to act as the baseline, normalizing IMR term. The IMR for the reference importer is
set equal to 1 in both the baseline and counterfactual experiment. As a result, all remaining
IMR and OMR terms are determined in reference to this importer. The model is similarly
unable to estimate a counterfactual IMR for the reference importer. Thus, the estimated
change in that IMR is necessarily zero and all other counterfactual changes reflect this
limitation. For this reason, users should carefully choose the country used as the reference
importer. First, it is wise to select an importer with high quality data in order to mitigate the
possibility that the remaining MR terms are all calibrated based on poor quality information.
Second, because the model cannot estimate counterfactual changes in the reference countries
IMR, it is best to choose a country for which the effects of the counterfactual experiment
are likely small. Past literature has often used Germany as the reference importer (Yotov
et al., 2016; Anderson et al., 2018).

3.3 Package tools

The model implementation is completed via several tools in the gegravity package, which
are comprised of two main tools and some supporting tools. The two main tools are:

1. OneSectorGE: The OnseSectorGE class is the main tool of the package and im-
plements the model described in section 3. The OnseSectorGE class contains the
main methods for solving the baseline model as well as defining and solving the coun-
terfactual model. It also contains several methods for helping diagnose and rectify
convergence and other solver issues. The class is detailed in section 4
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2. MonteCarloGE: The MonteCarloGE class is a tool for conducting Monte Carlo coun-
terfactual simulations. It performs multiple simulations of the OneSectorGE model
using different draws of trade costs. The alternative trade costs are based on the stan-
dard errors of the estimates for each of the individual trade cost proxies. The main
pruprose of the class is to produce counterfactual results with measures of statistical
precision such as standard errors or deviation. The MonteCarloGE class is detailed in
section 5.

The remaining tools in the package are meant to support one or both of these primary
classes. They are discussed as part of the OneSectorGE and MonteCarloGE descriptions in
subsequent sections. Because the MonteCarloGE class is an extension of the OneSectorGE

class, readers ought to initially focus their attention on the OneSectorGE class.

3.4 Python dependencies

The gegravity package depends heavily on several other Python packages. The gme pack-
age is used to handle and derive many of the inputs to the gegravity model (Herman
et al., 2018). The pandas package is instrumental in managing the model data throughout
(McKinney, 2010). The GE model is solved using the tools of the scipy package (Virtanen
et al., 2020) and the mathematical tools of the numpy package (Harris et al., 2020).

4 The main model: OneSectorGE

The most important component of the gegravity package is the OneSectorGE class, which
is the main GE gravity model. This section describes the features of this model, its input
requirements, ways to address solver issues, and the many types of results it produces.

4.1 Model inputs

To perform a GE gravity analysis using the OneSectorGE model, users must supply several
types of model inputs. These include baseline economic data, trade cost estimates, and other
parameter values. Each are detailed in this section. Most of these data must be supplied to
the model in the form of a defined gme EstimationModel object. However, there are some
alternative ways to supply certain inputs, which are discussed below.

4.1.1 Baseline data

The OneSectorGE model has several important data requirements:

• Identifiers: Each observation in the model baseline data should be identified by
three dimensions: an exporter, an importer, and a year.7 These identifiers should
be included in the baseline data input as three columns. All three columns should
also be cast as string data for the best performance. Although year is a required
identifier, it is not necessary that the data contain multiple years of observations.
While additional years can improve the precision of any econometric estimates used
in the model, OneSectorGE is strictly a static model and requires that a single year
be selected for the baseline.

• Bilateral trade flows: The model requires data on bilateral trade flows (Xij) be-
tween each country in the model. Importantly, the trade data must be square and
include intranational trade flows. Square data refers to the idea that there must be
a bilateral trade flow (positive or zero) for every combination of two countries.8 The

7“Year” could represent an alternate time period such as a month, for example, depending on the desired
scope of analysis.

8For example, a 30 country model should have exactly 900 bilateral trade flows.
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data must also include intranational trade flows, which represent domestic shipments
within a country (Xii). While sources of intranational trade data are available (dis-
cussed below), one common approach is to create intranational flows from trade and
production data by subtracting total exports from total production.9

• Bilateral trade cost proxies: The model constructs baseline and counterfactual
bilateral trade costs based on supplied trade cost proxies (Zij). Throughout the lit-
erature, these typically include measures of geographic distance, contiguity, common
languages, colonial ties, and preferential trade agreements. However, these cost prox-
ies can be flexibly chosen based on the particular application in order to account for
the factors that are most important to the analysis.10

• Output and expenditure values: The model requires total output and expendi-
ture values for each country in the model. While there exist independent sources for
these data, some past gravity research has also constructed these values from bilateral
trade when that data is unavailable. In practice, expenditures should be equal to total
imports plus intranational trade. Output should be equal to total exports plus intra-
national trade. However, in most cases, small differences will not prevent the model
from solving.

