X UNITED STATES TARIFF COMMISSION ## SYNTHETIC ORGANIC CHEMICALS ## United States Production and Sales, 1966 TC Publication 248 Fiftieth Annual Edition ## RECENT REPORTS OF THE UNITED STATES TARIFF COMMISSION ON SYNTHETIC ORGANIC CHEMICALS - Synthetic Organic Chemicals, United States Production and Sales, 1961 (TC Publication 72, 1962) \$1.25 - Synthetic Organic Chemicals, United States Production and Sales, 1962 (TC Publication 114 1963), \$1.50 - Synthetic Organic Chemicals, United States Production and Sales, 1963 (TC Publication 143 1964), \$1.50 - Synthetic Organic Chemicals, United States Production and Sales, 1964 (TC Publication 167 1965), \$1.25 - Synthetic Organic Chemicals, United States Production and Sales, 1965 (TC Publication 206) \$1.00 NOTE.—The reports listed above may be purchased from the Superintendent of Documents; U.S. Governmen Printing Office, Washington, D.C. 20402. See inside back cover for additional reports. All U.S. Tariff Commission reports reproduced by the Government Printing Office may be consulted in the official depository libraries throughout the United States. # SYNTHETIC ORGANIC CHEMICALS ## United States Production and Sales, 1966 UNDER THE PROVISIONS OF SECTION 332 OF THE TARIFF ACT OF 1930, AS AMENDED U.S. GOVERNMENT PRINTING OFFICE WASHINGTON: 1968 ## UNITED STATES TARIFF COMMISSION STANLEY S. METZGER, Chairman GLENN W. SUTTON, Vice Chairman JAMES W. CULLITON PENELOPE H. THUNBERG BRUCE E. CLUBB DONN N. BENT, Secretary Address all communications UNITED STATES TARIFF COMMISSION Washington, D.C. 20436 ## CONTENTS | PART I. PRODUCTION AND SALES OF TARS, TAR CRUDES, AND CRUDES DERIVED FROM PETROLEUM AND NATURAL GAS Tars | | Page | |--|---|------| | PART I. PRODUCTION AND SALES OF TARS, TAR CRUDES, AND CRUDES DERIVED FROM PETROLEUM AND NATURAL GAS Tars | Introduction | v | | DERIVED FROM PETROLEUM AND NATURAL GAS Tar crudes | Summary | VII | | Tar crudes | | | | Tar crudes | Tars | 1 | | PART II. PRODUCTION AND SALES OF INTERMEDIATES AND FINISHED SYNTHETIC ORGANIC CHEMICALS, BY GROUPS | Tar crudes | 1 | | SYNTHETIC ORGANIC CHEMICALS, BY GROUPS | Crude products from petroleum and natural gas for chemical conversion | 4 | | Cyclic intermediates———————————————————————————————————— | | | | Cyclic intermediates———————————————————————————————————— | General | 7 | | Dyes 26 Pigments 26 Medicinal chemicals 31 Plastics and resin materials 36 Rubber-processing chemicals 47 Elastomers (synthetic rubbers) 42 Plasticizers 47 Pesticides and related products 52 Miscellaneous chemicals 52 PART III. ALPHABETICAL LIST OF INDIVIDUAL PRODUCTS, BY GROUPS, AND NAMES OF MANUFACTURERS 66 Crude products from petroleum and natural gas for chemical conversion 66 Cyclic intermediates 99 Dyes 99 Pigments 11 Medicinal chemicals 11 Flavor and perfume materials 13 Rubber-processing chemicals 14 Elasticizers 14 Surface-active agents 14 Pesticides and related products 16 Miscellaneous chemicals 16 Directory of manufacturers 19 | Continue | | | Pigments 20 Medicinal chemicals 31 Flavor and perfume materials 36 Rubber-processing chemicals 42 Elastomers (synthetic rubbers) 44 Plasticizers 47 Surface-active agents 52 Pesticides and related products 55 Miscellaneous chemicals 56 PART III. ALPHABETICAL LIST OF INDIVIDUAL PRODUCTS, BY GROUPS, AND NAMES OF MANUFACTURERS 66 Crudes roudes from petroleum and natural gas for chemical conversion 66 Cyclic intermediates 99 Dyes | Divos | | | Flavor and perfume materials | Diamonte | | | Flavor and perfume materials | Medicinal chemicals | | | Plastics and resin materials 30 30 30 30 30 30 30 3 | Flavor and perfume materials | | | Rubber-processing chemicals Elastomers (synthetic rubbers) Plasticizers Surface-active agents Pesticides and related products Miscellaneous chemicals PART III. ALPHABETICAL LIST OF INDIVIDUAL PRODUCTS, BY GROUPS, AND NAMES OF MANUFACTURERS Tar crudes Crude products from petroleum and natural gas for chemical conversion Cyclic intermediates Dyes Pigments Il Medicinal chemicals Plastics and resin materials Rubber-processing chemicals Elastomers (synthetic rubbers) Plasticizers Surface-active agents Pesticides and related products Miscellaneous chemicals In Miscellaneous chemicals APPENDIX | Plactics and resin materials | | | Elastomers (synthetic rubbers) | Rubber-processing chemicals | | | Surface-active agents 4 Pesticides and related products 55 Miscellaneous chemicals 55 PART III. ALPHABETICAL LIST OF INDIVIDUAL PRODUCTS, BY GROUPS, AND NAMES OF MANUFACTURERS Crudes | Flastomers (synthetic rubbers) | 44 | | Pesticides and related products Miscellaneous chemicals PART III. ALPHABETICAL LIST OF INDIVIDUAL PRODUCTS, BY GROUPS, AND NAMES OF MANUFACTURERS Tar crudes Crude products from petroleum and natural gas for chemical conversion Cyclic intermediates Dyes Pigments Il Medicinal chemicals Flavor and perfume materials Plastics and resin materials Il Subber-processing chemicals Elastomers (synthetic rubbers) Plasticizers Surface-active agents Pesticides and related products Miscellaneous chemicals In Miscellaneous chemicals APPENDIX | Plasticizers | | | Miscellaneous chemicals | Surface-active agents | | | PART III. ALPHABETICAL LIST OF INDIVIDUAL PRODUCTS, BY GROUPS, AND NAMES OF MANUFACTURERS Crudes | Pesticides and related products | | | AND NAMES OF MANUFACTURERS Crudes | Miscellaneous chemicals | 22 | | Crude products from petroleum and natural gas for chemical conversion Cyclic intermediates | | | | Cyclic intermediates 6 Dyes 9 Pigments 11 Medicinal chemicals 13 Flavor and perfume materials 13 Plastics and resin materials 14 Elastomers (synthetic rubbers) 14 Plasticizers 14 Surface-active agents 14 Pesticides and related products 16 Miscellaneous chemicals 16 Directory of manufacturers 19 | Tar crudes | 63 | | Dyes | Crude products from petroleum and natural gas for chemical conversion | - | | Dyes | Cyclic intermediates | | | Medicinal chemicals | Dyos | - | | Flavor and perfume materials | PigmentsPigments | | | Plastics and resin materials | Medicinal chemicals | | | Rubber-processing chemicals | Flavor and perfume materials | | | Elastomers (synthetic rubbers) | Plastics and resin materials | | | Plasticizers | Rubber-processing chemicals | | | Plasticizers | Elastomers (synthetic rubbers) | | | Surface-active agents | Distingers | | | Pesticides and related products | Surface-active agents | | | Miscellaneous chemicals | Pesticides and related products | - | | APPENDIX | Miscallaneous chemicals | | | | Directory of manufacturers | 19 | | II S. imports of benzenoid intermediates and finished benzenoid products 21 | APPENDIX | | | | II S imports of benzenoid intermediates and finished benzenoid products | 21 | . . #### Introduction This is the fiftieth annual report of the U.S. Tariff Commission on domestic production and sales of synthetic organic chemicals and the raw materials from which they are made. The report presents statistics for 1966 on crude organic chemicals derived from coal, natural gas, and petroleum; on intermediates; and on finished synthetic organic chemical products. The finished products are grouped according to their principal use--dyes, synthetic organic pigments, medicinal chemicals, flavor and perfume materials, plastics and resin materials, rubber-processing chemicals, elastomers, plasticizers, surface-active agents, pesticides and related products, and miscellaneous chemicals. The use classifications of finished synthetic organic chemicals are based principally on the manufacturers' annual reports to the Tariff Commission; other sources include trade associations, the chemical literature, chemical dictionaries, encyclopedias, and consultants in the chemical industry. With a few exceptions, the report does not cover organic chemicals (such as wood-distillation products, essential oils, and naval stores) that are derived from natural (vegetable) sources by simple extraction or distillation. The Commission has compiled the statistics given in this report from information supplied by approximately 825 primary manufacturers, listed in part III. The first section of the report includes the statistics on all products and groups of products for which information can be published. The second section lists all the chemicals and chemical products on which data are reported and identifies the manufacturers of each. Each reporting company has been assigned an identification symbol consisting of a combination of not more than three capital letters, selected in most instances with the approval of the manufacturer, and usually bearing some relationship to the company name. The identification symbols are permanent and, except for such changes as may be necessary, will be used in all future reports in this series. This report includes data on only those individual chemicals for which the volume of production or sales in the year covered
exceeded 1,000 pounds or for which the value of sales exceeded \$1,000. The raw materials referred to in this report are obtained from coal, crude petroleum, natural gas, and certain other natural materials, such as vegetable oils, fats, rosin, and grains. Crude organic chemicals are derived from coal by thermal decomposition, from petroleum and natural gas by catalytic cracking and by distillation or absorption, and from other natural sources by fermentation. Production of these crude organic chemicals is the first step in the manufacture of synthetic organic chemicals. From these crudes, intermediates are obtained by synthesis or refining; most of the intermediates are then converted into finished chemical products, such as medicinal chemicals, plastics and resin materials, and dyes. More than half of the total production of intermediates is not sold directly to the ultimate consumer, but is used by the producing companies themselves in their manufacturing processes. The statistics given in this report include data for all known domestic producers of the items covered. In this report the statistics on production of the individual chemicals reported by manufacturers include the total output of the companies' plants, i.e., the quantities produced for consumption within the producing plants, as well as the quantities produced for domestic and foreign sale. The quantities reported as produced, therefore, generally exceed the quantities reported as sold. Some of these differences, however, are attributable to changes in inventories. As specified in the reporting instructions that the Commission sends to manufacturers, and as used in this report, production and sales (unless otherwise specifically indicated) are defined as follows: Production is the total quantity of a commodity made available by *original manufacture only*. It is the sum (expressed in terms of 100-percent active ingredient unless otherwise specified) of the quantities of a commodity-- - (1) Produced, separated, and consumed in the same plant or establishment (a commodity is considered to be separated when it is isolated from the reaction system and/or when it is weighed, analyzed, or otherwise measured). Byproducts and coproducts not classified as waste materials are also included; - (2) Produced and transferred to other plants or establishments of the same firm; - (3) Produced and sold to other firms (including production for others under toll agreements¹); and - (4) Produced and held in stock. ¹A toll agreement is an agreement between two firms, under which one firm furnishes the raw materials and pays the processing costs and the other firm prepares the finished product and returns it to the first firm. ### Production excludes -- - (1) Purification of a commodity unless specifically requested in the reporting instructions; - (2) Intermediate products that are formed in the manufacturing process but are not isolated from the reaction system--that is, not weighed, analyzed, or otherwise measured; and - (3) Materials that are used in the process but are recovered for reuse or sale; and waste products that have no economic significance. Sales are defined as actual sales of commodities by original manufacturers only. Sales include-- - (1) Shipments of commodities for domestic use and for export, or segregation in a warehouse when title has passed to the purchaser in a bonafide sale; - (2) Shipments of a commodity produced by others under toll agreements; and - (3) Shipments to subsidiary or affiliated companies. #### Sales exclude -- - (1) All intracompany transfers within a corporate entity; - (2) All sales of purchased commodities; and - (3) All shipments of a commodity produced for others under toll agreements. The value of a sale is the net selling price, f.o.b. plant or warehouse, or delivered value, whichever represents the normal industry practice. Data on the chemicals covered in this report are usually given in terms of undiluted materials. Products of 95 percent or more purity are considered to be 100 percent pure. The principal exceptions are the statistics on dyes and a few solvents, which are reported in terms of commercial concentrations, and the statistics on certain plastics and resins, which are reported on a dry basis. The report specifically notes those products for which the statistics are reported in terms of commercial concentrations. The average unit values of sales for groups of products shown in the tables accompanying this report are the averages for products which vary widely in unit values and in the quantities sold. In this report, statistics are presented in as great detail as is possible without revealing the operations of individual producers. Statistics for an individual chemical or group of chemicals are not given unless there are three or more producers no one or two of which may be predominant. Moreover, even when there are three or more producers, statistics are not given if there is any possibility that their publication would violate the statutory provisions relating to unlawful disclosure of information accepted in confidence by the Commission. ² Statistics on tars and tar crudes include data furnished directly to the Tariff Commission by distillers of coal tar, water-gas tar, and oil-gas tar, and data furnished to the Division of Bituminous Coal, U.S. Bureau of Mines, by coke-oven operators. Statistics on U.S. general imports in 1966 of benzenoid intermediates and finished benzenoid products that entered under schedule 4, parts 1B and 1C, of the Tariff Schedules of the United States are given in the appendix. Information on synonymous names of organic chemicals included in this report may be found in the SOCMA Handbook: Commercial Organic Chemical Names, recently published by the Chemical Abstracts Service of the American Chemical Society, or the Colour Index (2d edition), published in 1956 by the Society of Dyers and Colourists. ² Sec. 5, U.S.C. 139b and sec. 18, U.S.C. 1905. ### Summary Combined production of all synthetic organic chemicals, tars, tar crudes, and crude products from petroleum and natural gas in 1966 was 169,174 million pounds—an increase of 11.6 percent over the output in 1965 (see table 1). Sales of these materials in 1966, which totaled 90,175 million pounds, valued at \$10,999 million, were 12.4 percent larger than in 1965 in terms of quantity and 11.1 percent larger in terms of value. These figures include data on production and sales of chemicals measured at several successive steps in the manufacturing process, and therefore they necessarily contain some duplication. In 1966, production of all synthetic organic chemicals, including cyclic intermediates and finished chemical products, totaled 100,627 million pounds, or 13.2 percent more than the output in 1965 (see table 1). Production of plastics and resin materials (13,585 million pounds) was 16.3 percent larger in 1966 than in 1965; that of medicinal chemicals (185 million pounds) was 16.3 percent larger; that of pesticides and related products (1,013 million pounds) was 15.5 percent larger; that of cyclic intermediates (19,467 million pounds) was 15.4 percent larger; and that of miscellaneous organic chemicals (57,253 million pounds) was 12.6 percent larger. The output of most other groups of synthetic organic chemicals also increased in 1966 compared with 1965, with rubber-processing chemicals and plasticizer chemicals showing increases of more than 12 percent. Production of surface-active agents (3, 321 million pounds) showed the smallest percentage gain in 1966 over 1965 (4.8 percent). TABLE 1.--Symmetic organic chemicals and their raw materials: U.S. production and sales, 1965 and 1966 | | | | | Sales | | | | | | |---|---|--|---|--|--|---|--|---|--| | | | Production | n | | Quantit | у | Value | | | | Chemical | 1965 | 1966 | Increase
or
decrease
(-), 1966
over
19651 | 1965 | 1966 | Increase
or
decrease
(-), 1966
over
1965 ¹ | 1965 | 1966 | Increase
or
decrease
(-), 1966
over
1965 ¹ | | Grand total ² | Million
pounds
151,606 | Million
pounds
169,174 | Percent
11.6 | Million
pounds
80,204 | Million
pounds
90,175 | Percent
12.4 | Million
dollars
9,898 | dollars | Percent
11.1 | | Tar | 8,027
10,205 | 8,019
10,062 | 1
-1.4 | 3,662
6,332 | 3,613
6,348 | -1.4
.3 | 37
136 | 35
140 | 1 | | Crude products from petroleum and natural gas | 44,510 | 50,467 | 13.4 | 23,402 | 27,494 | 17.5 | 705 | 865 | 22.8 | | Synthetic organic chemicals, total ² | 88,864 | 100,627 | 13.2 | 46,807 | 52,720 | 12.6 | 9,021 | 9,958 | 10.4 | | Intermediates | 16,865
207
48
160
99
11,685
252
3,592
1,073
3,170
877
50,836 | 19,467
219
51
185
111
13,585
283
3,929
1,209
3,321
1,013
57,253 | 15.4
5.8
6.4
16.3
11.5
16.3
12.7
4.8
15.5 | 7,551
190
38
129
88
10,053
194
3,041
1,022
1,698
764
22,040 | 8,852
204
43
136
98
11,472
209
3,411
1,156
1,766
822
24,549 | 7.5
13.9
5.7
12.1
14.1
8.0
12.2
13.1
4.0
7.6 |
814
292
94
362
85
2,504
123
843
214
300
497
2,890 | 925
331
108
398
93
2,740
138
918
246
315
584
3,162 | 13.4
14.9
10.0
9.0
9.2
12.0
8.8
14.1
4.5
17.4 | Percentages calculated from figures rounded to thousands. ² Because of rounding, figures may not add to the totals shown. ## PART I. PRODUCTION AND SALES OF TARS, TAR CRUDES, AND CRUDES DERIVED FROM PETROLEUM AND NATURAL GAS #### Tars Coal tar is produced chiefly by the steel industry as a byproduct of the manufacture of coke; water-gas tar and oil-gas tar are produced by the fuel-gas industry. Production of coal tar, therefore, depends on the demand for steel; production of water-gas tar and oil-gas tar reflects the consumption of manufactured gas for industrial and household use. Water-gas and oil-gas tars have properties intermediate between those of petroleum asphalts and coal tars. Petroleum asphalts are not usually considered to be raw materials for chemicals. The quantity of tar produced from coal in the United States in 1966 was 802 million gallons, or 0.1 percent less than the 803 million gallons produced in 1965. U.S. production of water-gas tar and oil-gas tar was not reported to the Commission for 1965 or 1966; production of these tars amounted to 19 million gallons in 1962, the last year for which production was reported to the Tariff Commission. Total consumption of tar in 1966 amounted to 763 million gallons, of which 605 million gallons was consumed by distillation, 132 million gallons as fuel, and 26 million gallons in miscellaneous uses. TABLE 2.--Tar: U.S. production and consumption, 1965 and 1966 | Product | 1965 | 1966 | |---|--------------------|--------------------| | PRODUCTION | | | | Coal tar from coke-oven byproduct plants, total 1 | 802,738 | 801,867 | | CONSUMPTION | | | | Total | 765,946 | 762,904 | | Tar consumed by distillation, total | 615,816 | 604,582 | | Coal tar distilled or topped by coke-oven operators 1Coal tar, water-gas tar, distilled by producers and tar distillers 2 | 312,079
303,737 | 302,873
301,709 | | Tar consumed chiefly as fuel1 | 122,961 | 131,890 | | Tar consumed otherwise than by distillation or as fuel, total | 27,169 | 26,432
2,192 | | Coal tar consumed at coke-oven plants for roads and upkeep ¹ | 871 | 2,192 | | special-purpose tar blends | 26,298 | 24,240 | ¹ Reported to the U.S. Bureau of Mines. ### Tar Crudes Tar crudes are obtained from coke-oven gas and by distilling coal tar, water-gas tar, and oil-gas tar. The most important tar crudes are benzene, toluene, xylene, naphthalene, and creosote oil. Some of the products produced from coal tar are identical with those produced from petroleum. Data for materials derived from petroleum are included, for the most part, with the statistics for materials derived from coal tar, which are shown in tables 3 and 4A. ² Reported to U.S. Tariff Commission. Represents tar purchased from companies operating coke ovens and gas-retort plants and distilled by companies operating tar-distillation plants. ¹See also table 4B, pt. III, which lists these products and identifies the manufacturers. Domestic production of industrial and specification grades of benzene reported by coke-oven operators and petroleum refinery operators² in 1966 amounted to 955 million gallons--15.5 percent more than the 827 million gallons reported for 1965. These statistics include data for benzene produced from light oil and petroleum. Sales of benzene by coke-oven operators and petroleum operators in 1966 amounted to 606 million gallons, valued at \$147 million, compared with 511 million gallons, valued at \$123 million, in 1965. In 1966 the output of toluene ² (including material produced for use in blending in aviation fuel) amounted to 584 million gallons--6.4 percent more than the 549 million gallons reported for 1965. Sales of toluene in 1966 were 361 million gallons, valued at \$62 million, compared with 325 million gallons, valued at \$54 million, in 1965. The output of xylene² in 1966 (including that produced for blending in motor fuels) was 329 million gallons, compared with 340 million gallons in 1965. About 98 percent of the 329 million gallons of xylene produced in 1966 was obtained from petroleum sources. Production of crude naphthalene in 1966 (including 354 million pounds of petroleum-derived naphthalene) amounted to 848 million pounds, compared with 811 million pounds in 1965. In 1966 the output of creosote oil for wood preservation was 133 million gallons (100-percent creosote basis), compared with 124 million gallons in 1965. Production of road tar and tar (crude and refined) for other uses in 1966 was 68 million gallons, compared with 85 million gallons in 1965. TABLE 3.-- Tar and tar crudes: Summary of U.S. production of specified products, average 1957-59, annual 1965 and 1966 [Leaders are used where the reported data are accepted in confidence and may not be published or where no data were reported] | | Unit
of | Average | | | | ase, or
ase (-) | |---------------------------------------|------------------|---------|----------------------|----------------------|----------------------|--------------------| | Chemical | quantity 1957-59 | | 1965 | 1966 | 1966 over
1957-59 | 1966 over
1965 | | | | | | | Percent | Percent | | Tar ¹ | 1,000 gal | 760,816 | 802,738 | 801,867 | 5.4 | 1 | | Benzene: | | | | | | | | Tar distillers ² | 1,000 gal | 27,130 | ••• | ••• | ••• | ••• | | Coke-oven operators | 1,000 gal | 139,121 | 121,917 | 113,932 | -18.1 | -6.6 | | Petroleum operators | 1,000 gal | 155,694 | 704,993 | 841,340 | 440.4 | 19.3 | | Total | 1,000 gal | 321,945 | 826,910 | 955,272 | 196.7 | 15.5 | | Toluene: | | | | 1 | | | | Tar distillers | 1,000 gal | 4,162 | | | • • • | ••• | | Coke-oven operators | 1,000 gal | 31,007 | 24,816 | 22,791 | -26.5 | -8.2 | | Petroleum operators | 1,000 gal | 204,421 | 524,013 | 561,103 | 174.5 | 7.1
6.4 | | Total | 1,000 gal | 239,590 | 548,829 | 583,894 | 143.7 | 6.4 | | <pre>Xylene:</pre> | | | | | | | | Tar distillers | 1,000 gal | 795 | ••• | | ••• | ••• | | Coke-oven operators | 1,000 gal | 8,908 | 6,741 | 6,124 | -31.3 | -9.2 | | Petroleum operators | 1,000 gal | 180,021 | ³ 333,063 | ³ 322,560 | 79.2 | -3.2
-3.3 | | Total | 1,000 gal | 189,724 | 339,804 | 328,684 | 73.2 | -3.3 | | Naphthalene: | | | | | | | | Crude ⁴ | 1,000 lb | 396,882 | 463,980 | 493,634 | 24.4 | 6.4 | | Petroleum naphthalene, all grades | 1,000 lb | ••• | 346,620 | 354,068 | ••• | 2.1 | | Total | 1,000 lb | 396,882 | 810,600 | 847,702 | 113.6 | 4.6 | | Creosote oil (Dead oil):5 | | | | 1 | | | | Distillate as such (100% creosote | | | | | | | | basis) | 1,000 gal | 90,913 | 111,087 | 114,725 | 26.2 | 3.3 | | Creosote content of coal-tar solution | | | | 1 | | | | (100% creosote basis) | 1,000 gal | 14,172 | 12,515 | 18,141 | 28.0 | 45.0 | | Total | 1,000 gal | 105,085 | 123,602 | 132,866 | 26.4 | 7.5 | ¹ Includes data for oil-gas, water-gas, and gas-retort tar reported to the American Gas Association for 1957-59 only, and for coal tar reported to the Division of Bituminous Coal, U.S. Bureau of Mines. ² Includes data for benzene produced from imported crude light oil. vidual companies. Because of conversion between grades, the figures may include some duplication. 5 Includes data for creosote oil produced by tar distillers and coke-oven operators and used only in wood preserving. ³ Includes data for material produced for use in blending motor fuels. Statistics are not comparable with monthly figures, which included some o-xylene now shown on table 7A. Naphthalene solidifying at less than 79° C. Figures include production by tar distillers and coke-oven operators and represent combined data for the commercial grades of naphthalene to avoid disclosure of the operations of individual commanies. Because of conversion between grades, the figures may include some duplication. ² Statistics on production and sales of benzene, toluene, and xylene by tar distillers cannot be shown because publication would reveal the operations of individual companies. ## TABLE 4A. -- Tar crudes: U.S. production and sales, 1966 [Listed below are all tar crudes for which any reported data on production or sales may be published. (Leaders are used where the reported data are accepted in confidence and may not be published or where no data were reported.) Table 4B in pt. III lists separately all products for which data on production or sales were reported and identifies the manufacturers reporting to the U.S. Tariff Commission] | | Unit | | Sales | | | | |---|----------------|-------------------|----------|---------------------|---|--| | Product | of
quantity | Production | Quantity | Value | Unit
value ¹ | | | | | | | 1,000 | | | | | | | | dollars | | | | Crude light oil: Coke-oven operators | 1,000 gal | 262,640 | 83,274 | 11,219 | \$0.14 | | | Intermediate light oil: Coke-oven operators | 1,000 gal | 5,978 | 3,622 | 128 | .04 | | | <u> Hight-oil distillates:</u> | | | | | | | | Benzene, specification and industrial grades, | | | | - 15 005 | | | | total ² 3 | 1,000 gal | 955,272 | 606,050 | 147,305 | .24 | | | Coke-oven operators | 1,000 gal | 113,932 | 112,095 | 27,333 | .24 | | | Detroloum energians | 1,000 gal | 841,340 | 493,955 | 119,972 | .24 | | | Toluene, all grades, total ² 3 | 1,000 gal | 583,894 | 361,358 | 62,137 | .17 | | | Coke-oven operators | 1,000 gal | 22,791 | 22,622 | 4,309 | .19 | | | Petroleum operators | 1,000 gal | 561,103 | 338,736 | 57,828 | .17 | | | Yvlene, all grades, total 3 | 1,000 gal | 328,684 | 236,792 | 42,585 | .18 | | | Coke_oven onerators | 1,000 gal | 6,124 | 6,410 | 1,405 | .22 |
 | Petroleum operators | 1,000 gal | 322,560 | 230,382 | 41,180
547 | .18 | | | Solvent naphtha: Coke-oven operators | 1,000 gal | 3,161 | 2,954 | | .18 | | | Other light-oil distillates: Coke-oven operators | 1,000 gal | 6,348 | 3,076 | 272 | .09 | | | Naphthalene, crude (tar distillers and coke-oven | | | | | | | | operators), total ⁴ | 1,000 lb | 493,634 | 270,896 | 11,077 | .04 | | | Solidifying at | | 05 7770 | | | | | | Less than 74° C | 1,000 lb | 85,770
407,864 | ••• | ••• | • | | | 74° C. to less than 79° C= | 1,000 16 | 407,004 | ••• | ••• | ••• | | | Crude tar-acid oils: Coke-oven operators | 1,000 gal | 27,477 | 27,267 | 4,476 | .16 | | | Creosote oil (Dead oil) (tar distillers and coke- | | | | | 6 | | | oven operators) (100% creosote basis), total | 1,000 gal | 132,866 | | ⁶ 23,427 | 6.20 | | | Distillate as such (100% creosote basis)
Oreosote content of coal-tar solution (100% | 1,000 gal | 114,725 | 96,193 | 18,414 | .19 | | | creosote basis) | 1,000 gal | 18,141 | 18,143 | 65,013 | 6.28 | | | All other distillate products ⁷ | 1,000 gal | | 14,760 | 2,657 | .18 | | | Tar, road | 1,000 gal | | | 7,263 | .14 | | | Tar (crude and refined) for other uses8 | 1,000 gal | 12,489 | 9,492 | 1,986 | .21 | | | Pitch of tar:
Hard (water softening point above 160° F.) | 1,000 tons- | 978 | 732 | 28,641 | 39.13 | | | Other9 | 1,000 tons- | | 435 | 14,424 | 33.16 | | | Utner' | 1,000 00115- | 1 351 | 1 435 | 14,424 | | | 1 Unit value per gallon, or ton, as specified. Includes data for material produced for use in blending motor fuels. 4 Statistics represent combined data for the commercial grades of naphthalene. Because of conversion of naphthalene from one grade to another, the figures may include some duplication. Statistics include only data for creosote oil sold for, or used in, wood preserving. In 1966, production of creosote in coal-tar solution (100% solution basis) amounted to 27,791 thousand gallons; sales were 27,604 thousand gallons, valued at 5,013 thousand dollars, with a unit value of \$0.18 per gallon. 6 Includes value of coal tar used in preparing creosote in coal-tar solution. 7 Includes data for pyridine crude bases, crude cresylic acid, and neutral oils produced by tar distillers, and for crude sodium phenolate produced by coke-oven operators. 8 Includes data for tar used for paint, pipe covering, saturating, and other uses. 9 Includes soft and medium pitch of tar (water softening points less than 110° F., and 110° F. to 160° F. ASTM D61-24), pitch of tar coke, and pitch emulsion. Note .-- Statistics for materials produced in coke and gas-retort ovens are compiled by the Division of Bituminous Coal, U.S. Bureau of Mines, Department of the Interior. Statistics for materials produced in tar and petroleum refineries are compiled by the U.S. Tariff Commission. ² Data reported by tar distillers are not included because publication would disclose the operations of individual companies. Production of benzene and toluene by tar distillers increased in 1966, compared with 1965; production of xylene decreased. The annual production statistics for petroleum operators on benzene, toluene, and xylene are not comparable with the combined monthly production figures, due to fiscal year revisions. Some of the products included in the statistics in table 4A are derived from other products for which data are also included in the table. The statistics, therefore, involve considerable duplication, and for this reason no group totals or grand totals are given. It is estimated that, after duplication has been eliminated insofar as possible, the net value of the output of these products and of tar burned as fuel was \$552 million in 1966, compared with \$500 million in 1965 and \$460 million in 1964. ## Crude Products from Petroleum and Natural Gas for Chemical Conversion Crude products that are derived from petroleum and natural gas are related to the intermediates and finished products made from such crudes in much the same way that crude products derived from the distillation of coal tar are related to their intermediates and finished products. Many of the crude products derived from petroleum are identical with those derived from coal tar (e.g., benzene, toluene, and xylene). Considerable duplication exists in the statistics on the production and sales of petroleum crudes because some of these crude chemicals are converted to other crude products derived from petroleum and because data on some production and sales are reported at successive stages in the conversion processes (see table 5A3). Notwithstanding these duplications, the statistics are sufficiently accurate to indicate trends in the industry and to serve as a basis for general comparison. Many of the crude products for which data are included in the statistics may be used either as fuel or as basic materials from which to derive other chemicals, depending on prevailing economic conditions; but in this report every effort has been made to exclude data on materials that are used as fuel. However, data are included on toluene and xylene which are not used directly as fuel but in blending aviation and motorgrade gasolines. Statistics on the production and sales of crude products from petroleum and natural gas for chemical conversion for 1966 are given in table 5A³. TABLE 5A. --Crude products from petroleum and natural gas for chemical conversion: U.S. production and sales, 1966 [Listed below are the crude products from petroleum and natural gas for chemical conversion for which any reported data on production or sales may be published. (Leaders are used where the reported data are accepted in confidence and may not be published or where no data were reported.) Table 5B in pt. III lists separately all products from petroleum and natural gas for chemical conversion for which data on production or sales were reported and identifies the manufacturer of each | | | Sales | | | | |--|--|---|---------------------------------------|----------------------------------|--| | Product | Production | Quantity | Value | Unit
value ¹ | | | Grand total | 1,000
pounds
50,466,599 | 1,000
pounds
27,494,322 | 1,000
dollars
865,411 | Per
pound
\$0.031 | | | AROMATICS AND NAPHTHENES ² | | | | | | | Total | 14,798,697 | 10,029,162 | 260 , 532 | .026 | | | Benzene (1° and 2°), total
Benzene, 1°
Benzene, 2° | 6,209,089
5,329,209
879,880 | 3,645,388 | 119,972 | | | | Naphthalene, all grades | 354,068 | 279,759 | 11,342 | .040 | | | Naphthenic acids, totalAcid number 150-199All other | 24,028
7,503
16,525 | 15,939
4,811
11,128 | 1,665
466
1,199 | .104
.097
.108 | | | Sodium carbolate and phenate, crude | 8,724 | 8,802 | 264 | .030 | | | Toluene, all grades, total | 4,079,217
2,580,995
196,297