These baseline data should be supplied to the OneSectorGE model via the gme

EstimationModel class, which is a class that organizes and estimates econometric grav-
ity models. To do so, all data should first be combined in a pandas DataFrame. Second,
that DataFrame should be used to define a gme EstimationData object, which is a spe-
cialized data class for econometric gravity analysis. Third, the EstimationData object
should be used to define a gme EstimationModel object. Finally, the EstimationModel

can be used as the primary input to the gegravity model. Notably, even though the
gme classes have no explicit support or role for output or expenditure data, these columns
should be included in the baseline DataFrame used to create the gme objects. Additional
information about the gme EstimationData and EstimationModel classes can be found at
https://www.usitc.gov/data/gravity/gme_docs/.

The baseline data requirements can be met in a way that is flexible to the needs of
the analysis. For example, the model can be used at the aggregate level, using total trade
between countries, or at the sector or industry level. Like the theoretical gravity model,
the OneSectorGE model is fully separable at the sector level. Similarly, the model does not
require that a specific set of countries be used. Users should be cautious about omitting
important countries but the model should generally be able to run using any set of countries
assuming there is consistency in the values of trade, output, and production. That is, total
trade, output, and expenditures world wide should be roughly equal and all value accounted
for. However, the speed and solvability of the model may be affected by the selection of
countries. Modifying the sample of countries can be a fruitful way of diagnosing a model
that will not solve.

There are many prominent sources for the type of data used as inputs to the model. Two
particularly good sources are the U.S. International Trade Commission’s (USITC) Gravity
portal and CEPII, which both provide a collection of publicly available, specialized gravity
modeling databases that cover most of the basleine data requirements of the model.11 The
USITC’s Gravity Portal hosts useful databases such as the International Trade and Pro-
duction Database for Estimation (ITPD-E), the Dynamic Gravity Dataset (DGD), and the

9However, it should be noted this approach can result in some issues. For example, some products may
be produced and shipped in different years and therefore appear in different annual reports. Similarly,
production and trade reporting agencies may not be perfectly consistent.

10In principle, it is also be possible to use country pair (e.g. exporter-importer) fixed effects and their
estimates as part of the trade cost component. Doing so would require that the fixed effect data and
estimates be included the same way as other cost information rather than as fixed effect arguments in the
gme EstimationModel.

11The USITC Gravity Portal can be found at gravity.usitc.gov. The CEPII databases can be found at
http://www.cepii.fr/CEPII/en/bdd_modele/bdd_modele.asp.
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Domestic and International Common Language Database (DICL). The ITPD-E database
contains both international and intranational trade flows for a large number of countries
for the years 2000–2016 (Borchert et al., 2020). The DGD database provides a large col-
lection of trade cost proxies for most countries from 1948–2019 (Gurevich and Herman,
2018). The DICL database provides measures of language similarity, both internationally
and intranationally (Gurevich et al., 2021). CEPII provides some similar resources including
the TradeProd database of international and intranational trade from 1980–2006 (de Sousa
et al., 2012) and the CEPII Gravity database of trade cost proxies (Head et al., 2010). In
addition to these curated datasets, users can collect and build their own input data from
other sources. For a more extensive discussion of gravity data sources, see Yotov et al.
(2016).

4.1.2 Trade cost estimates

The gegravity package estimates bilateral trade costs based on typical econometric gravity
models. For example, a standard specification might take the following form:

Xijt = exp {Zijtβ + µit + νjt}+ εijt. (6)

The model seeks to estimate trade cost coefficients (β) associated with a collection of trade
cost proxies (Zijt).

12 In the GE model, baseline trade costs are constructed using the

estimates as τ1−σijt = exp{Zijtβ̂}.
There are two ways to provide coefficient estimates to the GE model. First, they can be

estimated using the gme EstimationModel that is defined as part of the model preparation.
If the EstimationModel has been successfully estimated via the estimate method, then the
gegravity model will use those coefficient estimates stored in the EstimationModel and
no additional inputs are required.

It is also possible to supply alternative coefficient values, such as those derived from a
different dataset or taken from the literature. To do so, they can be supplied at the point
the gegravity model is first defined using the parameter_values argument. The external
parameter values must be supplied in a particular format. The most reliable format to use is
to use the gegravity CostCoeffs class, which can be defined using a DataFrame that contains
columns of trade cost proxy names and coefficient estimates, respectively.13 Alternatively,
the model can accept a gme SlimResults or statsmodels GLMResultsWrapper object, which
match the structure of estimates encapsulated in an estimated EstimationModel.

4.1.3 Elasticity of substitution

The model requires an elasticity of substitution, which determines the extent to which trade
responds to changes in trade costs. Neither the gegravity nor gme packages estimate an
elasticity value in general so it is expected that users supply this parameter from an external
source. There are many different values to select from throughout the literature, derived
using different methodologies and for a variety of sectors and product aggregations. The
elasticity is supplied via the sigma argument of the OneSectorGE class when first defining
it.

4.2 Counterfactual experiment

Counterfactual experiments in the gegravity model are based on changes to trade costs.
These changes are introduced by supplying a modifying version of model’s underlying trade
cost proxies (Zij). The most reliable way to construct the counterfactual data is to begin

12Although not used by the GE model, a properly specified gravity equation should also include exporter
(µit) and importer (νjt) fixed effects to control for the multilateral resistances in the econometric model.

13For more information, see the technical documentation at https://peter-herman.github.io/

gegravity/.
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by simply copying the GE model’s baseline data from its data attribute: OneSectorGE.

baseline_data.copy(). As mentioned before, it is important to include .copy() when
creating a copy of the data to insure that the new version of the data is indeed a copy and
not merely a reference to the base data. If the copied data is only a reference, changes made
to the copied data will also be applied to the baseline data. The copied data can then be
modified to represent the desired counterfactual set of cost proxies (Z∗

ij). For example, this
may entail changing the values of a trade agreement variable for some country pairs or by
raising or lowering the values of other measures of trade frictions. Once the counterfactual
data is prepared, the experiment can be defined by supplying the counterfactual data to the
model using the OneSectorGE.define_experiment() method.

4.3 Helping the model solve

The GE gravity model is a complex model that must solve large systems of equations on
three different occasions. Because of this complexity, it is difficult to insure that all possible
baselines and counterfactual experiments will solve. There are two tools built into the model
to help troubleshoot and rectify cases in which the model fails to solve.

4.3.1 Rescaling the OMR terms

One common reason for solver failures is that the IMR and OMR terms, which are simul-
taneously solved for in each non-linear solver routine, can differ in magnitude substantially.
When this is the case, the solver may face numeric challenges as a small numeric adjustment
in terms with different magnitudes can have widely differing impacts on the function values,
making a solution difficult to find. The differences between the magnitudes of the MR terms
are unique to each model specification and depend on the underlying data. They can be
especially prominent in models examining disaggregated industries, for example.

A solution to this MR magnitude issue is to rescale the OMR terms within the non-
linear solver routines, which has no effect on the ultimate model outcomes but can fix the
numeric issues. This can be done via the argument omr_rescale in the OnesectorGE.

build_baseline() method. The value supplied should be of the form 10x for positive or
negative integer values of x (i.e., {..., 0.01, 0.1, 1, 10, ...}). The default value is 1.

To aid in finding an effective OMR rescale factor, the package includes the OneSectorGE.
check_omr_rescale() method. This method, which can be used after the model is defined,
attempts to solve the model using a range of potential rescale factors. By default, the
model tries rescale factors ranging from 10−10 to 1010, but this can be altered via the
omr_rescale_range argument. The method returns a DataFrame reporting whether the
model solved successfully for each of the tested rescale factors. It also provides several
other types of diagnostic information such as the maximum function values from the solved
system of equations (should be close to zero), and a sample of the produced OMR terms.
These terms in particular are helpful for examining which rescale factors tend to produce
stable OMRs. For example, many different rescale factors may numerically solve the model
but only a subset produce consistent solution MRs. In these cases, the rescale factors that
produce consistent OMRs are preferable.