1,301,925 | 2,462,610
1,785,497

37,273
639,840 | 57,828
43,293

831
13,704 | .023
.024

.022
.021 | | | %ylenes, mixed, total | 2,325,658
672,159 | 1,661,054
611,358 | 41,180
14,565 | .025
.024 | | | All other aromatics and naphthenes4 | 1,653,499
1,797,913 | 1,049,696
1,955,610 | 26,615
28,281 | .025 | | See footnotes at end of table. $^{^3}$ See also table 5B, pt. III, which lists all the products reported and identifies the manufacturers. TABLE 5A. -- Crude products from petroleum and natural gas for chemical conversion; U.S. production and sales, 1966-- Continued | | | Sales | | | | |---|-----------------|-----------------|------------------|----------------------------|--| | Product | Production | Quantity | Value | Unit
value ¹ | | | ALIPHATIC HYDROCARBONS | 1,000
pounds | 1,000
pounds | 1,000
dollars | Per
pound | | | Total | 35,667,902 | 17,465,160 | 604,879 | \$0.035 | | | C2 hydrocarbons, total | 13,449,167 | ••• | ••• | ••• | | | Acctor 1 000 2 | 715,005 | ••• | ••• | ••• | | | Fthone | 1,493,077 | 709,834 | 6,666 | .009 | | | Ethylene | 11,241,085 | 3,276,767 | 135,370 | .041 | | | C3 hydrocarbons, total | 9,062,684 | 6,256,318 | 99,792 | .016 | | | Dropono | 4,385,234 | 3,612,301 | 42,956 | .012 | | | Propylene | 4,677,450 | 2,644,017 | 56,836 | .021 | | | C4 hydrocarbons, total | 8,057,088 | 4,760,865 | 261,610 | .055 | | | 1,3-Butadiene, grade for rubbers (elastomers) | 2,921,803 | 1,865,705 | 185,621 | .100 | | | Butadiene and butylene fractions | 878,895 | 150,492 | 5,613 | .037 | | | - Butano | 1,302,526 | 400,661 | 4,987 | .012 | | | 1-Butene and 2-butene mixture ⁶ | 1,580,592 | 1,340,947 | 37,655 | .028 | | | Isobutane | 517,838 | 380,626 | 5,447 | .014 | | | Isobutylene | 460,979 | 161,280 | 9,913 | .061 | | | All other | 394,455 | 461,154 | 12,374 | .027 | | | C ₅ hydrocarbons, total | 599,388 | 124,048 | 4,066 | .033 | | | T | 147,462 | | | ••• | | | All other ⁸ | 451,926 | | ••• | ••• | | | All other aliphatic hydrocarbons and derivatives, total | 4,499,575 | 2,337,328 | 97,375 | .042 | | | Alpha alefiney | 261,832 | 162,535 | 7,935 | .049 | | | Diisobutylene (diisobutene) | 34,034 | 27,178 | 2,040 | .075 | | | Heptenes, mixed | 301,326 | 231,842 | 8,498 | .037 | | | Hexane | 186,791 | | | ••• | | | Nonene (Tripropylene) | 289,284 | 111,202 | 6,920 | .062 | | | Polybutene 10 | 153,373 | 157,857 | 11,671 | .074 | | | M | 457,259 | | 8,181 | .027 | | | Hydrocarbon derivatives 11 | 30,285 | 1 . | 6,842 | .293 | | | | | | | | | Calculated from rounded figures. 4 Includes data for 90-percent benzene, crude cresylic acid, sodium cresylate, alkyl aromatics, distillates, solvents, and miscellaneous cyclic hydrocarbons. ⁵ Production figures on acetylene from calcium carbide for chemical synthesis are collected by the U.S. Bureau of the Census. ⁶ The statistics represent
principally the butene content of crude refinery gases from which butadiene is manu- factured. 7 Includes data for 1-butene, 2-butene, mixed butylenes, and mixed olefins. Includes data for pentanes, pentenes, and C₅ hydrocarbon mixtures. Solution Includes data for pentanes, pentenes, and C₅ hydrocarbon mixtures. Solution Includes data for the following molecular weight ranges: C₆-C₇; C₈-C₁₀; C₁₁-C₁₅; C₁₆-C₂₀; and C₁₆-C₃₀. 10 Includes compounds having a molecular weight of 3,000 or less. 11 Includes data for di-tert-butyldisulfide and miscellaneous mercaptans. 12 Includes data for ethane-ethylene mixture, heptane, methane, propane-propylene mixture, octanes, eicosane, and hydrocarbon mixtures. The output of crude products derived from petroleum and natural gas as a group amounted to 50,467 million pounds in 1966, or 13.4 percent more than the 44,510 million pounds reported for 1965 (table 1). The larger output in 1966 is accounted for chiefly by increased production of ethylene, benzene, propylene, toluene, and acetylene. Sales of crude chemicals from petroleum in 1966 was 27,494 million pounds, valued at \$865 million, compared with 23,402 million pounds, valued at \$705 million, in 1965. The output of all aromatic and naphthenic products amounted to 14,799 million pounds in 1966, compared with 13,763 million pounds in 1965. Sales in 1966, which amounted to 10,029 million pounds, valued at \$261 million, were 1,384 million pounds larger, and valued at \$46 million more, than those in 1965. Naphthalene was produced from petroleum sources in substantially greater quantities in 1966 than in 1965. The output of 1° and 2° benzene from petroleum ² The chemical raw materials designated as aromatics are in some cases identical with those obtained from the distillation of coal tar. However, the statistics given in the table above relate only to such materials as are derived from petroleum and natural gas. Statistics on aromatic chemicals from all sources are given in table 4A, "Tar Crudes." ³ Includes toluene and xylene used as solvents, as well as that which is blended in aviation and motor gasolines. amounted to 6,209 million pounds in 1966--19.3 percent more than the 5,203 million pounds produced in 1965. The output of toluene in 1966 was 4,079 million pounds--7.1 percent more than the 3,810 million pounds produced in 1965. Production of xylene was 2,326 million pounds in 1966, compared with 2,401 million pounds in 1965. These figures include toluene and xylene used in blends in aviation and motor-grade gasolines. The output of naphthenic acids amounted to 24 million pounds in 1966, about the same as that produced in 1965. Production of all aliphatic hydrocarbons and derivatives from petroleum and natural gas w 35,668 million pounds in 1966, compared with 30,746 million pounds in 1965. Sales of these products were 17,465 million pounds, valued at \$605 million, in 1966, compared with 14,757 million pounds, valued at \$490 million, in 1965. The statistics on production of acetylene (table 5A) include only acetylene produced from hydrocarbons and used as a raw material in the production of other chemicals. Total production of acetylene for chemical synthesis is reported to the U.S. Bureau of the Census. In 1966, production of acetylene from hydrocarbon sources, amounted to 715 million pounds. Production of ethylene was 11,241 million pounds in 1966--17 percent more than the 9,570 million pounds produced in 1965. The output of propane and propy was 9,063 million pounds in 1966--13.7 percent more than the 7,972 million pounds produced in 1965. Production of 1,3-butadiene, one of the principal ingredients of S-type synthetic rubber, was 2,922 million pounds in 1966, compared with 2,685 million pounds in 1965. The output of 1,3-butadiene in 1966--8.8 percent more than that in 1965--was the largest on record. The following tabulation shows the number of companies that reported production of organi chemical crudes in 1966: | | Number | |------------------|-----------| | Chemical group | companies | | Tar crudes | 13 | | Petroleum crudes | . 73 | ## PART II. PRODUCTION AND SALES OF INTERMEDIATES AND FINISHED SYNTHETIC ORGANIC CHEMICALS, BY GROUPS ## General On the basis of their principal uses, the synthetic organic chemicals covered in this report are classified either as intermediates or as finished products. Finished products, in turn, are grouped as follows: Dyes, synthetic organic pigments, medicinal chemicals, flavor and perfume materials, plastics and resin materials, rubber-processing chemicals, elastomers (synthetic rubbers), plasticizers, surface-active agents, pesticides and related products, and miscellaneous synthetic organic chemicals. Most of these groups are further subdivided, according to chemical classes, into cyclic and acyclic compounds. As most of the intermediates are used in the manufacture of finished products, aggregate figures that cover both intermediates and finished products necessarily include considerable duplication. Total production of synthetic organic chemicals (intermediates and finished products combined) in 1966 was 100,627 million pounds, or 13.2 percent more than the output of 88,864 million pounds reported for 1965 (see table 6). Sales of synthetic organic chemicals in 1966 amounted to 52,720 million pounds, valued at \$9,958 million, compared with 46,807 million pounds, valued at \$9,021 million, in 1965. Production of all cyclic products (intermediates and finished products combined) in 1966 totaled 32,133 million pounds, or 13.8 percent more than the 28,229 million pounds produced in 1965. The output of acyclic organic chemicals in 1966 amounted to 68,494 million pounds—13.0 percent more than the 60,635 million pounds reported for 1965. TABLE 6.--Synthetic organic chemicals: Summary of U.S. production and sales of intermediates and finished products, average 1957-59, annual 1965 and 1966 [Production and sales in thousands of pounds; sales value in thousands of dollars] | | | | | Increase, or decrease (-) | | | |--|---------------------------------------|---------------------------------------|--|-----------------------------------|---------------------------------|--| | Chemical | Average
1957 - 59 | 1965 | 1966 | 1966 over
1957-59 | 1966 over
1965 | | | Organic chemicals, cyclic and acyclic, grand total: Production | 45,598,853
23,744,812
5,743,764 | 88,864,092
46,807,057
9,020,540 | 100,626,696
52,719,594
9,958,383 | Percent
120.7
122.0
73.4 | Percent
13.2
12.6
10.4 | | | Cyclic, total: Production | 14,381,651 | 28,229,128 | 32,132,902 | 123.4 | 13.8 | | | | 8,829,037 | 16,499,189 | 18,867,433 | 113.7 | 14.4 | | | | 2,785,100 | 3,855,492 | 4,328,963 | 55.4 | 12.3 | | | Acyclic, total: Production Sales Sales value | 31,217,202 | 60,634,964 | 68,493,794 | 119.4 | 13.0 | | | | 14,915,775 | 30,307,868 | 33,852,161 | 127.0 | 11.7 | | | | 2,958,664 | 5,165,048 | 5,629,420 | 90.3 | 9.0 | | | 1. Intermediates, Cyclic Production | 7,343,167 | 16,865,164 | 19,466,775 | 165.1 | 15.4 | | | | 2,919,264 | 7,551,210 | 8,852,033 | 203.2 | 17.2 | | | | 481,920 | 814,383 | 925,092 | 92.0 | 13.6 | | | 2. Dyes, Cyclic Production | 150,830 | 207,193 | 219,194 | 45.3 | 5.8 | | | | 141,731 | 189,965 | 204,135 | 44.0 | 7.5 | | | | 182,513 | 292,284 | 331,453 | 81.6 | 13.4 | | | 3. Synthetic Organic Pigments, Cyclic Production | 38,603 | 48,045 | 51,128 | 32.4 | 6.4 | | | | 30,218 | 38,024 | 43,316 | 43.3 | 13.9 | | | | 58,648 | 93,635 | 107,594 | 83.5 | 14.9 | | TABLE 6.--Synthetic organic chemicals: Summary of U.S. production and sales of intermediates and finished products, average 1957-59, annual 1965 and 1966--Continued [Production and sales in thousands of pounds; sales value in thousands of dollars] | | A | | | Increase, or decrease (-) | | |-----------------------------------|-----------------------------|------------------------------|--|-------------------------------|--------------------------------| | Chemical | Average
1957-59 | 1965 | 1966 | 1966 over
1957-59 | 1966 over
1965 | | 4. Medicinal Chemicals | | | ************************************** | | | | Cyclic: Production | 70,654
54,151
535,297 | 100,040
72,479
321,158 | 116,164
76,842
356,646 | Percent
64.4
(1)
(1) | Percent
16.1
6.0
11.0 | | Acyclic: Production | 31,592 | 59,480 | 69,305 | 119.4 | 16.5 | | | 28,738 | 56,569 | 59,621 | (¹) | 5.4 | | | 35,660 | 41,011 | 41,762 | (¹) | 1.8 | | 5. Flavor and Perfume Materials | | | | | | | Cyclic: Production | 27,312 | 53,223 | 61,406 | 124.8 | 15.4 | | | 22,446 | 44,559 | 49,597 | 121.0 | 11.3 | | | 33,903 | 56,800 | 60,915 | 79.7 | 7.2 | | Production | 19,033 | 46,001 | 49,264 | 158.8 | 7.1 | | | 19,958 | 43,144 | 48,717 | 144.1 | 12.9 | | | 21,912 | 28,180 | 31,719 | 44.8 | 12.6 | | 6. Plastics and Resin Materials | | | | | | | Cyclic: Production | 2,278,862 | 4,452,975 | 5,066,571 | 122.3 | 13.8 | | | 1,900,032 | 3,689,722 | 4,254,211 | 123.9 | 15.3 | | | 518,501 | 873,501 | 988,001 | 90.5 | 13.1 | | Acyclic: Production | 2,628,779 | 7,231,900 | 8,518,301 | 224.0 | 17.8 | | | 2,438,853 | 6,363,044 | 7,217,427 | 195.9 | 13.4 | | | 864,523 | 1,630,932 | 1,752,080 | 102.7 | 7.4 | | 7. Rubber-Processing Chemicals | | | | | | | Cyclic: Production | 159,182 | 211,403 | 241,248 | 51.6 | 14.1 | | | 115,704 | 166,214 | 182,790 | 58.0 | 10.0 | | | 74,479 | 109,204 | 123,581 | 65.9 | 13.2 | | Production | 29,150 | 40,542 | 42,087 | 44.4 | 3.8 | | | 22,127 | 27,504 | 26,495 | 19.7 | -3.7 | | | 14,289 | 14,189 | 14,622 | 2.3 | 3.1 | | 8. Elastomers (Synthetic Rubbers) | | | | | | | Cyclic: Production | 1,938,732 | 2,300,092 | 2,482,375 | 28.0 | 7.9 | | | 1,726,757 | 1,897,921 | 2,108,089 | 22.1 | 11.1 | | | 404,897 | 442,722 | 463,222 | 14.4 | 4.6 | | Production |
521,811 | 1,291,562 | 1,446,812 | 177.3 | 12.0 | | | 509,262 | 1,143,242 | 1,303,169 | 155.9 | 14.0 | | | 199,627 | 400,726 | 454,796 | 127.8 | 13.5 | | 9. Plasticizers | | - | | | | | Cyclic: Production | 348,210 | 798,741 | 897,249 | 157.7 | 12.3 | | | 297,423 | 764,736 | 873,109 | 193.6 | 14.2 | | | 83,509 | 133,044 | 156,967 | 88.0 | 18.0 | | Production | 118,118 | 274,456 | 311,742 | 163.9 | 13.6 | | | 100,984 | 256,887 | 282,577 | 179.8 | 10.0 | | | 38,772 | 81,348 | 89,034 | 129.6 | 9.4 | TABLE 6.--Synthetic organic chemicals: Summary of U.S. production and sales of intermediates and finished products, average 1957-59, annual 1965 and 1966--Continued [Production and sales in thousands of pounds; sales value in thousands of dollars] | | | | | Increase, or decrease (-) | | | |-------------------------------------|--------------------|------------|------------|---------------------------|-------------------|--| | Chemical | Average
1957-59 | 1965 | 1966 | 1966 over
1957-59 | 1966 over
1965 | | | 10. Surface-Active Agents | | | | Percent | Percent | | | Cyclic: Production | 852,314 | 1,371,320 | 1,385,217 | 62.5 | 1.0 | | | | 800,432 | 877,202 | 879,235 | (1) | 0.2 | | | | 127,936 | 96,153 | 97,187 | (1) | 1.1 | | | Acyclic: Production | 502,715 | 1,799,158 | 1,936,100 | (1) | 7.6 | | | | 432,135 | 820,660 | 886,818 | (1) | 8.1 | | | | 113,215 | 204,035 | 217,726 | (1) | 6.7 | | | 11. Pesticides and related products | | | | | | | | Cyclic: Production | 440,384 | 682,671 | 776,909 | 76.4 | 13.8 | | | | 375,627 | 582,344 | 605,229 | 61.1 | 3.9 | | | | 150,837 | 377,858 | 446,946 | 196.3 | 18.3 | | | Acyclic: Production | 105,080 | 194,526 | 236,201 | 124.8 | 21.4 | | | | 91,938 | 181,561 | 217,027 | 136.1 | 19.5 | | | | 49,049 | 119,208 | 136,856 | 179.0 | 14.8 | | | 12. Miscellaneous | | | | | | | | Cyclic: Production | 733,401 | 1,138,261 | 1,368,666 | 86.6 | 20.2 | | | | 445,252 | 624,813 | 738,847 | 65.9 | 18.2 | | | | 132,660 | 244,750 | 271,359 | 104.6 | 10.9 | | | Acyclic: Production | 27,260,924 | 49,697,339 | 55,883,982 | 105.0 | 12.4 | | | | 11,271,780 | 21,415,257 | 23,810,310 | 111.2 | 11.2 | | | | 1,621,617 | 2,645,419 | 2,890,825 | 78.3 | 9.3 | | $^{^{\}rm 1}$ Data for 1966 are not comparable with those for average 1957-59. The following tabulation shows, by chemical groups, the number of companies that reported production in 1966 of one or more of the chemicals included in the groups listed in table 6: | Chemical group | Number