To illustrate, table 4 presents a sample of the information produced by the
check_omr_rescale method. These outcomes were produced by running the following
code on the example in section 2.2 before build_baseline is performed.

rescale_eval = ge_model.check_omr_rescale(omr_rescale_range=3)

From the method’s output, we see that a rescale factor of 0.001 fails to solve the model.
Factors from 0.01 to 1 solve the model but produce unstable solution values. Factors 10
through 1000 both solve the model and produce consistent solutions, making them good
candidates for the rescale factor.
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Table 4: Example output from OneSectorGE.check_omr_rescale()

omr rescale solved max func value reference importer omr

0.001 False 0.088 2.340
0.01 True 3.683e-11 2.918
0.1 True 2.610e-09 2.921
1 True 7.410e-10 2.968
10 True 9.854e-10 2.918
100 True 3.629e-10 2.918
1000 True 3.3922e-09 2.918

This table presents example output from the routine checking OMR rescale factors.
The column “omr rescale” reports the rescale factor tested, “soved” indicates if the
baseline model was solved with that rescale factor, “max func value” returns the
largest function values and is indicative of how good the solution is at solving the
system (smaller is better), and “reference importer omr” reports the reference im-
porters OMR term in the solution.

It should also be noted that an OMR rescale value that solves the baseline model may
not work in solving the full GE model, which must solve for both the MR terms and prices.
In these cases, it may be possible to get the full model to solve by picking an alternative
rescale factor.

4.3.2 Checking inputs

The model may also fail to solve due to incomplete or otherwise problematic data inputs.
For example, missing values or columns that are of the wrong type can cause the model to
fail to parameterize correctly and/or solve. Users should be careful that the data inputs are
complete (e.g. data is square and all trade, output, expenditure, and trade cost columns
are complete).

To aid in diagnosing data issues, the OneSectorGE model includes a method that tests
the model inputs: OneSectorGE.test_baseline_mr_function(). This method tests to see
if the model’s system of MR equations can be computed from the supplied inputs (but does
not find the system’s solution). This can help narrow down whether a model failing to solve
is because of problematic inputs or due to other numerical issues in the non-linear solver.
If the inputs are the problem, then the test_baseline_mr_function will encounter issues
and fail to compute any MR values from the system. The method returns a dictionary
containing the various parameter values derived from trade costs, output, and expenditure
values as well as the system values generated by those parameters and initial values for the
endogenous MR terms. Ultimately, this information can be used to determine if needed
parameter values are failing to be created, and therefore preventing the system from being
solvable.

4.3.3 Other solver options

In addition to the above techniques, there are several other settings that can be adjusted
to help the model solve. For each of the three non-linear solver routines, users can adjust
the iteration limit, tolerance level, and solver method. For the baseline and conditional
equilibrium solvers, these parameters are set by the following build_baseline arguments
mr_method, mr_max_iter, and mr_tolerance. For the full GE solver, they are set by
simulate arguments ge_method, ge_tolerance, and ge_max_iter. For more details on
these settings, see the documentation for the scipy package and root function, which is
used for the solvers (Virtanen et al., 2020).14 The default values for both solvers are the
‘hybr’ method, 1400 iterations, and a tolerance of 1e − 8 for method, max iterations, and
tolerance, respectively.

14https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.root.html

16

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.root.html


4.4 Model results

The OneSectorGE model produces a wide variety of different results, including estimated
baseline and counterfactual values for many of the variables in equations (1)–(5) as well
as numerous economic indicators derived from those variables. It also reports percentage
changes in these values between the baseline and counterfactual experiment, calculated
as 100 × (x∗ − x)/x for each variable or index x. After the model has been fully solved
and a counterfactual experiment simulated, these results can be found in several of the
OneSectorGE class’ attributes. The most prominent results attributes are discussed here
and a full listing of all stored results can be found in the technical documentation at https:
//peter-herman.github.io/gegravity/.

It should be noted that in many cases, the trade outcomes distinguish between “modeled”
trade and “observed” trade. “Modeled” trade represents the model constructed trade flows
based on the parameterized gravity model. That is, they are the trade flows implied by
the estimated MR terms and trade costs. The modeled flows may not perfectly replicate
the actual baseline trade flows supplied as inputs to the model due to the fact that the
model can not perfectly capture 100 percent of the variation in the data. By comparison,
“observed” trade results are based on the actual observed values. In the baseline cases, they
simply reflect the supplied baseline trade flows. In the experiment case, they reflect the
observed baseline flows multiplied by the model-estimated percentage changes.

The main results attributes of the OneSectorGE class are the following.

• OneSectorGE.country_results: These are the main country level results for each
country in the sample. They include consumer and factory gate prices, IMRs and
OMRs, real GDP, welfare statistics, terms of trade, total foreign imports and exports,
and intranational trade. All results are reported in percent changes from the baseline.

• OneSectorGE.bilateral_trade_results: These are the bilateral trade results pro-
duced by the model. They consist of the modeled baseline trade values, experiment
trade values, and the percentage change.