of
companies | Chemical group | Number
of
companies | |------------------------------|---------------------------|---------------------------------|---------------------------| | Intermediates | - 219 | Rubber-processing chemicals | 32 | | Dyes | - 50 | Elastomers (synthetic rubbers) | 29 | | Synthetic organic pigments | - 36 | Plasticizers | 55 | | Medicinals chemicals | - 111 | Surface-active agents | 201 | | Flavor and perfume materials | 54 | Pesticides and related products | 87 | | Plastics and resin materials | - 305 | Miscellaneous chemicals | 313 | ## Cyclic Intermediates Cyclic intermediates are synthetic organic chemicals derived principally from coal-tar crudes produced by destructive distillation (pyrolysis) of coal and from petroleum and natural gas. Most cyclic intermediates are used in the manufacture of more advanced synthetic organic chemicals and finished products, such as dyes, medicinal chemicals, elastomers (synthetic rubbers), pesticides, and plastics and resin materials. Some intermediates, however, are sold as end products without further processing. For example, refined naphthalene may be used as a raw material in the manufacture of 2-naphthol or of other more advanced intermediates, or it may be packaged and sold as a moth repellent or as a deodorant. In general, the classification of a given chemical as an intermediate is determined by the way in which the greater part of its output is consumed. Since many intermediates represent successive steps in production, the totals given necessarily include considerable duplication. In 1966, nearly half of the total output of cyclic intermediates was sold; the remainder was used by the producing plants in the manufacture of more advanced products. The statistics on cyclic intermediates for 1966 are given in table 7A¹. Total production of cyclic intermediates in 1966--19,467 million pounds--was the largest on record, and was 15.4 percent larger than the output of 16,865 million pounds reported for 1965. The larger output of cyclic intermediates in 1966 was attributable to increased demand by the chemical products industries, particularly those industries that produce dyes, pesticides, plasticizers, and plastics and resin materials. Sales of cyclic intermediates in 1966 amounted to 8,852 million pounds, valued at \$925 million, compared with 7,551 million pounds, valued at \$814 million, in 1965. In terms of quantity, sales of cyclic intermediates in 1966 were 17.2 percent larger than those in 1965 and in terms of value, 13.6 percent larger. TABLE 7A--Cyclic intermediates: U.S. production and sales, 1966 [Listed below are all cyclic intermediates for which any reported data on production or sales may be published. (Leaders are used where the reported data are accepted in confidence and may not be published or where no data were reported.) Table 7B in pt. III lists alphabetically all cyclic intermediates for which data on production or sales were reported and identifies the manufacturer of each] | Chemical | Production | Sales | | | | |-------------------|---|------------------------------|------------------------------|----------------------------|--| | | 110000011011 | Quantity | Value | Unit
value ¹ | | | Total | 1,000
pounds
19,466,775 | 1,000
pounds
8,852,033 | 1,000
do llars
925,092 | Per
pound
\$0.10 | | | Acetanilide, tech | 5,438
965
714,901
696
7
1,883
1,054
33
41
108
37
31
147
162
30
74
168 | 2,297 714 560,076 | 580
216
43,548
 | .25 .30 .08 | | ¹ See also table 7B, pt. III, which lists these products alphabetically and identifies the manufacturers, and table 23 in the appendix, which shows imports of intermediates and related products during 1965 and 1966. TABLE 7A. -- Cyclic intermediates: U.S. production and sales, 1966--Continued | | | | Sales | | |--|-------------|----------|---|----------------------------| | Chemical | Production | Quantity | Value | Unit
value ¹ | | | 1,000 | 1,000 | 1,000 | Per | | | pounds | pounds | dollars | pound | | 6-Amino-4-chloro-m-toluenesulfonic acid [SO3H=1] | 882 | ••• | ••• | • • • | | - 4 th O / dibmomoonthmodulinone | 297 | ••• | ••• | ••• | | 1-Amino-9,10-dihydro-9,10-dioxo-4-p-toluenesulfoniamuto-z-antina- | 22 | | | ••• | | 4-Amino-5-hydroxy-2,7-naphthalenedisulfonic acid (H acid), monosodium salt | 2,924 | | | • • • | | / Amino 3 hydrovy-1-naphthalenesulfonic acid (1,2,4-acid) | 1,432 | | ••• | ••• | | 6_Amino_4_hydroxy-2-naphthalenesulionic acid (Gamma acid), | 160 | 90 | 134 | \$1.49 | | | 468
741 | 28 | 66 | 2.36 | | Z Amino / hardmover_2_norththelenesulfonic acid (J acid), Sodium Salv- | 741 | 20 | | ••• | | 7-Amino-3-methoxy-1-anthraquinony1)-p-toluenesulfonamide 4'Amino-N-methylacetanilide | 16 | | ••• | ••• | | o Aming I 5 morb+holemedigulfOnic 80id | 116 | | ••• | • • • | | 4 Amino 1 3 norththolonodisilifonic acid (Amino 1 acid/ | 1,053 | • • • • | ••• | ••• | | Amino 1 3 norbthelenedisulfonic acid (Amino G acid) | 803 | ••• | | • • • | | / Amino_l_naphthalenesulfonic acid (Naphthionic acid) | 224
82 | 25 | 16 | | | 5 Amino 2 nonhthelenesulfonic acid (1.6-Cleve's acid) | 192 | 93 | 91 | .9 | | 5(and 8)-Amino-2-naphthalenesulfonic acid (Cleve's acid, mixed) | 100 | | | • • •
| | 8-Amino-1-naphthalenesulfonic acid (Peri acid) | 518 | | | | | d Aming 2 norb+halementlfonic scid (l./-(leve's sciu/ | 103 | | | • • • | | | 48 | | | ••• | | o the first and the bong one one of the second seco | 72 | ••• | ::: | ••• | | | 51 22 | | ::: | | | | 248 | 1 ::: | | ••• | | p-[(p-Aminophenyl)azo]benzenesulfonic acid | 217 | | | ••• | | | 360 | 162 | 153 | •9 | | 6-Amino-m-toluenesulionic acid [5031-x] | 9 | 1 | 10,100 | ••• | | And line (Aniline oil) | 239,004 | . 90,369 | 10,409 | | | 7 Amilino-/-hydrovy-2-naphthalenesulfonic acid (Phenyl J acid) | 48
285 | ::: | | | | Amilinomethanesulfonic acid and salt | 355 | | | | | 4 1 1 1 1 1 | 2,024 | 887 | 637 | | | - And addisomether coulforic scides | 447 | | | • • • • | | 1.45:[1 0 ed] mmegol6(2H)-one (Pyrazoleanthrone) | 28 | 4,769 | 2,121 | | | | 5,319 | 4,709 | 2,121 | • | | | 2,193 | 218 | 332 | 1.: | | 7H-Benz[de] anthracen-7-one (Benzanthrone) | 1,251 | | | | | Benzoic acid, tech | 20,511 | 11,637 | 1,518 | | | o non-this | 279772 | ••• | ••• | ••• | | o-Benzoylbenzoic acid | 5,903 | ••• | ••• | ••• | | o-Benzoylbenzoic acid | 30 | | | l | | anthrone yellow) | 30
459 | ::: | | | | [1,1'-Binaphthalene]-8,8'-dicarboxylic acid | | | ••• | | | | | | | | | . // nr - [armakhan] amimal hanganhanana (Michier's Ketone / | | ••• | • | ••• | | 2 December 70 home [delenthrecen=7-One (3-Bromodenzanthrone / | | ••• | | | | / (+b1 | . , 40 | 1 | | | | 1-Bromo-4-(methylamino)antinaquinone | • 1 221 | | | | | | • 1 2/01/42 | | | 1 . | | / 0-1 | | ••• | ••• | ••• | | n marrie o / dimitmohongone (Dinitrochloronengene) | | 1 | 1 | 1 | | | - 1 - 21 | | ••• | | |] Ohlows 2.mothylenthrequinone | - 1/0 | | 227 | - 1 | | 2-Chloro-4-nitroaniline (o-Chloro-p-nitroaniline) | - 566 | | | | | 7 (%) E withoonthroominong | - ; | | | | | T=MITOLO=>=HI or our our adarmone | - 36,226 | 12,31 | 5 1,030 |) [| | 3 delega 2 mitrobenzene (Chloro-O-Ditrobenzene) | | | | | | 1-Chloro-2-nitrobenzene (Chloro-o-nitrobenzene) | - / /) 700 | | ••• | •••• | TABLE 7A. -- Cyclic intermediates: U.S. production and sales, 1966-- Continued | | | | Sales | | |---|-----------------|------------------|----------------|---| | Chemical | Production | Quantity | Value | Unit
value ¹ | | | 1,000 | 1,000 | 1,000 | Per | | 4-Chloro-3-nitrobenzenesulfonyl chloride | pounds | pounds | do llars | pound | | o-(4-Chloro-3-nitrobenzoyl)benzoic acid | 500
220 | | ••• | ••• | | 4-Chloro-3-nitrotoluene | 102 | ::: | ••• | ••• | | α-Chlorotoluene (Benzyl chloride) | 74,994 | 11,243 | 2,062 | \$0.18 | | 5-Chloro-o-toluidine [NH ₂ =1](4-Chloro-o-toluidine [CH ₃ =1]) | ••• | 102 | 142 | 1.39 | | N-[(5-Chloro-o-tolyl)azo]sarcosine | 35 | ••• | ••• | • • • | | [(4-Chloro-o-tolyl)thio]acetic acid | 65 | ••• | ••• | ••• | | Cresols, total ³ | 80,005 | 71,051 | 14,489 | 20 | | o-Cresol | 16,586 | 13,000 | 1,917 | .20 | | (m, p)-Cresol | 35,352 | 35,990 | 4,771 | .13 | | All other4 | 28,067 | 22,061 | 7,801 | .35 | | Cresylic acid, refined, total | 54,507 | 53 300 | 6 200 | 10 | | From coal tar ³ | 17,665 | 51,109
16,132 | 6,327
2,106 | .12 | | From petroleum | 36,842 | 34,977 | 4,221 | .12 | | | | ,, | ., | • | | Cumene | 894,827 | ••• | ••• | • • • | | CyclohexaneCyclohexanone | 1,900,792 | 1,874,059 | 76,170 | .04 | | Cyclohexylamine | 314,424 | ••• | ••• | ••• | | 1,4-Diaminoanthraquinone | 49 | ••• | ••• | 4 | | 2,6-Diaminoanthraquinone | 181 | | ••• | ••• | | 1,4-Diamino-2,3-dihydroanthraquinone | 420 | ••• | ••• | ••• | | 4,4'-Diamino-2,2'-stilbenedisulfonic acid | 6,510 | ••• | ••• | ••• | | 1,5-Dibenzoylnaphthalene | 162
288 | ••• | ••• | ••• | | 3,9-Dibromo-7H-benz[de]anthracen-7-one | 502 | ••• | ••• | ••• | | 2,5-Dichloroaniline and hydrochloride [NH2=1] | 206 | | ::: | • • • | | 1,5-Dichloroanthraquinone | 173 | ••• | | • • • • | | 1,8-Dichloroanthraquinone | 64 | ••• | • • • • | • • | | o-Dichlorobenzenep-Dichlorobenzene | 51,386 | 50,726 | 5,065 | .10 | | 3,3'-Dichlorobenzidine base and salts | 66,307
2,790 | 65,569 | 5,893 | .09 | | 2,5-Dichloro-4-(3-methyl-5-oxo-2-pyrazolin-l-yl)benzenesulfonic | 2,750 | 3,050 | 3,923 | 1.29 | | acid | 347 | | | | | 2,6-Dichloro-4-nitroaniline | 607 | 431 | 486 | 1.13 | | 1,4-Dichloro-2-nitrobenzene (Nitro-p-dichlorobenzene) Dicyclopentadiene (includes cyclopentadiene) | 793 | ::- | ••• | • • • | | p-(Diethylamino)benzaldehyde | 49,672
21 | 23,008 | 1,503 | .07 | | N, N-Diethylaniline | 1,901 | 970 | 500 | | | 9,10-Dihydro-1,4-dihydroxy-9,10-dioxo-2-anthracenesulfonic | | ,,,, | ,,,,, | . 12 | | acid (2-Quinizarinsulfonic acid) | 37 | 26 | 74 | 2.85 | | 9,10-Dihydro-9,10-dioxo-1,5-anthracenedisulfonic acid and disodium salt | | | | | | 9,10-Dihydro-9,10-dioxo-1,8-anthracemedisulfonic acid, | 698 | ••• | ••• | ••• | | potassium salt | 286 | | | | | 9,10-Dihydro-9,10-dioxo-2,6-anthracenedisulfonic acid and salt | 323 | | ::: | ••• | | 9,10-Dihydro-9,10-dioxo-1-anthracenesulfonic acid and salt (Gold | | | | ••• | | 9,10-Dihydro-5-nitro-9,10-dioxo-1-anthracenesulfonic acid | 3,501 | ••• | ••• | • • • | | 1,4-Dihydroxyanthraquinone (Quinizarin) | 83 | ••• | ••• | ••• | | 1,5-Dihydroxyanthraquinone (Anthrarufin) | 2,346
157 | 145 | 174 | 1.20 | | 1,8-Dihydroxyanthraquinone (Chrysazin) | 193 | | ::: | • • • | | 1,5-Dihydroxy-4,8-dinitroanthraquinone | 95 | ••• | | ••• | | 1,8-Dihydroxy-4,5-dinitroanthraquinone (4,5-Dinitrochrysazin) 16,17-Dihydroxyviolanthrone (Dihydroxydibenzanthrone) | 275 | ••• | ••• | ••• | | 3,3' Dimethoxybenzidine (o-Dianisidine) | 320
51¢ | •••, | ••• | ••• | | N, N-Dimethylaniline | 518
13,452 | 488 | 901 | 1.85 | | N, N-Dimethylbenzylamine | 81 | 61 | 89 | 1.46 | | 2,2'-Dimethyl-1,1'-bianthraquinone | 116 | | | | | N, N-Dimethyl-p-nitrosomiline2,4-Dinitromiline | 45 | • • • | | ••• | | 1,5(and 1,8)-Dinitroanthraquinone | 206 | 100 | 74 | .74 | | 2,4-Dinitrophenol, tech | 235 | | ••• | ••• | | | 971 | 1 | ••• | • • • | TABLE 7A. -- Cyclic intermediates: U.S. production and sales, 1966--Continued | | | | Sales | | | |--|-----------------|---|------------------|---|--| | Chemical | Production | Quantity | Value | Unit
value ¹ | | | | 1,000 | 1,000 | 1,000
dollars | Per
pound | | | | pounds | pounds | | pouna | | | 4,4'-Dinitrostilbene-2,2'-disulfonic acid | 9,376 | 6,517 | 525 | \$0.08 | | | | 116 | | ••• | • • • • | | | | 31,615 | 28,569 | 7,555 | .26 | | | | 195 | | 7 530 | | | | | 2,663
13,525 | 1,971 | 1,519 | • | | | Diviny benzene | 1,505 | 1,042 | 524 | .50 | | | | 3,245,000 | 459,471 | 18,269 | .04 | | | | 692 | | ••• | • | | | | 13,652 | 12,056 | 8,537 | .71
.14 | | | | 6,132 | 6,392 | 868
290 | 1.30 | | | | 252
42 | 223 37 | 75 | 2.03 | | | | 105 |] | | | | | -Hydroxymetanilamide | 119 | ::: | ••• | ••• | | | -Hydroxymetanilic acid | 1,958 | 790 | 708 | .90 | | | Thedrouge 2 morphthalamaculfonic acid and sodium salt | 587 | 226 | 181 | .80 | | | 2 mambaba a taluidida | 652 | | • • • | ••• | | | / / | 37 | ••• | • • • | | | | | 152 | ••• | ••• | • • • • | | | r r/ r-/b/c[/ hrdmovr_2-nephthe]enesulfOnic acid | 36
143 | | • • • | ::: | | | 1/ Twin-bid / nitropathrequiinone | 169 | ::: | ••• | | | | 1,1'-Iminodis[4-infoamminaquinone] 1,1'-Iminodianthraquinone (1,1'-Dianthrimide) | 107 | ''' | | | | | [socyanic acid derivatives, total | 223,488 | 188,127 | 61,946 | .33 | | | DI-1 | 6,135 | ••• | ••• | | | | malways 2 / and 2 6_different and (80)/2() mixture } | 173,283 | 157,372 | 47,658 | .30 | | | Other isocyanic acid derivatives | 44,070 | 30,755 | 14,288 | .46 | | | | 126,427 | 74,061 | 15,022 | .20 | | | 4,4'-Isopropylidenediphenol (Bisphenol A)Isoviolenthrone (Isodibenzanthrone) | 31 | 14,001 | | | | | | 106 | | | | | | | ••• | 540 | 190 | .35 | | | | 82,177 | 58,315 | 14,716 | .25 | | | 13 - Norths 1 & diama (Timonene) | | 12,727 | 732 | 6.2 | | | | 17
321 | 14 | 07 | | | | o-Mercaptobenzoic acid (Infosaittyiic acid) 1-(Methylamino)anthraquinone | 1,224 | 477 | 274 | .5" | | | 4,4'-Methylenedis[N,N-dimethylaniline] (we didn't base) | 1,532 | | | • • • • | | | m (3 Methyl-5-ovo-2-nyrazolin-1-vl)benzenesulfonamide | 19 | | | ••• | | | n (3 Mothyl-5-ovo-2-nyrazolin-l-vl)benzenesulfonic acid | 188 | ••• | ••• | ••• | | | 2_(3_Methyl_5_oxo-2-pyrazolin-l-yl)-m-toluenesulfonic acid | 9 | | | | | | | 187 | 174 | 290 | 1.6 | | | 3-Methyl-1-phenyl-2-pyrazolin-5-one (Developer Z)α-Methylstyrene | 13,215 | 12,142 | 1,187 | .1 | | | at 1 1 2 1 1 1 1 2 2 of 70° (). Or above (refined flake) | | | | - | | | (from domostic coulds) | 2,890 | | ••• | ••• | | | o m Nbib | 67 | ••• | ••• | ••• | | | 7 / F C N | 69 | ••• | | | | | | | 810 | 515 | .6 | | | | | ••• | | • • • • | | | Naphthostyrii | 1,018 | • | | | | | p-Nitroaniline | 250 | | | | | | W + mohom z on o | درن ون عر | 13,612 | 1,239 | .0 | | | - Witneham-empaylfonia agid and godium salt | 117,6 | 2,705 | 922 | .3 | | | 7/ 0\ N4+monoph+h 1,2-d 1,2,3 0YAd1AZO16-5-8U11OD1C &C10 | 1 707 | 1 :: | | | | | | | 17,920 | 6,866 | .3 | | | - 0 - 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 01 | • • • | | | | | | | | ::: | 1 | | | 2-Nitro-p-toluidine NH ₂ =1 | 367 | 183 | 292 | 1.6 | | | | | | | | | | Nonylphenol | 0-1,505 | 26,698 | 3,010 | .1 | | | 1-[7-0xo-7H-benz [de] anthracen-3-y1) amino] anthraquinone | | · · · · · | 1 | | | TABLE 7A. -- Cyclic intermediates: U.S. production and sales, 1966-- Continued | | | | Sales | | |--|---------------------------|--------------------------|------------------