• OneSectorGE.aggregate_trade_results: This attribute contains aggregate informa-
tion about trade at the country level, both in modeled levels and percentage changes.
Specifically, it reports total foreign exports, foreign imports, intranational trade, ship-
ments (foreign exports + intranational trade), and consumption (foreign imports +
intranational trade) for each country in the sample.

• OneSectorGE.country_mr_terms: These are the baseline, conditional, and experi-
ment IMR and OMR terms for each country.

• OneSectorGE.bilateral_costs: These are the model constructed baseline and ex-
periment trade costs (τij and τ∗ij).

• OneSectorGE.outputs_expenditures: These are the baseline and experiment output
and expenditure values for each country.

Most results can also be exported to comma separated text files (csv) using the
OneSectorGE.export_results() method. The method writes three files in the user-
supplied directory containing all (i) country level results, (ii) bilateral results, and (iii)
solver diagnostic information, respectively. Between the three files, almost all results from
the model are stored.

4.5 Post-estimation analysis

In addition to the main results produced by the model, OneSectorGE has several tools that
conduct different types of post-estimation analysis. These types of analysis include the
projection of estimated changes in trade onto the observed baseline trade levels in order to
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create counterfactual values of trade, calculations of changes in trade compositions between
user-specified groups of countries, and calculations of the magnitude of the counterfactual
shock at the bilateral or country level. Together, these tools help users better understand
the underlying effects and consequences of the counterfactual experiment at a more granular
level and uncover the reasons for the model’s predictions.

4.5.1 Calculating counterfactual levels

As discussed in section 4.4, the gegravity package primarily reports certain values as
modeled by the gravity model rather than as observed in the input data. However, users
that are interested in how the estimated counterfactual effects would translate to observed
values, there is the method OneSectorGE.calculate_levels(). The method computes
the estimated change in observed values by taking the model estimated percentage changes
and reapplying them to the observed baseline data.15 The method can produce either
country level or bilateral results by supplying either "country" or "bilateral" to the
method’s how argument. In either case, the method returns a DataFrame of calculated
values. Counterfactual levels can also be calculated when exporting results by supplying
the argument include_levels=True to the export_results method.

4.5.2 Composition of trade

Users may be interested in studying the changes in a country or countries’ composition
of trade. The method OneSectorGE.trade_share() can help easily provide this informa-
tion. For example, building on the example from section 2.2, the command ge_model.

trade_share(exporters =["USA","MEX"],importers =["CAN"]) will return figures for
the share of Canada’s imports coming from its NAFTA/USMCA partners in the baseline
and the counterfactual scenario as well as the share of the U.S. and Mexico’s exports going
to Canada.

4.5.3 Weighted cost shocks

One challenge of GE modeling is that it can be difficult to identify where the major stimuli
are in the model. A model with many countries and/or many changes in trade costs can have
many compounding and offsetting forces, making it difficult to trace the underlying influ-
ences behind counterfactual results. The method OneSectorGE.trade_weighted_shock()

can help shed some light on where the major effects of a counterfactual experiment are
taking place.

In general, the magnitude of the estimated effects stemming from a change in trade
costs depends on both the size of the change in costs and the size of the affected trade
flows. The method computes an atheoretical weighted shock by first multiplying the value
of bilateral trade between each country pair by the absolute difference between their baseline
and experiment trade costs. Second, these weighted shocks are normalized by the largest
shock so that the produced measures range from 0 (no change) to 1 (the largest weighted
change).

The method can produce weighted shocks at either the bilateral or country level. If the
method is called using the argument how = "bilateral", it returns a DataFrame containing
the weighted shocks for each bilateral pair. In general, the largest shocks are those with the
greatest influence over the model’s counterfactual estimates. If the method is called using
the argument how = "country", a DataFrame containing summary statistics based on these
measures is produced. By default, these results produce measures of each country’s mean,

15The model works a bit like a circle in this regard. Observed values are used to parameterize the model.
The model then produces modeled baseline values based on the parameters. The counterfactual experiment
simulates new experiment values, which are also modeled values. The modeled baseline and experiment
values are used to calculate percent changes. Finally, the percent changes are taken back to the original
observed data to create “observed counterfactual” values.
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media, and max shocks are produced, both on the importer and exporter side. However,
users can supply alternative methods of summarizing the measures using the aggregations

argument.
To illustrate the information that can be gained from this tool, refer back to the example

presented in section 2.2. An examination of the the bilateral weighted cost shocks would
indicate that the largest weighted cost shock was on Canadian imports from Japan. The
only other non-zero shock was on Canadian exports to Japan, which experienced the same
policy change but the trade flow was smaller in value. This information helps us understand
that the most influential factor underlying the counterfactual results is likely the impact
on Canadian imports from Japan. Although somewhat trivial in this case, this type of
breakdown can be very informative in more complex experiments where the policy change
differs across parties or affects a greater number of countries.