---| | Chemical | Production | Quantity | Value | Unit
value ¹ | | | 1,000
pounds | 1,000
pounds | 1,000
dollars | Per
pound | | 1,1'-[(7-0xo-7H-benz[de]anthracen-3,9-ylene)diimino]di- | | | | | | anthraquinone | 898
66 | • • • • | ••• | | | | | | | ••• | | Phenol, grand total ³ | 1,346,621 | 571,047 | 53,933 | \$0.09 | | Natural, total | 57,135 | 52,272 | 5,034 | .10 | | From coal tar | 39,850 | 37,778 | 3,511 | .09 | | From petroleum | 17,285 | 14,494 | 1,523 | .11 | | Synthetic, total | 1,289,486 | 518,775 | 48,899 | .09 | | From cumene | 613,435 | 280,374 | 25,602 | .09 | | Other synthetic | 676,051 | 238,401 | 23,297 | .10 | | Phenylacetic acid and salts | 4,628 | | | | | Phenylacetonitrile (α-Tolunitrile) | | 414 | 211 | .51 | | p-Phenylazoaniline (C.I. Solvent Yellow 1) and hydrochloride | 131 | ••• | | • • • | | p-Phenylenediamine | 652 | | | • • • | | 1-Phenyl-1,2-propanedione, 2-oxime | 246 | ••• | | • • • | | Phthalic anhydride | 675,180 | 365,373 | 34,617 | .09 | | Picolines, total ³ | • • • | 3,420 | 1,147 | .34 | | 2-Picoline (α-Picoline) | | 1,397 | 487 | .35 | | Other picolines | ••• | 2,023 | 660 | .33 | | Piperidine | 505 | | | | | Propiophenone | 881 | 457 | 531 | 1.16 | | 8,16-Pyranthrenedione | 9 | | | 1.10 | | 2° Pyridine ³ | 4,987 | 5,068 | 2,800 | .55 | | Quinaldine | 14 | 2,000 | 2,000 | • | | Salicylaldehyde | 2,534 | 2,018 | 2,017 | 1.00 | | Salicylic acid, tech | -, | 3,915 | 1,370 | .35 | | Styrene, all grades | 3,191,548 | 1,509,071 | 121,173 | .08 | | Terephthalic acid | 513,868 | -,,,,,,, | , | | | Terephthalic acid, dimethyl ester | 797,470 | 279,081 | 58,932 | .21 | | 1,4,5,8-Tetrachloroanthraquinone | 131 | , | | | | 1,4,5,8-Tetrahydroxyanthraquinone, leuco derivative | 120 | | | ••• | | 1,4,5,8-Tetrakis (1-anthraquinonylamino)anthraquinone | | | | | | (Pentanthrimide) | 236 | | | | | 4,4'-Thiodianiline | 13 | | | | | Toluene-2,4-diamine (4-m-Tolylenediamine:) | 68,468 | ••• | ••• | | | o(and p)-Toluenesulfonic acid | 6,926 | 6,125 | 843 | .14 | | o-(p-Toluoyl)benzoic acid | 427 | • • • | | | | 4-(o-Tolylazo)-o-toluidine (C.I. Solvent Yel. 3) | 448 | | • • • | • • • | | 1,3,3-Trimethyl-\(\delta^2\), \(\delta\)-indolineacetaldehyde | 143 | | | • • • | | 1,3,3-Trimethy1-2-methyleneindoline (Trimethyl base) | 284 | ••• | ••• | ••• | | 7,7'-Ureylenebis[4-hydroxy-2-naphthalenesulfonic acid] (J acid | | | | | | | 393 | ••• | ••• | ••• | | urea) | 1776 | | | | | Violanthrone (Dibenzanthrone) | 476 | 25 | 212 | 8.48 | | | 476
403,211
518,801 | 25
397,224
459,955 | 10,120
37,965 | 8.48
.03
.08 | Calculated from rounded figures. 2 Principally straight-chain dodecylbenzene, tridecylbenzene and other straight-chain alkylbenzenes, but includes lesser amounts of branched-chain compounds. 3 Includes data for coke ovens and gas-retort ovens, reported to the Division of Liture 3 Coal, U.S. Bureau of Mines, Department of the Interior, and for tar refineries and other producers, reported Figures include (o,m,p)-cresol from tar and some m-cresol and p-cresol. the U.S. Tariff Commission. Does not include ethylbenzene produced and consumed in continuous-process styrene manufacture. **DYES** 15 In 1966, production of ethylbenzene was 3,245 million pounds, or 7.4 percent larger than the 3,023 million pounds reported for 1965. Output of styrene in 1966 was 3,192 million pounds, an increase of 11.4 percent over the 2,864 million pounds in 1965. Other intermediates whose production exceeded one billion pounds in 1966 were cyclohexane (1,901 million pounds), and phenol (1,347 million pounds). The output of other large-volume intermediates in 1966 compared with production in 1965 was as follows: Cumene, 895 million pounds (35.0 percent larger than in 1965); terephthalic acid, dimethyl ester, 797 million pounds (46.4 percent larger); alkylbenzenes, 715 million pounds (14.4 percent larger); phthalic anhydride, 675 million pounds (11.0 percent larger); chlorobenzene, 577 million pounds (5.6 percent larger); p-xylene, 519 million pounds (30.9 percent larger); o-xylene, 403 million pounds (14.8 percent larger); aniline, 239 million pounds (22.2 percent larger); and isocyanates, 223 million pounds (21.3 percent larger). ## Dyes The synthetic dyes produced in the United States are all derived in whole or in part from cyclic intermediates. Approximately two-thirds of the dyes consumed in the United States are used by the textile industry to dye natural and synthetic fibers or fabrics; about one-sixth are used for coloring paper; and the rest are used chiefly in the production of organic pigments and in the dyeing of leather and plastics. Of the several thousand different synthetic dyes that are known, more than one thousand five hundred are manufactured annually by one or more domestic producers. The large number of dyes results from the many different types of materials to which dyes are applied, the different conditions of service for which dyes are required, and the costs that a particular use can bear. Dyes are sold as pastes, powders, lumps, and solutions; concentrations vary from 6 percent to 100 percent. The concentration, form, and purity of a dye are determined largely by the use for which it is intended. Table 8A shows U.S. production and sales of dye shows U.S. production and sales of dyes in 1966, total and by individual dyes using Colour Index classification and terminology. Total domestic production of dyes in 1966 amounted to 219 million pounds, or 5.8 percent more than the 207 million pounds produced in 1965 (table 8A). Sales of dyes in 1966 amounted to 204 million pounds, valued at \$331 million, compared with 190 million pounds, valued at \$292 million, in 1965. In terms of quantity sales of dyes in 1966 were 7.5 percent larger than in 1965 and in terms of value, 13.4 percent larger. The average unit value of sales of all dyes in 1966 was \$1.62 a pound, or 5.2 percent greater than the \$1.54 a pound reported in 1965. For many important individual low- and medium-priced dyes, for which statistics are given in table 8A, production was larger in 1966 than in 1965. The output of Vat Black 27 and Acid Blue 9 more than doubled in 1966 compared with 1965. The output of Vat Black 27 was 1.5 million pounds in 1966 compared with 747,000 pounds in 1965; that of Acid Blue 9 was 1.5 million pounds in 1966, compared with 748,000 pounds in 1965. Other important dyes whose output was substantially larger in 1966 than in 1965 were Vat Green 8 (76.1 percent), Vat Yellow 4 (36.0 percent), Vat Green 3 (35.2 percent), Disperse Yellow 3 (33.7 percent), Vat Black 25 (31.5 percent), Direct Brown 95 (30.5 percent), Basic Yellow 11 (27.0 percent), Basic Brown 4 (26.4 percent) and Direct Yellow 106 (17.2 percent). On the other hand, the output of a few important dyes was smaller in 1966 than in 1965. Production of Vat Blue 18 was 929,000 pounds in 1966, or 35.2 percent less than the 1.4 million pounds produced in 1965; that of Mordant Black 17 was 656,000 pounds, or 32.4 percent less than the 970,000 pounds produced in 1965. The output of Vat Orange 15 was 27.5 percent smaller in 1966 than in 1965; that of Coupling Component 7 was 21.5 percent smaller; and that of Direct Blue 2 was 19.0 percent smaller. ² See also table 8B, pt. III, which lists these products and identifies the manufacturers, and the appendix (table 23), which shows imports of dyes during the years 1965-66. TABLE 8A. --Benzenoid dyes: U.S. production and sales, 1966 [Listed below are all benzenoid dyes for which any reported data on production or sales may be published. (Leaders are used where the reported data are accepted in confidence and may not be published or where no data were reported.) Table 8B in pt. III lists all dyes for which data on production or sales were reported and identifies the manufacturer of each] | | | | Sales | | |--------------------------------------|--------------|--------------|----------------|----------------------------| | Dye | Production | Quantity | Value | Unit
value ¹ | | | 1,000 | 1,000 | 1,000 | Per | | Grand total | pounds | pounds | dollars | pound | | Grand (Otal | 219,194 | 204,135 | 331,453 | \$1.62 | | ACID DYES | | | | | | Total | 23,194 | 20,410 | 43,762 | 2.14 | | Acid yellow dyes, total | 4,100 | | | | | Acid Yellow 3 | 16 | 3,596 | 8,435
131 | 2.35 | | Acid Yellow 11 | | 54 | 112 | 3.85
2.07 | | Acid Yellow 17 | 492 | 542 | 1,187 | 2.19 | | Acid Yellow 23 | 464 | 347 | 805 | 2.32 | | Acid Yellow 36 | 278 | 253 | 379 | 1.50 | | Acid Yellow 40 | 176 | 167 | 462 | 2.77 | | Acid Yellow 42Acid Yellow 44 | 53 | 57 | 99 | 1.74 | | Acid Yellow 54 | 47 | 35 | 109 | 3.11 | | Acid Yellow 73 | 69 | 73 | 160 | 2.19 | | Acid Yellow 99 | | 82 | 185 | 2.26 | | Acid Yellow 124 | 91 | 90 | 206 | 2.29 | | Acid Yellow 151 | 81 | 99 | 239 | 2.41 | | All other | 2,333 | 186 | 469 | 2.52 | | A-23 3 1 1 2 | 2,555 | 1,577 | 3,892 | 2.47 | | Acid Orange dyes, total | 3,126 | 2,951 | 4,637 | 1.57 | | Acid Orange 1Acid Orange 7 | ••• | 55 | 119 | 2.16 | | Acid Orange 8 | 635 | 637 | 651 | 1.02 | | Acid Orange 10 | 414 | 401 | 485 | 1.21 | | Acid Orange 24 | 404 | 341 | 433 | 1.27 | | Acid Orange 60 | 643 | 597 | 819 | 1.37 | | Acid Orange 64 | 69 | 62 | 153 | 2.47 | | Acid Orange 116 | 54
297 | 2072 | ••• | ••• | | All other | 610 | 273
585 | 593
1,384 | 2.17
2.37 | | Acid red dyes, total | 3,854 | 3,166 | 6,291 | 1.99 | | Acid Red 1 | 518 | 520 | 475 | .91 | | Acid Red 4 | 105 | 95 | 178 | 1.87 | | Acid Red 14 | 107 | 103 | 152 | 1.48 | | Acid Red 18 Acid Red 26 | 138 | 151 | 162 | 1.07 | | Acid Red 37 | 137 | 133 | 169 | 1.27 | | Acid Red 73 | 59 | 59 | 188 | 3.19 | | Acid Red 85 | 256 | 247 | 580 | 2.35 | | Acid Red 87 | 200 | 181 | 321 | 1.77 | | Acid Red 88 | 678
168 | 109 | 197 | 1.81 | | Acid Red 89 | 57 | 148
46 | 221
79 | 1.49 | | Acid Red 114 | 98 | 85 | 174 | 1.72 | | Acid
Red 137 | 170 | 152 | 458 | 2.05
3.01 | | Acid Red 151 | 141 | 132 | 270 | 2.05 | | Acid Red 182 | 48 | 48 | 152 | 3.17 | | Acid Red 186 | 22 | 25 | 74 | 2.96 | | All other | 952 | 932 | 2,441 | 2.62 | | Acid Violet dyes, totalAcid Violet 1 | 713 | 612 | 1,238 | 2.02 | | Acid Violet 3 | 79 | 61 | 91 | 1.49 | | Acid Violet 7 | 109 | 86 | 162 | 1.88 | | Acid Violet 12 | 210 | 170 | 228 | 1.34 | | Acid Violet 49 | 64
75 | 56 | 84 | 1.50 | | All other | 1 | 152 | 214 | 2.46 | | | 176 | 152 | 459 | 3.02 | TABLE 8A. - Benzenoid dyes: U.S. production and sales, 1966--Continued | | | | Sales | | | |---|-----------------|-----------------|------------------|-----------------------------|--| | Dye | Production | Quantity | Value | Unit
value ¹ | | | ACID DYESContinued | 1,000
pounds | 1,000
pounds | 1,000
dollars | Per
pound | | | Acid blue dyes, total | 4,632 | 3,478 | 10,525 | \$3.03 | | | Acid Blue 7 | 92 | 78 | 240 | 3.08 | | | Acid Blue 9Acid Blue 25 | 1,514
141 | 115 | 620 | 5.39 | | | Acid Blue 40 | 43 | 29 | 124 | 4.28 | | | Acid Blue 41 | 85 | 69 | 249 | 3.61 | | | Acid Blue 43 | 19 | 19 | 129 | 6.79 | | | Acid Blue 45 | 667 | 591 | 1,920 | 3.25 | | | Acid Blue 62 | 27 | 27 | 168 | 6.22
6.92 | | | Acid Blue 78Acid Blue 90 | 40
18 | 38
18 | 263
156 | 8.67 | | | Acid Blue 90Acid Blue 113 | 564 | 517 | 749 | 1.45 | | | Acid Blue 158 and 158A | 255 | 183 | 405 | 2.21 | | | All other | 1,167 | 1,794 | 5,502 | 3.07 | | | Acid green dyes, total | 1,274 | 1,136
172 | 3,271 | 2.88
1.28 | | | Acid Green 9 | 206 | 30 | 134 | 4.47 | | | Acid Green 12 | | 14 | 59 | 4.21 | | | Acid Green 16 | 79 | 80 | 301 | 3.76 | | | Acid Green 20 | 45 | 54 | 104 | 1.93 | | | Acid Green 25All other | 373
571 | 347
439 | 1,025
1,428 | 2.95
3.25 | | | Acid brown dves total | 867 | 848 | 1,923 | 2.27 | | | Acid Brown 14 | 324 | 322 | 443 | 1.38 | | | All other | 543 | 526 | 1,480 | 2.81 | | | Acid black dyes, totalAcid Black l | 4,628 | 4,623
1,214 | 7,442
1,298 | 1.61 | | | Acid Black 24 | 129 | 106 | 177 | 1.67 | | | Acid Rieck /8 | 18 | 26 | 149 | 5.73 | | | Acid Black 107All other | 142
3,079 | 205
3,072 | 550
5,268 | 2.68
1.71 | | | AZOIC DYES AND COMPONENTS | | | · | | | | Azoic Compositions | | | | | | | Total | 2,376 | 2,204 | 4,473 | 2.03 | | | Azoic Yellow 1Azoic Orange 3 | 34
51 | 49 | 97 | 1.98 | | | Azoic red dyes, total | 669 | 638 | 1,192 | 1.87 | | | Azoic Red l | 202 | 192 | 354 | 1.84 | | | Azoic Red 6All other | 313
154 | 299
147 | 517
321 | 1.73
2.18 | | | Azoic Violet 1 | 177 | 169 | 337 | 1.99 | | | Agold Blue 2 | 17 | 13 | 26 | 2.00 | | | Agold Rive 3 | 161 | 147 | 286
505 | 1.95
3.06 | | | Azoic Brown 9Azoic black dyes | 165
830 | 165
763 | 1,523 | 2.00 | | | Azoic black dyesAll other azoic compositions | 272 | 260 | 507 | 1.95 | | | Azoic Diazo Components, Bases
(Fast Color Bases) | | | | | | | | 1,493 | 1,334 | 2,185 | 1.64 | | | Total | | 1 | 1 . | 1 | | | | 81 | 73 | 113 | 1.55 | | | Azoic Diazo Component 4, base | 81
82 | 73
68 | 113
54 | 1 | | | | 81
82
59 | 1 | 1 . | 1.55
.79
3.28
1.18 | | TABLE 8A. --Benzenoid dyes: U.S. production and sales, 1966--Continued | . | | | Sales | | |---|---|---|---|--| | Dye | Production | Quantity | Value | Unit
value ¹ | | AZOIC DYES AND COMPONENTSContinued | | | | | | Azoic Diazo Components, Bases (Fast Color Bases)—-Continued | 1,000
pounds | 1,000
pounds | 1,000
dollars | Per | | Azoic Diazo Component 13, base | 308
246
156
373 | 380
261
35
256 | 472
463
64
584 | pound
\$1.24
1.77
1.83
2.28 | | Azoic Diazo Components, Salts
(Fast Color Salts) | | | | | | Total | 2,444 | 2,401 | 2,676 | 1.11 | | Azoic Diazo Component 1, salt | 92
23
294
314
40
117
267
88
80
257
344
 | 87
8
294
331
51
132
251
82
67
298
344
41
8
10
55
342 | 112
11
188
381
58
135
163
117
74
220
404
69
13
175
543 | 1. 29
2. 25
64
1. 15
1. 14
1. 02
.65
1. 43
1. 10
.74
1. 17
1. 68
1. 62
1. 30
3. 18 | | (Naphthol AS and Derivatives) Total | 3 003 | 2 / 170 | | | | Azoic Coupling Component 2 | 286
28
39