5 Monte Carlo analysis

The second major tool in the gegravity package is the MonteCarloGE class, which is a
tool for conducting Monte Carlo analyses with the GE gravity model. The purpose of
this tool is to produce GE estimates that reflect the statistical uncertainty in the underlying
econometric gravity estimates. In particular, the Monte Carlo model produces GE estimates
with standard errors that reflect the standard errors of its econometric inputs. This section
details the MonteCarloGE class and provides an example of its use.

5.1 The MonteCarloGE model

The MonteCarloGE class is an extension of the main OneSectorGE class that conducts a series
of OneSectorGE trial simulations using a randomly drawn set of trade cost parameters. This
process allows users to produce baseline and counterfactual estimates with standard errors
that reflect the statistical uncertainty in the true underlying model parameters.

The MonteCarloGE model draws random vectors of cost parameters (
{
β1,β2, ...βn

}
)

for a user-specified n-many trials. These vectors of cost parameters are drawn from the
multivariate normal distribution N (β̂,V) where β̂ is the vector of cost coefficient estimates
from the underlying econometric gravity model and V denotes their corresponding variance-
covariance matrix (Dobson, 2002, Sec. 5.4). A separate OneSectorGE model is solved
(baseline and counterfactual experiment) for each trial.

The Monte Carlo model reports the results of the trials either through summary statistics
derived from all trials or for each trial individually. By default, the Model will produce mean
values for each type of model result produced by the OneSectorGE as well as their standard
errors and standard deviations. The model also permits the inclusion of other types of
summarizing functions such as median values or different percentiles.16 The model can also
return the complete set of results for every trial if requested.

Use of the MonteCarloGE is very similar to that of the OneSectorGE model described
in section 4. The inputs, outputs, and underlying model structure are mostly the same.
The main difference from a user’s perspective is that the MonteCarloGE model conducts
all three of the OneSectorGE simulation steps (build_baseline, define_experiment, and
simulate) as part of the single MonteCarloGE.run_trials method. Because these steps
are all consolidated with less ability to diagnose potential issues at each stage, it is best to
first test a model specification using the OneSectorGE model in order to verify that it solves
cleanly before attempting it as a MonteCarloGE model. The most notable change in input
requirements is that the MonteCarloGE model requires that the trade cost parameters (β̂)
be supplied via a gme EstimationModel that was estimated with the full_results argu-
ment equal to True. This insures that the EstimationModel contains a variance-covariance

16The model should be able to compute any function that can be supplied to the pandas DataFrame.agg()

method.
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model for use in the Monte Carlo parameter distribution. Because of these additional data
requirements, MonteCarloGE does not have an option for supplying alternative cost coeffi-
cient values.

It should be noted that the Monte Carlo model may be more prone to solver issues than
the OneSectorGE model. MonteCarloGE attempts to solve many similar but not identical
models using the same inputs—including the omr_rescale factor—and it is possible that
the solvers will not converge for all possible parameter draws. In many cases, alternative
choices for the OMR rescale factor can rectify this issue but it is not guaranteed. If a
particular trial fails to solve, the process will continue and the eventual results will simply
reflect the trials that did solve.

5.2 Monte Carlo example

The following example demonstrates the use of the MonteCarloGE model. It builds on the
example presented in section 2.2. A copy of the code for this this example can be found at
https://gist.github.com/peter-herman/a2ebf3997bfd6e9cb3268298d49b64b5.

Beginning with the gme EstimationData object from the earlier example, we can define
and estimate a slightly modified estimation model. Note the full_results argument in
this example, which provides additional required information for the Monte Carlo model.

est_model = gme.EstimationModel(estimation_data=est_data ,

lhs_var="trade",

rhs_var=cost_variables ,

fixed_effects=[["importer"], ["exporter"]],

omit_fixed_effect=[["importer"]],

retain_modified_data=True ,

full_results=True)

est_model.estimate ()

With the econometric model estimated, we can create a MonteCarloGE model. In this
example, we will have the model conduct 10 trials. In practice, users may want to consider
using many more trials (law of large numbers) but should be aware that expanding the
number of trials requires more memory and takes more time. We will also set the seed so
that the results are reproducible. Other than those two new arguments, the other arguments
should be familiar from the OneSectorGE model.