621
27
226
189
693
12
149
133

48 | 2,478 268 15 27 8 640 161 553 90 90 7 22 25 572 | 281
53
57
21
1,270

357

651

203
224
38
73
65
1,685 | 2.01 1.05 3.53 2.11 2.63 1.98 2.22 1.18 2.26 2.49 5.43 3.32 2.60 2.95 | | Total | 11,136 | 10,420 | 26,674 | 2.56 | | Basic yellow dyes, total | 2,231
497
612
199
923 | 2,170
499
551
170
950 | 6,669
1,027
2,184
603
2,855 | 3.07
2.06
3.96
3.55
3.01 | | Basic Orange dyes, total | 1,384
347
634 | 1,421
356
612 | 2,657
380
802 | 1.87 | TABLE 8A. --Benzenoid dyes: U.S. production and sales, 1966--Continued | BASIC DYESContinued Basic orange dyesContinued Basic Orange 21 | 1,000 pounds 268 135 1,238 302 936 3,036 1,036 38 93 1,869 1,603 33 30 192 384 65 899 | Quantity 1,000 pounds 341 112 1,190 335 855 2,870 892 38 107 1,833 1,275 31 310 57 877 | Value 1,000 dollars 1,071 404 3,990 1,033 2,957 5,922 1,129 112 377 4,304 4,428 133 721 175 | Unit value ¹ Per pound \$3.14 3.61 3.35 3.08 3.46 2.06 1.27 2.95 3.52 2.35 3.47 4.29 | |--|---|--|--|---| | Basic orange dyesContinued Basic Orange 21 | 268
135
1,238
302
936
3,036
1,036
38
93
1,869
1,603
33
30
192
384
65 | 90unds 341 112 1,190 335 855 2,870 892 38 107 1,833 1,275 31 310 57 | dollars 1,071 404 3,990 1,033 2,957 5,922 1,129 112 377 4,304 4,428 133 721 | \$3.14
3.61
3.35
3.08
3.46
2.06
1.27
2.95
3.52
2.35
3.47
4.29 | | Basic Orange 21 | 268
135
1,238
302
936
3,036
1,036
38
93
1,869
1,603
33
30
192
384
65 | 341
112
1,190
335
855
2,870
892
38
107
1,833
1,275
31 | 1,071
404
3,990
1,033
2,957
5,922
1,129
112
377
4,304
4,428
133
 | \$3.14
3.61
3.35
3.08
3.46
2.06
1.27
2.95
3.52
2.35
3.47
4.29 | | All other | 1,238
302
936
3,036
1,036
38
93
1,869
1,603
30
192
384
65 | 112 1,190 335 855 2,870 892 38 107 1,833 1,275 31 310 57 | 3,990 1,033 2,957 5,922 1,129 112 377 4,304 4,428 133 721 | 3.61 3.35 3.08 3.46 2.06 1.27 2.95 3.52 2.35 3.47 4.29 | | Basic Red 14 | 302
936
3,036
1,036
38
93
1,869
1,603
33
30
192
384
65 | 335
855
2,870
892
38
107
1,833
1,275
31
 | 1,033
2,957
5,922
1,129
112
377
4,304
4,428
133
 | 3.08
3.46
2.06
1.27
2.95
3.52
2.35
3.47
4.29 | | Basic Red 14 | 936
3,036
1,036
38
93
1,869
1,603
33
30
192
384
65 | 855 2,870 892 38 107 1,833 1,275 31 310 57 | 2,957 5,922 1,129 112 377 4,304 4,428 133 721 | 3.46 2.06 1.27 2.95 3.52 2.35 3.47 4.29 | | Basic violet dyes, total——————————————————————————————————— | 3,036
1,036
38
93
1,869
1,603
33
30
192
384
65 | 2,870
892
38
107
1,833
1,275
31

310
57 | 5,922
1,129
112
377
4,304
4,428
133
 | 2.06
1.27
2.95
3.52
2.35
3.47
4.29 | | Basic Violet 1 | 1,036
38
93
1,869
1,603
33
30
192
384
65 | 892
38
107
1,833
1,275
31

310
57 | 1,129
112
377
4,304
4,428
133
 | 1.27
2.95
3.52
2.35
3.47
4.29 | | Basic Violet 1 | 38
93
1,869
1,603
33
30
192
384
65 | 38
107
1,833
1,275
31
 | 112
377
4,304
4,428
133
 | 2.95
3.52
2.35
3.47
4.29 | | Basic Violet 16 | 93
1,869
1,603
33
30
192
384
65 | 107
1,833
1,275
31

310
57 | 377
4,304
4,428
133
 | 3.52
2.35
3.47
4.29 | | All other Basic blue dyes, total | 1,869
1,603
33
30
192
384
65 | 1,833
1,275
31