monte_model = MonteCarloGE(est_model ,

year="2006",

trials=10,

reference_importer="DEU",

sigma=5,

expend_var_name="E",

output_var_name="Y",

cost_variables=cost_variables ,

results_key="all",

seed=0)

When the model is defined, it draws the vectors of cost parameter values to use in each trial.
We can examine those draws via the following two model attributes. The coeff_sample

attribute returns the values for each individual trial while the sample_stats attribute
contains summary statistics of that sample. As an illustration, the returned summary
statistics are presented in table 5

full_sample = monte_model.coeff_sample

print(monte_model.sample_stats)
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Table 5: Summary statistics for the Monte Carlo GE parameter draws

pta contiguity common language lndist international

beta estimate 0.471 0.892 0.033 -0.390 -3.413
stderr estimate 0.108 0.133 0.084 0.073 0.215

sample count 10 10 10 10 10
sample mean 0.438 0.938 0.061 -0.385 -3.397
sample std 0.067 0.153 0.059 0.069 0.200
sample min 0.349 0.591 -0.031 -0.538 -3.627
sample 25% 0.382 0.873 0.019 -0.418 -3.533
sample 50% 0.450 0.968 0.080 -0.370 -3.443
sample 75% 0.484 1.058 0.105 -0.331 -3.316
sample max 0.542 1.089 0.131 -0.309 -2.996

This table depicts summary statistics for the model’s ten random samples of cost
coefficients. The first two rows, beta estimate and stderr estimate, depict the pa-
rameter estimates from the econometric model. The remaining rows summarize the
ten Monte Carlo draws for each cost variable.

Next, we create the data to use for the counterfactual experiment, which follows the process
in the earlier example. Again, we will use a Canada-Japan PTA as the experiment.

exp_data = monte_model.baseline_data.copy()

exp_data.loc[(exp_data["importer"] == "CAN") &

(exp_data["exporter"] == "JPN"), "pta"] = 1

exp_data.loc[(exp_data["importer"] == "JPN") &

(exp_data["exporter"] == "CAN"), "pta"] = 1

With the counterfactual data created, we can run the simulations. For the MonteCarloGE
model, this is all done via a single method run_trials. The run_trails model features a
couple of additional arguments that are not present in the OneSectorGE model. These new
arguments determine what type of information and how much of it is returned as results.
The results_stats argument specifies how to summarize the results across all the trials.
In this example, we will produce mean values and standard errors (sem). The all_results

argument determines whether the model retains the individual results for every trial after
completion. By setting it equal to False, the model computes the summary statistics and
disposes of the full results so as to avoid holding many potentially large data tables in
memory.

monte_model.run_trials(experiment_data=exp_data ,

omr_rescale=100 ,

result_stats = ["mean", "sem"],

all_results = False)

While running, the model should print the status and success or failure of each trial.
Upon completion, we can examine the results. Begin by checking to see if any trials failed to
solve. Next, we can access the many different type of results that the model produces. The
results attributes are the same as those produced by the OneSectorGE model and discussed
in section 4.4.

print(monte_model.num_failed_trials)

country_results = monte_model.country_results

bilat_results = monte_model.bilateral_trade_results

Table 6 presents the model results from this example. The results should look similar to
those produced by the OneSectorGE model but now contain additional rows corresponding
to each of the statistics requested. In this example, the rows reflect the mean estimated
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percentage changes and their standard errors across all ten trials for each country and
category of results. As expected, the mean estimates are similar to those produced by the
OneSectorGE model, presented in table 3.

Had the model been run with full_results = True, those results could be ac-
cessed by adding the prefix “all ” to the standard results attributes (e.g. monte_model.

all_country_results).

6 Conclusion

The gegravity package offers a convenient, freely-available, easy to use set of tools for
conducting GE structural gravity modeling in Python. The model is based on well estab-
lished, popular versions of the workhorse model in international trade. These tools should
help researchers, policy analysts, and other interested parties rapidly conduct counterfactual
analyses of a wide range of domestic and international policy changes.
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Table 6: MonteCarloGE modeled effects of a hypothetical
Canada-Japan preferential trade agreement.