310
57 | 4,304
4,428
133
 | 2.35
3.47
4.29 | | Basic Blue 1 | 33
30
192
384
65 | 31

310
57 | 133

721 | 4.29 | | Basic Blue 1 | 33
30
192
384
65 | 31

310
57 | 133

721 | 4.29 | | Basic Blue 5 Basic Blue 7 Basic Blue 9 Basic Blue 26 All other | 30
192
384
65 | 310
57 | 721 | ••• | | Basic Blue 7 Basic Blue 9 Basic Blue 26 All other | 384
65 | 310
57 | | ••• | | Basic Blue 26 All other | 65 | 57 | | | | All other | | | 1/5 1 | 2.33 | | Basic Green 1 | | | 3,399 | 3.07
3.88 | | basic dreen 1 | 79 | 80 | 259 | 3.24 | | Basic Green 4 | 646 | 610 | 1,562 | 2.56 | | Basic Brown 1 | 179 | 205 | 330 | 1.61 | | Basic Brown 4 | 684 | 543 | 682 | 1.26 | | All other basic dyes | 56 | 56 | 175 | 3.12 | | DIRECT
DYES | | | | | | Total | 37,343 | 36,733 | 56,920 | 1.55 | | Direct yellow dyes, total | 8,217 | 8,181 | 13,497 | 1.65 | | Direct Yellow 4 | 436 | 442 | 909 | 2.06 | | Direct Yellow 5Direct Yellow 6 | 170
868 | 167
841 | 477
1,280 | 2.86
1.52 | | Direct Yellow 11 | 925 | 955 | 993 | 1.04 | | Direct Yellow 12 | 415 | 414 | 1,047 | 2.53 | | Direct Yellow 26 | 11 | 8 | 24 | 3.00 | | Direct Yellow 28Direct Yellow 29 | 287
67 | 274
88 | 537
140 | 1.96
1.59 | | Direct Yellow 44 | 470 | 513 | 908 | 1.77 | | Direct Yellow 50 | 457 | 433 | 936 | 2.16 | | Direct Yellow 84 | | 364 | 525 | 1.44 | | Direct Yellow 105 Direct Yellow 106 | 244
810 | 225
877 | 544
1,482 | 2.42
1.69 | | All other | 3,057 | 2,580 | 3,695 | 1.43 | | Direct orange dyes, total | 2,336 | 2,206 | 5,142 | 2.33 | | Direct Orange 1 | 25 | 30 | 55 | 1.83 | | Direct Orange 8 | 167 | 162
204 | 239
246 | 1.48
1.21 | | Direct Orange 15 Direct Orange 26 | 43 | 62 | 133 | 2.15 | | Direct Orange 29 | 67 | 84 | 181 | 2.15 | | Direct Orange 34 | 135 | 128 | 289 | 2.26 | | Direct Orange 37 | 57 | 53 | 131 | 2.47 | | Direct Orange 39 Direct Orange 72 | 156
317 | 159
302 | 319
702 | 2.01
2.32 | | Direct Orange 73 | 110 | 99 | 364 | 3.68 | | Direct Orange 81 | 86 | 87 | 261 | 3.00 | | Direct Orange 102All other | 241
702 | 215
621 | 560
1,662 | 2.60
2.68 | TABLE 8A.--Benzenoid dyes: U.S. production and sales, 1966--Continued | Dye | Production | Quantity | Value | Unit
value ¹ | |---------------------------------|-----------------|-----------------|------------------|----------------------------| | DIRECT DYESContinued | 1,000
pounds | 1,000
pounds | 1,000
dollars | Per
pound | | Direct red dyes, total | 406,406 | 4,376 | 9,566 | \$2.19 | | Direct Red 1 | 228 | 221 | 386 | 1.75 | | Direct Red 2 | 351 | 379 | 687 | 1.81 | | Direct Red 4 | 33 | 33 | 92 | 2.79 | | Direct Red 10 | ••• | 19 | 30 | 1.58 | | Direct Red 13 Direct Red 16 | 181 | 171 | 276 | 1.61 | | Direct Red 23 | 99
259 | 88
253 | 168
601 | 1.91
2.38 | | Direct Red 24 | 260 | 262 | 524 | 2.00 | | Direct Red 26 | 142 | 124 | 305 | 2.46 | | Direct Red 28 | 230 | 239 | 359 | 1.50 | | Direct Red 31 | 26 | 25 | 100 | 4.00 | | Direct Red 37 | 78 | 77 | 209 | 2.71 | | Direct Red 39 | 66 | 63 | 180 | 2.86 | | Direct Red 72 | 294 | 276 | 569 | 2.06 | | Direct Red 75 Direct Red 79 | 273 | 7
353 | 25
826 | 3.57
2.34 | | Direct Red 80 | 465 | 468 | 846 | 1.81 | | Direct Red 81 | 376 | 384 | 953 | 2.48 | | Direct. Red 83 | 259 | 233 | 375 | 1.61 | | Direct Red 84 | ••• | 16 | 29 | 1.81 | | Direct Red 122 | 40 | | ••• | ••• | | Direct Red 149 | 108 | 96 | 358 | 3.73 | | Direct Red 153All other | 26 | 24 | 82 | 3.42 | | All other | 612 | 565 | 1,586 | 2.81 | | Direct violet dyes, total | 337 | 344 | 1,050 | 3.05 | | Direct Violet l | 18 | 21 | 39 | 1.86 | | Direct Violet 9 | 196 | 193 | 409 | 2.12 | | All other | 123 | 130 | 602 | 4.63 | | Direct blue dyes, total | 8,109 | 7,650 | 11,763 | 1.54 | | Direct Blue 1 | 437 | 404 | 818 | 2.02 | | Direct Blue 2 | 1,821 | 1,753 | 1,613 | .92 | | Direct Blue 6 | 555 | 547 | 332 | .61 | | Direct Blue 8 Direct Blue 15 | 64 | 48 | 92 | 1.92 | | Direct Blue 22 | 86 | 72
24 | 113
43 | 1.57
1.79 | | Direct Blue 24 | | 31 | 42 | 1.35 | | Mirect Blue 25 | 75 | 71 | 188 | 2.65 | | Direct Blue 67 | | 26 | 108 | 4.15 | | Direct Blue 76 | 535 | 469 | 864 | 1.84 | | Direct Blue 78 | 129 | 146 | 404 | 2.77 | | Direct Blue 80 Direct Blue 86 | 595 | 535 | 817 | 1.53
1.53 | | Direct Blue 98 | 1,143 | 1,054
162 | 1,608
283 | 1.75 | | Direct Blue 120 and 120A | 313 | 268 | 580 | 2.16 | | Direct Blue 126 | 292 | 233 | 691 | 2.97 | | All other | 1,882 | 1,807 | 3,167 | 1.75 | | Direct green dyes, total | 1,526 | 1,414 | 3,305 | 2.34 | | Direct Green 1 | 366 | 291 | 366 | 1.26 | | Direct Green 6 | 516 | 483 | 588 | 1.22 | | Direct Green 8 | 36 | 40 | 54
16 | 1.35
1.14 | | Direct Green 12All other | 608 | 14
586 | 2,281 | 3.89 | | Direct brown dyes, total | 2,046 | 2,061 | 2,867 | 1.39 | | Direct Brown l | 143 | 140 | 187 | 1.34 | | Direct Brown 1A | 83 | 90 | 137 | 1.52 | | Direct Brown 2 | 204 | 221 | 337 | 1.52 | | Direct Brown 6 | 125 | 107 | 118 | 1.10 | | Direct Brown 31 Direct Brown 74 | 113 | 133 | 404 | 3.04 | | Direct Brown 74Direct Brown 95 | 91
731 | 72
771 | 111
722 | 1.54 | | DILEGG DIOMI 37 | 1 ,51 | l ''* | 122 | | TABLE 8A. -- Benzenoid dyes: U.S; production and sales, 1966-- Continued | | | | Sales | | | |--------------------------------------|--------------|--------------|------------------|----------------------------|--| | Dye | Production | Quantity | Value | Unit
value ¹ | | | DIRECT DYESContinued | 1,000 | 1,000 | 1,000
dollars | Per | | | Direct brown dyesContinued | pounds | pounds | abitars | pound | | | Direct Brown 111 | 48 | 64 | 225 | \$3.52 | | | Direct Brown 154All other | 339
169 | 320
143 | 322
304 | 1.01
2.13 | | | Direct black dyes, total | 10,366 | 10,501 | 9,730 | .93 | | | Direct Black 4 | 375 | 286 | 295 | 1.03 | | | Direct Black 9 Direct Black 19 | 64 121 | 60 | 90 | 1.50 | | | Direct Black 22 | 766 | 818 | 702 | .86 | | | Direct Black 38 | 6,215 | 6,202 | 4,813 | .78 | | | Direct Black 51 | 101 | 81 | 252 | 3.11 | | | Direct Black 80 | 1,926 | 1,917 | 1,718 | .90 | | | All other | 798 | 1,137 | 1,860 | 1.64 | | | DISPERSE DYES | | | | | | | Total | 16,696 | 14,849 | 38,060 | 2.56 | | | Disperse yellow dyes, total | 3,702 | 3,365 | 6,452 | 1.92 | | | Disperse Yellow 3 | 1,725 | 1,479 | 2,386 | 1.61 | | | Disperse Yellow 5 | ,,, | 36 | 124 | 3.44 | | | Disperse Yellow 23Disperse Yellow 33 | 274 | 103
302 | 260 | 2.52 | | | Disperse Yellow 34 | 225 | 233 | 553
393 | 1.83
1.69 | | | Disperse Yellow 42 | 546 | 467 | 862 | 1.85 | | | All other | 821 | 745 | 1,874 | 2.52 | | | Disperse orange dyes, total | 1,291 | 970 | 1,983 | 2.04 | | | Disperse Orange 3 | 124 | 114 | 193 | 1.69 | | | Disperse Orange 5Disperse Orange 17 | | 127 | 320 | 2.52 | | | All other | 150
1,017 | 113
616 | 170
1,300 | 1.50
2.11 | | | Disperse red dyes, total | 2,465 | 2,179 | 6,947 | 3.19 | | | Disperse Red 1 | 246 | 208 | 356 | 1.71 | | | Disperse Red 5 | 181 | 82 | 108 | 1.32 | | | Disperse Red 11 | 1 | 34 | 225 | 6.62 | | | Disperse Red 13 Disperse Red 15 | 28
118 | 26 | 36 | 1.38 | | | Disperse Red 17 | 163 | 106
130 | 304
171 | 2.87
1.32 | | | Disperse Red 60 | 97 | 93 | 339 | 3.65 | | | All other | 1,632 | 1,500 | 5,408 | 3.61 | | | Disperse violet dyes, total | 354 | 306 | 939 | 3.07 | | | Disperse Violet 1 | 60 | 47 | 147 | 3.13 | | | Disperse Violet 4 | 40 | 26 | 84 | 3.23 | | | Disperse Violet 27All other | 110
144 | 93
140 | 141
567 | 1.52
4.05 | | | Disperse blue dyes, total | 6,768 | 5,930 | 18,501 | 3.12 | | | Disperse Blue 1 | 245 | 205 | 768 | 3.75 | | | Disperse Blue 3 | 1,833 | 1,779 | 2,848 | 1.60 | | | Disperse Blue 7 | 326 | 353 | 2,473 | 7.01 | | | Disperse Blue 64All other | 131
4,233 | 105
3,488 | 302
12,110 | 2.88
3.47 | | | Disperse black dyes, total | 1,839 | 1,858 | 2,683 | | | | Disperse Black 1 | 156 | 1,858 | 250 | 1.44 | | | Disperse Black 9 | 1,279 | | ••• | ••• | | | All other | 404 | 1,716 | 2,433 | 1.42 | | | All other disperse dyes | 277 | 241 | 555 | 2.30 | | TABLE 8A. -- Benzenoid dyes: U.S. production and sales, 1966--Continued | | | | Sales | | |--|----------------|----------------|----------------|----------------------------| | Dye | Production | Quantity | Value | Unit
value ¹ | | VAT DYES | 1,000 | 1,000 | 1,000 | Per | | Total | pounds | pounds | dollars | pound | | Total | 57,456 | 54,431 | 57,875 | \$1.06 | | Vat yellow dyes, total | 4,569 | 4,442 | 6,619 | 1.49 | | Vat Yellow 2, 8-1/2%Vat Yellow 4, 12-1/2% | 2,405
1,038 | 2,516 | 2,265 | .90 | | Solubilized Vat Yellow 4 | ,000 | 807 | 1,163 | 1.44
8.80 | | All other | 1,126 | 1,114 | 3,147 | 2.82 | | Vat orange dyes, total | 2,975 | 2,650 | 6,743 | 2.54 | | Vat Orange 1, 20% | 969 | 662 | 1,780 | 2.69 | | Solubilized Vat Orange 1, 26% | 337 | 8
300 | 74 | 9.25 | | Vat Orange 3, 13-1/2% | | 81 | 605
199 | 2.02
2.46 | | Vat Orange 5, 10% | 192 | 142 | 241 | 1.70 | | Solubilized Vat Orange 5, 30% | | 5 | 52 | 10.40 | | Vat Orange 7, 11% | 312 | | | ••• | | Vat Orange 9, 12% | 237
498 | 167
494 | 402 | 2.41 | | All other | 430 | . 791 | 1,153
2,237 | 2.33
3.24 | | Vat red dyes, total | 1,399 | 1,260 | 3,111 | 2.47 | | Vat Red 1, 13% | 523 | 478 | 840 | 1.76 | | Vat Red 10 | | 95 | 459 | 4.83 | | Vat Red 13, 11% | 139
274 | 139 | 393 | 2.83 | | Vat Red 32, 20% | 30 | 220 | 212 | .96 | | All other | 433 | 328 | 1,207 | 3.68 | | Vat violet dyes, total | 753 | 879 | 1,839 | 2.09 | | Vat Violet 1, 11% | 204 | 239 | 577 | 2.41 | | Vat Violet 2, 20% | 73 | 62
114 | 132
387 | 2.13
3.39 | | Vat Violet 13, 6-1/4% | 316 | 377 | 511 | 1.36 | | Vat Violet 17 | | 41 | 121 | 2.95 | | All other | 160 | 46 | 111 | 2.41 | | Vat blue dyes, total | 17,822 | 16,808 | 12,508 | .74 | | Vat Blue 6, 8-1/3% | 3,153 | 3,109
109 | 3,440 | 1.11 | | Vat Blue 18, 13% | 929 | 941 | 256
1,576 | 2.35
1.67 | | Vat Blue 20, 14% | 1,088 | 1,004 | 1,367 | 1.36 | | All other | 12,652 | 11,645 | 5,869 | 50 | | Vat green dyes, total | 14,858 | 13,677 | 10,305 | .75 | | Vat Green 1, 6% | 4,052 | 3,916 | 2,586 | .66 | | Solubilized Vat Green 3, 26% | 5,369 | 5,002
11 | 3,675
73 | 6.64 | | Vat Green 8, 8-1/2% | 3,549 | 2,954 | 2,325 | .79 | | Vat Green 9, 12-1/2% | 1,371 | 1,469 | 1,267 | .86 | | All other | 509 | 325 | 379 | 1.17 | | Vat brown dyes, total | 4,279 | 4,189 | 6,994 | 1.67 | | Vat Brown 1, 11% | 609 | 626 | 1,031 | 1.65 | | Vat Brown 5, 13% | 1,215 | 1,300
132 | 2,152
210 | 1.66 | | All other | 2,350 | 2,131 | 3,601 | 1.69 | | Vat black dyes, total | 10,801 | 10,526 | 9,756 | .93 | | Vat Black 9, 16% | 154
| 204 | 544 | 2.67 | | Vat Black 25, 12-1/24Vat Black 27, 12-1/24 | 5,937
1,523 | 5,857
1,385 | 4,431 | .76
1.21 | | All other | 3,187 | 3,080 | 1,670
3,111 | 1.01 | | All other dyes ³ | 482 | 466 | 763 | 1.64 | | | 1 | <u> </u> | | | ¹ Calculated from rounded figures. ² Production and sales quantities of C.I. Leuco Sulfur and C.I. Solubilized Sulfur dyes are reported in terms of the usual commercial concentration of the C.I. Sulfur dyes. ³ Includes oxidation bases, ingrain dyes, and miscellaneous dyes. Statistics for these groups of dyes may not be published separately because publication would disclose information received in confidence. DYES 25 Table 9 summarizes production and sales of dyes in 1966, by class of application. Four application classes of dyes accounted for approximately two-thirds of all the dyes produced. Vat dyes accounted for 26.2 percent of the total; direct dyes, for 17.0 percent; and fluorescent brighteners and acid dyes, each for 10.6 percent of the above classes, the output of vat dyes remained about the same in 1966 as in 1965. The output of fluorescent brighteners was 19.5 percent larger in 1966 than in 1965; that of acid dyes was 13.7 percent larger; and direct dyes was 3.5 percent larger. Of the remaining classes, the output of the fiber-reactive dyes was 1.9 million pounds in 1966, or 20.4 percent more than the 1.6 million pounds produced in 1965. Production of food, drug, and cosmetic colors was 15.1 percent larger in 1966 than in 1965; solvent dyes, 9.5 percent larger; and sulfur dyes, 7.0 percent larger. On the other hand, the output of mordant dyes was 9.6 percent smaller in 1966 than in 1965; and that of the azoic dyes and components, 2.9 percent smaller. Table 10 shows production and sales of dyes, by chemical class. In 1966, three chemical classes of dyes accounted for two-thirds of all the dyes produced: Azo dyes accounted for 31.8 percent of the total; anthraquinone dyes, for 24.7 percent; and stilbene dyes, for 11.2 percent. The output of each of these three classes was larger in 1966 than in 1965; Stilbene dyes were 15.0 percent larger; anthraquinone dyes, 13.7 percent larger; and azo dyes, 4.8 percent larger. Of the remaining chemical classes for which statistics are published, the output of sulfur dyes was 7.0 percent larger in 1966 than in 1965, and that of triarylmethane dyes was 18.6 percent larger. On the other hand, the output of phthalocyanine dyes was 18.8 percent smaller in 1966 than in 1965, that of indigoid dyes, 8.5 percent smaller; and azoic dyes, 3.7 percent smaller. TABLE 9. -- Benzenoid dyes: U.S. production and sales, by class of application, 1966 | | | Sales | | | |---|----------------------------|----------------------------|-----------------------------|----------------------------| | Class of application | Production | Quantity | Value | Unit
value ¹ | | Total | 1,000
pounds
219,194 | 1,000
pounds
204,135 | 1,000
dollars
331,453 | Per
pound
\$1.62 | | AcidAzoic dyes and components: | 23,194 | 20,410 | 43,762 | 2.14 | | Azoic compositions | 2,376 | 2,204 | 4,473 | 2.03 | | Azoic diazo components, bases (Fast color bases) | 1,493 | 1,334 | 2,185 | 1.64 | | Azoic diazo components, salts (Fast color salts) | 2,444 | 2,401 | 2,676 | 1.11 | | Azoic coupling components (Naphthol AS and derivatives) | 3,071 | 2,478 | 4,978 | 2.01 | | Basic | 11,136 | 10,420 | 26,674 | 2.56 | | Direct | 37,343 | 36,733 | 56,920 | 1.55 | | Disperse | 16,696 | 14,849 | 38,060 | 2.56 | | Fiber-reactive | 1,909 | 1,899 | 7,906 | 4.16 | | Fluorescent brightening agents | 23,212 | 20,829 | 40,703 | 1.95 | | Food, drug, and cosmetic colors | 3,363 | 3,109 | 11,474 | 3.69 | | Mordant | 4,288 | 3,509 | 5,285 | 1.51 | | Solvent | 10,772 | 9,827 | 16,685 | 1.70 | | Sulfur ² | 19,959 | 19,236 | 11,034 | .57 | | Vat | 57,456 | 54,431 | 57,875 | 1.06 | | All other ³ | 482 | 466 | 763 | 1.64 | ¹ Calculated from rounded figures. ² Production and sales quantities of C.I. Leuco Sulfur and C.I. Solubilized Sulfur dyes are reported in terms of the usual commercial concentration of the C.I. Sulfur dyes. the usual commercial concentration of the C.I. Sulfur dyes. Includes oxidation bases, ingrain dyes, and miscellaneous dyes. Statistics for these groups of dyes may not be published separately becauses publication would disclose information received in confidence. TABLE 10. -- Benzenoid dyes: U.S. production and sales, by chemical class, 1966 | Chemical class | | Sales | | | | |------------------------|------------|----------|---------|----------------------------|--| | | Production | Quantity | Value | Unit
value ¹ | | | | 1,000 | 1,000 | 1,000 | Per | | | | pounds | pounds | dollars | pound | | | Total | 219,194 | 204,135 | 331,453 | \$1.62 | | | Anthraquinone | 54,227 | 50,937 | 85,501 | 1.68 | | | Azo, total | 69,709 | 66,277 | 121,299 | 1.83 | | | Monoazo | 25,814 | 23,624 | 49,679 | 2.10 | | | Disazo | 20,070 | 19,295 | 35,284 | 1.83 | | | Trisazo | 13,749 | 13,341 | 15,253 | 1.14 | | | Pol va zo | 2,720 | 2,935 | 5,002 | 1.70 | | | Not specified | 7,356 | 7,082 | 16,081 | 2.27 | | | Azoic | 9,394 | 8,430 | 14,344 | 1.70 | | | Cyanine | 514 | 505 | 1,636 | 3.24 | | | Indigoid | 5,251 | 5,604 | 3,590 | .64 | | | Ketone imine | 502 | 505 | 1,051 | 2.08 | | | Methine | 1,281 | 1,327 | 4,590 | 3.46 | | | Nitro | 1,429 | 1,378 | 2,519 | 1.83 | | | Oxazine | 252 | 176 | 789 | 4.48 | | | Phthalocyanine | 1,783 | 1,787 | 4,660 | 2.61 | | | Quinoline | 523 | 597 | 1,934 | 3.24 | | | Stilbene | 24,518 | 21,760 | 35,143 | 1.62 | | | Sulfur ² | 19,959 | 19,236 | 11,034 | .57 | | | This gold | 586 | 549 | 1,176 | 2.14 | | | Triarvlmethane | 7,936 | 6,592 | 15,037 | 2.28 | | | Xanthene | 1,874 | 911 | 4,585 | 5.03 | | | All other ³ | 19,456 | 17,564 | 22,565 | 1.28 | | ¹ Calculated from rounded figures. ² Production and sales quantities of C.I. Leuco Sulfur and C.I. Solubilized Sulfur dyes are reported in terms of ## **Pigments** As the terms are used in this report, synthetic organic pigments are toners and lakes derived in whole or in part from benzenoid chemicals and colors. They are used in paints and related products, in printing inks, and in plastics and resin materials. Statistics on production and sales of all benzenoid pigments in 1966 are given in table 11A³. Statistics on sales of a few selected pigments by commercial forms (dry full-strength form, dry extended form, dry dispersions, aqueous dispersions, and flushed colors) are given in table 12. Prior to 1961, statistics for toners included the quantities and values of extenders and diluents. Beginning in 1961, data were collected for both the full-strength and extended toners on a fullstrength-toner-content basis. Individual toners and lakes are identified in this report by the names used in the second edition of the Colour Index. Total production of benzenoid pigments in 1966 was 51.1 million pounds -- 6.4 percent more than the 48.0 million pounds produced in 1965 and 16.1 percent more than the 44.1 million pounds produced in 1964. Total sales of benzenoid pigments in 1966 amounted to 43.3 million pounds, valued at \$107.6 million, compared with 38.0 million pounds, valued at \$93.6 million, in 1965 and 35.1 million pounds, valued at \$84.1 million, in 1964. In terms of quantity, sales of benzenoid pigments in 1966 were 13.9 percent larger than in 1965 and 23.5 percent larger than in 1964; in terms of value, sales in 1966 were 14.9 percent larger than in 1965 and 27.9 percent larger than in 1964. Production of toners in 1966 amounted to 46.6 million pounds--6.7 percent more than the 43.7 million pounds reported for 1965. Sales in 1966 were 39.1 million pounds, valued at \$103.6 million, compared with 34.1 million pounds, valued at \$89.9 million, in 1965. Sales in 1966 were thus 14.7 percent larger than those in 1965 in terms of quantity, and 15.3 percent larger in terms of value. The individual toners listed in the report which were produced in the largest quantities in 1966 were Pigment Blue 15, alpha form, 5.0 million pounds; Pigment Green 7, 4.1 million pounds; Pigment Yellow 12, 4.1 million pounds; Pigment Red 49, barium toner, 3.5 the usual commercial concentration of the C.I. Sulfur dyes. Includes acridine, aminoketone, azine, coumarin, hydroxyketone, nitroso, oxidation bases, thiazine, vat sulfur, and miscellaneous dyes. Statistics for these groups of dyes may not be published separately because publication would disclose information received in confidence. ³ See also table 11B, pt. III, which lists these products and identifies the manufacturers, and table 23 in the appendix, which shows imports of benzenoid pigments during the years 1965-66. million pounds; Pigment Blue 19, 2.7 million pounds; Pigment Blue 15, beta form, 2.7 million pounds; and Pigment Red 48, 2.5 million pounds. Production of lakes totaled 4.5 million pounds in 1966--3.5 percent more than the 4.3 million pounds reported for 1965. Sales of lakes in 1966 amounted to 4.2 million pounds, valued at \$4.0 million, compared with sales in 1965 of 3.9 million pounds, valued at \$3.8 million. Sales in 1966 were thus 7.2 percent larger than those in 1965 in terms of quantity, and 5.5 percent larger in terms of value. For each of 14 selected pigments, or groups of pigments, table 12 gives data on sales by commercial forms. Pigment Yellow 12, Pigment Red 90, and Pigment Blue 19 were sold principally in the flushed form. The remaining 11 pigments, or groups of pigments, for which statistics are published were sold principally in the dry full-strength form. Statistics on sales by commercial forms could not be published for Pigment Red 49, sodium toner, or for Pigment Blue 24 without revealing the operations of individual companies. TABLE 11A.--Benzenoid pigments: U.S. production and sales, 1966 [Listed below are all toners and lakes for which any reported data on production or
sales may be published. (Leaders are used where the reported data are accepted in confidence and may not be published or where no data were reported.) Table 11B in pt. III lists all toners and lakes for which data on production or sales were reported and identifies the manufacturer of each] | Pigment | Production | Sales | | | |-----------------------------------|------------|----------|------------|----------------------------| | | | Quantity | Value | Unit
value ¹ | | | 1,000 | 1,000 | 1,000 | Per | | | pounds | pounds | dollars | pound | | Grand total | 51,128 | 43,316 | 107,594 | \$2.48 | | TONERS | | | | | | TORME | | | | | | Total | 46,628 | 39,113 | 103,627 | 2.65 | | Yellow toners, total | 7,917 | 5,241 | 14,450 | 2.76 | | Hansa vellows, total | 1,270 | 957 | 2,410 | 2.52 | | Pigment Yellow 1. C.I. 11 680 | 589 | 395 | 763 | 1.93 | | Pigment Yellow 3. C.I. 11 710 | 177 | 110 | 252 | 2.29 | | Pigment Yellow 73 | 257 | ••• | ••• | ••• | | Pigment Yellow 74. C.I. 11 741 | 113 | 108 | 371 | 3.44 | | Other Hansa vellows | 134 | 344 | 1,024 | 2.98 | | Benzidine vellows, total | 6,357 | 4,153 | 10,450 | 2.52 | | Pigment Yellow 12. C.I. 21 090 | 4,117 | 2,378 | 5,138 | 2.16 | | Pigment Yellow 13, C.I. 21 100 | 317 | 210 | 718 | 3.42 | | Pigment Yellow 14. C.I. 21 095 | 1,409 | 1,163 | 2,866 | 2.46 | | Pigment Yellow 17. C.I. 21 105 | 273 | 176 | 588 | 3.3 | | Other benzidine vellows | 241 | 226 | 1,140 | 5.0 | | All other | 290 | 131 | 1,590 | 12.1 | | Orange toners, total | 830 | 763 | 2,890 | 3.7 | | Pigment Orange 2, C.I. 12 060 | 35 | 37 | 55 | 1.49 | | Pigment Orange 5. C.I. 12 075 | 248 | 202 | 315 | 1.5 | | Pigment Orange 13, C.I. 21 110 | 155 | 146 | 481 | 3.2 | | Pigment Orange 16. C.I. 21 160 | 222 | 214 | 592 | 2.7 | | (Vat Orange 7). C.I. 71 105 | 11 | 11 | 239 | 21.7 | | All other | 159 | 153 | 1,208 | 7.9 | | Red and violet toners, total | 21,519 | 18,835 | 44,621 | 2.3 | | Naphthol reds. total | 856 | 659 | 2,891 | 4.3 | | Pigment Red 2, C.I. 12 310 | 67 | 46 | 121 | 2.6 | | Pigment Red 5. C.I. 12 490 | 114 | 67 | 338 | 5.0 | | Pigment Red 13, C.I. 12 395 | 4 | 3 | 15 | 5.0 | | Pigment Red 17, C.I. 12 390 | 66 | 64 | 198 | 3.0 | | Pigment Red 18. C.I. 12 350 | 17 | ••• | ••• | ^ ^ | | Pigment Red 22, C.I. 12 315 | 75 | 83 | 246
536 | 2.9 | | Pigment Red 23, C.I. 12 355 | 181 | 157 | 526 | 3.3 | | Other naphthol reds | 332 | 239 | 1,447 | 6.0 | | Pigment Red 1, C.I. 12 070, dark | 223 | 178 | 218 | 1.2 | | Pigment Red 1, C.I. 12 070, light | 217 | 179 | 215 | 1.2 | | Pigment Red 3, C.I. 12 120 | 1,843 | 1,530 | 2,325 | 1.5 | TABLE 11A. --Benzenoid pigments: U.S. production and sales, 1966--Continued | Pigment | D 1 | Sales | | | |---|---------------|---------------|-----------------|----------------------------| | | Production | Quantity | Value | Unit
value ¹ | | TONERSContinued | | | · | | | | 1,000 | 1,000 | 1,000 | Per | | Red and violet tonersContinued Pigment Red 4, C.I. 12 085 | pounds
335 | pounds
274 | dollars | pound | | Pigment Red 6, C.I. 12 090 | | 34 | 386
53 | \$1.41
1.56 | | Pigment Red 38, C.I. 21 120 | 151 | 128 | 571 | 4.46 | | Pigment Red 48, C.I. 15 865 | 2,545 | 2,443 | 4,500 | 1.84 | | Pigment Red 49, C.I. 15 630: Barium toner | 2 400 | 0.10.5 | | _ | | Calcium toner | 3,498 | 3,415 | 3,331 | .98 | | Sodium toner | 1,454 | 1,419
267 | 1,442
273 | 1.02 | | Pigment Red 52, C.I. 15 860 | 1,309 | 1,226 | 1,836 | 1.50 | | Pigment Red 53, C.I. 15 585, barium toner | 2,110 | 1,729 | 2,223 | 1.2 | | Pigment Red 54, C.I. 14 830, calcium toner | 59 | 67 | 153 | 2.28 | | Pigment Red 57, C.I. 15 850, calcium toner | 1,017 | 867 | 1,290 | 1.49 | | Pigment Red 63, C.I. 15 880 | 64 | 53 | 100 | 1.8 | | Pigment Red 81, C.I. 45 160, PMA | 337
151 | 269
146 | 1,649 | 6.1 | | Pigment Red 90, C.I. 45 380 | 1,507 | 812 | 894
1,508 | 6.1;
1.8 | | Pigment Violet 1, C.I. 45 170, PMA | 99 | 99 | 293 | 2.90 | | Pigment Violet 1, C.I. 45 170, PTA | 63 | 57 | 379 | 6.6 | | Pigment Violet 3, C.I. 42 535, fugitive | 574 | 560 | 815 | 1.4 | | Pigment Violet 3, C.I. 42 535, PMA | 387 | 355 | 1,054 | 2.9 | | Pigment Violet 3, C.I. 42 535, PTA | 43 | 39 | 174 | 4.4 | | Pigment Violet 23All other | 62
2,404 | 74 | 1,412 | 19.0 | | ALL OMICIA | 2,404 | 1,956 | 14,636 | 7.48 | | lue toners, total | 11,046 | 9,722 | 27,935 | 2.8 | | Pigment Blue 1, C.I. 42 595, PMA | 180 | 170 | 840 | 4.94 | | Pigment Blue 1, C.I. 42 595, PTA | 29 | 28 | 136 | 4.8 | | Pigment Blue 2, C.I. 44 045, fugitive, PMA, and PTA | 13 | 10 | 35 | 3.50 | | Pigment Blue 9, C.I. 42 025, PTA | 6 | ••• | ••• | •.•• | | Pigment Blue 14, C.I. 42 600, PMA | 73
4,981 | 73
4,130 | 566 | 7.7 | | Pigment Blue 15, C.I. 74 160, beta form | 2,685 | 2,369 | 11,159
7,166 | 2.70
3.0 | | Pigment Blue 19, C.I. 42 750A | 2,681 | 2,637 | 6,196 | 2.3 | | Pigment Blue 22, C.I. 69 810 | 77 | 37 | 684 | 18.4 | | Pigment Blue 25, C.I. 21 180 | 137 | ••• | ••• | ••• | | All other | 184 | 268 | 1,153 | 4.3 | | reen toners, total | 4,905 | 4,131 | 13,116 | 3.1 | | Pigment Green 1, C.I. 42 040, PMA | ••• | 6 | 29 | 4.8 | | Pigment Green 1, C.I. 42 040, PTAPigment Green 2, C.I. 42 040 and 49 005, PMA | 12
76 | 9
69 | 57
312 | 6.3 | | Pigment Green 2, C.I. 42 040 and 49 005, PTA | 51 | 41 | 254 | 4.5
6.2 | | Pigment Green 4, C.I. 42 000, PMA | | 4 | 15 | 3.7 | | Pigment Green 4, C.I. 42 000, PTA | 6 | 7 | 31 | 4.4 | | Pigment Green 7, C.I. 74 260 | 4,113 | 3,440 | 10,634 | 3.0 | | Pigment Green 8, C.I. 10 006 | 220 | 187 | 240 | 1.2 | | Pigment Green 36, C.I. 74 265All other | 208
219 | 208
160 | 706 | 3.3 | | | 219 | 100 | 838 | 5.2 | | rown toners, total | 189 | 157 | 350 | 2.2 | | Pigment Brown 3, C.I. 21 010, PMA | 1,4 | 4 | 14 | 3.5 | | All other | 149
36 | 127
26 | 196
140 | 1.5
5.3 | | lack toners | 222 | 264 | 265 | 1.0 | | LAKES | | | | | | Total | 4,500 | 4,203 | 3,967 | .9 | | | | 7,203 | 2,701 | .9 | | ellow lakes | 174 | • • • • | ••• | | 29 **PIGMENTS** TABLE 11A. --Benzenoid pigments: U.S. production and sales, 1966--Continued | | | Sales | | | | |--|---|---|---|--|--| | Pigment | Production | Quantity | Value | Unit
value ¹ | | | LAKESContinued Red lakes: Pigment Red 60, C.I. 16 105 Pigment Red 83, C.I. 58 000 (Acid Red 26), C.I. 16 150 Violet lakes, total Pigment Violet 5, C.I. 58 055 All other | 1,000
pounds
264
95
605
197
184
13 | 1,000
pounds
247
89
596
146
132 | 1,000
dollars
435
270
275
305
289
16 | Per pound \$1.76 3.03 .46 2.09 2.19 1.14 | | | Blue lakes: Pigment Blue 24, C.I. 42 090 Black lakes: (Natural Black 3), C.I. 75 291 All other lakes ² | 63
3,102 | 1,958
77
1,090 | 1,868
73
741 | .95
.95
.68 | | Note. -- The C.I. (Colour Index) numbers shown in this report are the identifying numbers given in the second edition of the Colour Index. The abbreviations PMA and PTA stand for phosphomolybdic and phosphotungstic (including phosphotungstomolybdic) acids, respectively. TABLE 12. -- U.S sales of selected dry full-strength colors, dry extended colors, dry dispersions, aqueous dispersions, and flushed colors, 1966 | | | Sales | | |--|------------------------------------|-------------------------------------|--------------------------------------| | Selected pigments by commercial forms | Quantity1 | Value | Unit
value ² | | | 1,000
pounds | 1,000
dollars | Per
pound | | Pigment Yellow 12, C.I. 21 090, total | 2,378 | 5,344
1,460 | \$2.25
2.09 | | Dry full-strength toner | 1,678 | 3,884 | 2.31 | | Pigment Yellow 13, C.I. 21 100; Pigment Yellow 14, C.I. 21 095; Pigment Yellow 17, C.I. 21 105; and other benzidine yellows, total | 1,775
1,230
40
315
190 | 5,260
3,735
104
851
570 | 2.96
3.04
2.60
2.70
3.00 | | Pigment Red 3, C.I. 12 120, total | 1,530
977
91
462 | 2,378
1,473
105
800 | 1.55
1.51
1.15
1.73 | | Pigment Red 48, C.I. 15 865, total | 2,443 | 4,500 | 1.84 | | Dry full-strength toner | 2,256
85
32
70 | 4,122
178
75
125 | 1.83
2.09
2.34
1.80 | | Discount Deal (O. C. T. 15 620) benjum topen total | 3,415 | 3,427 | 1.00 | | Dry full-strength toner | 2,535 | 2,467 | .97 | | Dry full-strength toner | 11
869 | 13
947 | 1.18
1.09 | | Pigment Red 49, C.I. 15 630, calcium toner, total | 1,419 | 1,567 | 1.10 | | Dry full-strength toner and dry dispersions* | 1,153
266 | 1,169
398 | 1.50 | Calculated from rounded figures. Includes all brown, green, and orange lakes, "all other" blue, "all other" red, and "all other" black lakes, production of Pigment Blue 24 and sales of yellow lakes. TABLE 12.-- U.S. sales of selected dry full-strength colors, dry extended colors, dry dispersions, aqueous dispersions, and flushed colors, 1966--Continued | | | Sales | | |--|-----------------------|---------|----------------------------| | Selected pigments by commercial forms | Quantity ¹ | Value | Unit