Factory Real Foreign Foreign
gate price IMR OMR GDP exports imports

AUS 0.003 0.010 -0.003 -0.007 -0.081 -0.031
(0.000) (0.001) (0.000) (0.000) (0.005) (0.002)

AUT -0.003 0.002 0.003 -0.005 -0.032 -0.024
(0.000) (0.000) (0.000) (0.000) (0.002) (0.001)

BEL -0.002 0.000 0.002 -0.002 -0.035 -0.028
(0.000) (0.000) (0.000) (0.000) (0.002) (0.002)

BRA -0.005 0.000 0.005 -0.005 -0.074 -0.061
(0.000) (0.000) (0.000) (0.000) (0.005) (0.004)

CAN -0.123 -0.503 0.123 0.382 1.408 1.348
(0.011) (0.029) (0.011) (0.020) (0.101) (0.096)

CHE -0.002 0.001 0.002 -0.003 -0.032 -0.026
(0.000) (0.000) (0.000) (0.000) (0.002) (0.002)

CHN 0.008 0.011 -0.008 -0.002 -0.032 -0.060
(0.001) (0.001) (0.001) (0.000) (0.002) (0.004)

DEU -0.002 0.000 0.002 -0.002 -0.033 -0.032
(0.000) (0.000) (0.000) (0.000) (0.002) (0.002)

DNK -0.004 0.003 0.004 -0.006 -0.037 -0.027
(0.000) (0.000) (0.000) (0.000) (0.002) (0.002)

ESP -0.002 0.002 0.002 -0.004 -0.049 -0.031
(0.000) (0.000) (0.000) (0.000) (0.003) (0.002)

FIN -0.003 0.004 0.003 -0.007 -0.041 -0.032
(0.000) (0.000) (0.000) (0.000) (0.002) (0.002)

FRA -0.002 0.001 0.002 -0.003 -0.037 -0.028
(0.000) (0.000) (0.000) (0.000) (0.002) (0.002)

GBR -0.002 0.001 0.002 -0.003 -0.055 -0.033
(0.000) (0.000) (0.000) (0.000) (0.003) (0.002)

HKG 0.018 0.019 -0.018 -0.001 -0.064 0.020
(0.002) (0.002) (0.002) (0.000) (0.004) (0.002)

IDN 0.004 0.011 -0.004 -0.007 -0.037 -0.024
(0.001) (0.001) (0.001) (0.000) (0.002) (0.002)

IND 0.004 0.009 -0.004 -0.005 -0.045 -0.029
(0.001) (0.001) (0.001) (0.000) (0.003) (0.002)

IRL -0.005 0.001 0.005 -0.006 -0.037 -0.038
(0.000) (0.000) (0.000) (0.000) (0.002) (0.002)

ITA -0.002 0.001 0.002 -0.003 -0.041 -0.034
(0.000) (0.000) (0.000) (0.000) (0.002) (0.002)

JPN 0.226 0.177 -0.226 0.049 1.142 2.155
(0.014) (0.012) (0.014) (0.003) (0.066) (0.133)

KOR 0.013 0.017 -0.013 -0.004 -0.041 -0.048
(0.001) (0.002) (0.001) (0.000) (0.003) (0.003)

MEX -0.019 -0.007 0.019 -0.011 -0.095 -0.072
(0.001) (0.001) (0.001) (0.001) (0.006) (0.005)

MYS 0.009 0.017 -0.009 -0.007 -0.025 -0.017
(0.001) (0.001) (0.001) (0.000) (0.002) (0.001)

NLD -0.002 0.001 0.002 -0.003 -0.035 -0.028
(0.000) (0.000) (0.000) (0.000) (0.002) (0.002)

POL -0.002 0.003 0.002 -0.005 -0.039 -0.027
(0.000) (0.000) (0.000) (0.000) (0.002) (0.002)

SGP 0.009 0.012 -0.009 -0.002 -0.035 -0.033
(0.001) (0.001) (0.001) (0.000) (0.002) (0.002)

SWE -0.003 0.003 0.003 -0.006 -0.042 -0.035
(0.000) (0.000) (0.000) (0.000) (0.002) (0.002)

THA 0.005 0.011 -0.005 -0.006 -0.034 -0.026
(0.001) (0.001) (0.001) (0.000) (0.002) (0.002)

TUR -0.000 0.005 0.000 -0.006 -0.049 -0.030
(0.000) (0.000) (0.000) (0.000) (0.003) (0.002)

USA -0.038 -0.031 0.038 -0.007 -0.360 -0.176
(0.002) (0.002) (0.002) (0.000) (0.022) (0.010)

ZAF -0.001 0.005 0.001 -0.006 -0.057 -0.037
(0.000) (0.000) (0.000) (0.000) (0.003) (0.002)

This table depicts results from the example MonteCarloGE model in sec-
tion 5.2. For each country and indicator, the mean estimated percentage
change in the counterfactual experiment across all the trials is presented
with it’s corresponding standard error in parentheses.
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