Value ² | | | 1,000 | 1,000 | Per | | | pounds | dollars | pound | | Pigment Red 49, C.I. 15 630, sodium toner4 | 267 | 287 | \$1.07 | | Pigment Red 53, C.I. 15 585, barium toner, total | 1,729 | 2,260 | 1.31 | | Dry full-strength toner, dry extended toner, and dry dispersions4 | 1,043 | 1,340 | 1.28 | | Aqueous dispersions ³ and flushed color ⁴
 686 | 920 | 1.34 | | Pigment Red 90, C.I. 45 380, total | 812 | 1,605 | 1.98 | | Dry full-strength toner and dry extended toner4 | 43 | 89 | 2.07 | | Dry dispersions and flushed color4 | 769 | 1,516 | 1.97 | | Pigment Violet 3, C.I. 42 535, fugitive, total | 560 | 815 | 1.46 | | Dry full-strength toner and dry extended toner4 | 317 | 475 | 1.50 | | Flushed color | 243 | 340 | 1.40 | | Pigment Violet 3, C.I. 42 535, permanent (PMA and PTA), total | 394 | 1,238 | 3.14_ | | Dry full-strength toner | 250 | 781 | 3.12 | | Dry extended toner, dry dispersions and aqueous dispersions ³ 4 | 43 | 173 | 4.02 | | Flushed color | 101 | 284 | 2.81 | | Pigment Blue 15, C.I. 74 160, alpha form, total | 4,130 | 11,489 | 2.78 | | Dry full-strength toner | 1,759 | 4,429 | 2.52 | | Dry extended toner | 860 | 2,839 | 3.30 | | Dry dispersions | 108 | 397 | 3.68 | | Aqueous dispersions ³ | 1,163 | 2,921 | 2.51 | | Flushed color | 240 | 903 | 3.76 | | Pigment Blue 15, C.I. 74 160, beta form, total | 2,369 | 7,166 | 3.02 | | Dry full-strength toner | 1,078 | 3,391 | 3 .1 5 | | Dry extended toner, dry dispersions and aqueous dispersions ³ 4 | 814 | 2,357 | 2.90 | | Flushed color | 477 | 1,418 | 2.97 | | Pigment Blue 19, C.I. 42 750A, total | 2,637 | 6,196 | 2.35 | | Dry full-strength toner and dry extended toner4 | 248 | 605 | 2.44 | | Aqueous dispersions ³ and flushed color ⁴ | 2,389 | 5,591 | 2.34 | | Pigment Blue 24, C.I. 42 090 ⁴ | 1,958 | 2,291 | 1.17 | | Pigment Green 7, C.I. 74, 260, total | 3,440 | 10,854 | 3.16_ | | Dry full-strength toner | 1,607 | 5,155 | 3.21 | | Dry extended toner | 342 | 1,281 | 3.75 | | Dry dispersions | 127 | 544 | 4.28 | | Aqueous dispersions ³ | 1,190 | 3,331 | 2.80 | | Flushed color | 174 | 543 | 3.12 | ¹ Quantity of the various commercial forms is given in terms of dry full-strength toner (or dry lake) content. 2 Calculated from rounded figures. Includes presscake. Separate data on these commercial forms may not be published without revealing the operations of individual companies. Note .-- The C.I. (Colour Index) numbers shown in this report are the identifying numbers given in the second edition of the Colour Index. The abbreviations PMA and PTA stand for phosphomolybdic and phosphotungstic (including phosphotungstomolybdic) acids, respectively. ## Medicinal Chemicals Medicinal chemicals include the medicinal and feed grades of all organic chemicals having therapeutic value, whether obtained by chemical synthesis, by fermentation, by extraction from naturally occurring plant or animal substances, or by refining a technical grade product. They include antibiotics and other anti-infective agents, antihistamines, autonomic drugs, cardio-vascular agents, central nervous system depressants and stimulants, hormones and synthetic substitutes, vitamins, and other therapeutic agents for human or veterinary use and for animal feed supplements. Statistics on production and sales of medicinal chemicals grouped by pharmacological class are given in table 13A⁴. The statistics shown are for bulk chemicals only; finished pharmaceutical preparations and products put up in pills, capsules, tablets, or other measured doses are excluded. The difference between production and sales reflects inventory changes, processing losses, and captive consumption of medicinal chemicals processed into ethical and proprietary pharmaceutical products by the primary manufacturer. In some instances, the difference may also include quantities of medicinal grade products used as intermediates, e.g., penicillin G salts used as intermediates in the manufacture of the semi-synthetic penicillins. All quantities are given in terms of 100-percent content of the pure bulk drug. Sales of antibiotics in 1965 and 1966 cannot be compared with those for earlier years because the reporting instructions were changed in 1965 to exclude sales of antibiotics in mixtures, formulations, capsules, pills, tablets, etc. For the years prior to 1965, sales data for antibiotics represented all sales by the primary producers, including finished pharmaceutical preparations. Total U.S. production of bulk medicinal chemicals in 1966 amounted to 185 million pounds, or 16.3 percent more than the 160 million pounds produced in 1965, and 28.7 percent more than the 144 million pounds produced in 1964. Total sales of bulk medicinal chemicals in 1966 amounted to 136 million pounds, valued at \$398 million, compared with sales in 1965 or 129 million pounds, valued at \$362 million. Sales in 1966 were thus 5.7 percent greater than in 1965, in terms of quantity, and 10.0 percent greater, in terms of value. Production of the more important groups of medicinal chemicals in 1966 was as follows: Antibiotics, 9.7 million pounds (29.5 percent larger than in 1965), of which 5.4 million pounds was for medicinal use and 4.2 million pounds was for other uses; anti-infective agents other than antibiotics, 33.5 million pounds (22.0 percent larger than in 1965); central depressants and stimulants, 48.3 million pounds (12.9 percent larger); and vitamins, 17.6 million pounds (7.9 percent larger). Production of some of the more important individual products listed in the table was as follows: Choline chloride, 36.2 million pounds (16.2 percent larger than in 1965); aspirin, 34.1 million pounds (17.3 percent larger); methionine and its hydroxy analogue, 13.9 million pounds (33.7 percent larger); salicylic acid, 11.4 million pounds (15.5 percent larger); piperazine base and salts, 8.7 million pounds (33.3 percent larger); ascorbic acid, 7.6 million pounds (4.2 percent larger); anti-infective sulfonamides, 5.4 million pounds (15.3 percent larger); penicillins, 1,676 trillion units (24.8 percent larger); tetracyclines, 1.7 million kilograms (44.2 percent larger); vitamin A, 944 trillion units (57.7 percent larger); and vitamin E, 277 billion units. ⁴ See also table 13B, pt. III, which lists these products and identifies the manufacturers, and table 23 in the appendix, which shows imports of benzenoid medicinal chemicals and pharmaceuticals during the years 1965-66. ⁵ Complementary statistics on the dollar value of manufacturers' shipments of finished pharmaceutical preparations, except biologicals, are published annually by the U.S. Department of Commerce, Bureau of the Census, in Current Industrial Reports, Series MA-M28G. Many pharmaceutical manufacturers who report to the Bureau of the Census are excluded from the Tariff Commission report because they are not primary producers of medicinal chemicals, that is, they do not themselves produce the bulk drugs which go into their pharmaceutical products but purchase their drug requirements from domestic or foreign producers. TABLE 13A. -- Medicinal chemicals: U.S. production and sales, 1966 [Listed below are all synthetic organic medicinal chemicals for which any reported data on production or sales may be published. (Leaders are used where the reported data are accepted in confidence and may not be published or where no data were reported.) Table 13B in pt. III lists all medicinal chemicals for which data on production or sales were reported and identifies the manufacturer of each] | Chemical | | | | | |---|----------------------------|----------------------------|-----------------------------|----------------------------| | OHemicar | Production 1 | Quantity | Value | Unit
value ² | | Grand total | 1,000
pounds
185,469 | 1,000
pounds
136,463 | 1,000
dollars
398,408 | Per
pound
\$2. | | | 207,107 | 20,405 | 370,400 | ψε | | cyclic | 69,305 | 59,621 | 41,762 | • | | enzenoid ³ | 97,891 | 63,666 | 269,815 | 4. | | yclic nonbenzenoid4 | 18,273 | 13,176 | 86,831 | 6. | | ntibiotics, total ⁵ | 9,652 | 4,788 | 99,263 | 20. | | For medicinal use, total | 5,445 | 2,410 | 62,388 | 25. | | Antifungal and antitubercular antibiotics | 947 | 729 | 10,233 | 14. | | Bacitracin | 12 | 8 | 913 | 114. | | Penicillins, total | 2,092 | 878 | | | | Penicillin G, potassium | | 070 | 16,078 | 18. | | Periodilia C | 813 | 150 | •••, 00, | ••• | | Penicillin G, proceine | 754 | 458 | 4,024 | 8 | | All other | 525 | 420 | 12,054 | 28 | | Other antibiotics for medicinal use | 2,394 | 795 | 35,164 | 44 | | For other uses, total | 4,207 | 2,378 | 36,875 | 15 | | Bacitracin | 179 | 168 | 3,316 | 19 | | Penicillin G salts6 | 868 | 756 | 5,688 | 7 | | All other | 3,160 | 1,454 | 27,871 | 19 | | aticoagulants, total | 10 | 6 | 977 | 162 | | Sodium heparinAll other | 2 8 | 1 5 | 840
137 | ⁷ 603 | | • | | | 27 | 27 | | ntihistamines, totalAntinauseants | 399 | 230 | 5,402 | 23 | | Chlorpheniramine maleate | 52 | ••• | ••• | ••• | | Chiorpheniramine mateate | 41 | 12 | 235 | 19 | | Pheniramine maleateAll other | 18 | 15 | 298 | 19 | | | 288 | 203 | 4,869 | 23 | | nti-infective agents, total | 33,532 | 21,685 | 82,973 | 3 | | Arsenic, bismuth, and mercury compounds | 4,230 | ••• | ••• | ••• | | Caprylates and undecylenates | 523 | 470 | 565 | 1 | | p-Hydroxybenzoic acid esters, total | 610 | 585 | 1,141 | 3 | | Methylparaben | 397 | 379 | 718 |] | | All other | 213 | 206 | 423 | 2 | | 5-Nitrofurane, -imidazole, and -thiazole derivatives | 602 | ••• | | • • • | | Phenolic antiseptics and disinfectants | 334 | 285 | 493 |] | | Piperazine base and salts, total | 8,681 | 6,098 | 4,855 | | | Piperazine | 4,033 | 1,228 | 1,408 |] | | All other | 4,648 | 4,870 | 3,447 | | | Quinoline derivatives, total | 934 | ••• | ••• | • • • | | Diiodohydroxyguin | 28 | 13 | 49 | 3 | | Oxyquinoline benzoate | | 4 | 15 | 3 | | Oxyquinoline sulfate | 7 | 13 | 46 | 3 | | All other | 899 | | | ••• | | Sulfonamides | 5,450 | 1,530 | 6,712 | 4 | | Groups listed above for which separate sales data may not | -, | -, | ٠,٠ | | | be shown | | 2,762 | 10,701 | 3 | | Other anti-infective agents, total | 12,168 | 9,925 | 58,396 | 5 | | Anthelmintic, antifungal, antiprotozoan, and antiviral | | 2,723 | 20,270 | - | |
agents | 8,677 | 8,309 | 55,428 | ϵ | | Urinary antiseptics | 722 | 673 | |] | | All other | 2,769 | 943 | 1,189 | | | | 2,109 | 747 | 1,779 |] | | tineoplastic agents and local anesthetics, total | 824 | 684 | 1,652 | | | Lidocaine | ••• | 4 | 125 | 31 | | All other | 824 | 680 | 1,527 | 2 | TABLE 13A. --Medicinal chemicals: U.S. production and sales, 1966--Continued | | | | Sales ¹ | | |---|-------------------------|-------------|--------------------|----------------------------| | Chemical | Production ¹ | Quantity | Value | Unit
value ² | | | 1,000 | 1,000 | 1,000 | Per | | | pounds | pounds | dollare | pound | | utonomic drugs, total | 608 | 407 | 7,813 | \$19.20 | | | | | | 7 | | Hometropine methylbromide | 1 | 1 | 39 | ⁷ 37.13 | | Chatcamous ammonium compounds (except tropage | | 077 | 2 220 | 45.15 | | domirrotivec) | 65 | 27
348 | 1,219
4,632 | 13.31 | | C | 481
2 | 1 | 21 | 7 30.03 | | Isoproterenol salts | | 1 7 | 245 | 35.00 | | Phenylephrine | 280 | 259 | 1,812 | 7.00 | | Phenylpropanolamine hydrochlorideAll other | 199 | 81 | 2,554 | 31.53 | | Other autonomic drugs | 61 | 31 | 1,923 | 62.03 | | | | 1 | | 00 55 | | ardiovascular agents, total | 891 | 473 | 14,460 | 30.57 | | | 31 | 5 | 35 | 7.00
7 568.63 | | n | 1 | (8) | 274
14,151 | 30.24 | | Other cardiovascular agents | 859 | 468 | 14,101 | 50.27 | | | 48,330 | 32,726 | 57,891 | 1.77 | | entral depressants and stimulants, total | 40,550 | 65 | 545 | 8.38 | | Amphetamines, total | 24 | | | • • • | | Dextroamphetamine sulfate Methamphetamine base and hydrochloride | | 28 | 261 | 9.32 | | All other | 43 | 37 | 284 | 7.68 | | | | | | | | | 744 | ••• | ••• | ••• | | | 63 | | 1,973 | 4.20 | | | 977 | 463 | 254 | 7.70 | | | 46 | , , , | | ••• | | Phenobarbital, sodiumAll other | 924 | 430 | 1,719 | 4.00 | | | i | 1 | 295 | 7 278.25 | | 0 3 / 2 - 4 - 4 - 4 - 4 - 5 - 5 | 37,553 | ••• | 1 | (io) | | 1 1 1 1 1 1 1 1 | 34,114 | (10) | (10) | (10) | | 11 | 3,439 | | ••• | 5.8 | | 01 2 4 3 | 136 | 1 | 643 | 4.4 | | m | 1,583 | | 5,813 | 2.5 | | | 1,206 | 1,244 | 1,694 | 242.0 | | MeprobamatePhenothiazine derivatives | 377 | | 956 | 15.1 | | Other tranquilizers9Other central depressants and stimulants11 | 7,206 | | 48,622 | 1.5 | | Other central depressants and stimulants | 1,200 | ,,,,, | 1 | | | Dermatological agents, total | 12,833 | 9,902 | 4,463 | .4 | | | 22 | | ••• | ••• | | 1 1 1 - 71 - 4 | 27 | | ••• | | | ~ | 11,400 | 8,388 | 3,194 | | | All other | 1,384 | 1,514 | 1,269 | 1 | | | 1 226 | 1,319 | 2,119 | 1.6 | | Expectorants and mucolytic agents, total | 1,336 | | 1,568 | 1. | | Expectorants and indexty to again, seem Guaiacol and its derivativesAll other | | | 551 | 1.3 | | All other | 1 | - | | ł | | Gastrointestinal agents, total | 52,002 | 2 48,835 | 20,049 | • | | | | 7 | | ••• | | | | | 5,845 | | | 7 71L1 | | | 5,546 | 1. | | | | 270 | 299
11,164 | 1 | | | 10.90 | | 3,040 | 2. | | Other gastrointestinal agents | 1,42 | 1,542 | 1 | 1 | | | | 3 369 | 19,747 | 53. | | | 1, -0. | | | ••• | | Hormones and synthetic substitutes, total | | 6 ••• | 1 | | | Antithyroid agents | | ° 18 | | | | Hormones and synthetic substitutes, total | | 3 | 650 | 36. | TABLE 13A. -- Medicinal chemicals: U.S. production and sales, 1966--Continued | | | | Sales ¹ | - | |---|-------------------------|----------|--------------------|----------------------------| | Chemical | Production ¹ | Quantity | Value | Unit
value ² | | | 1,000 | 1,000 | 1,000 | Per | | | pounds | pounds | dollars | pound | | Renal-acting and edema-reducing agents, total | 1,283 | 176 | 2,932 | \$16. 66 | | Mercurial diuretics | 9 | 1 | 46 | 7 49.18 | | Theobromine and theophylline derivatives, total | 111 | 96 | 277 | 2.89 | | Aminophylline | 37 | ••• | ••• | ••• | | All other | 74 | 96 | 277 | 2.89 | | Other renal-acting and edema-reducing agents | 1,163 | 79 | 2,609 | 33.03 | | Therapeutic nutrients, total | 4,245 | 2,507 | 2,807 | 1.12 | | Amino acids and salts, total | 1,489 | 1,463 | 1,913 | 1.31 | | Glutamic acid | | 59 | 91 | 1.54 | | Potassium glutamate | 25 | | • • • • | • • • | | All other | 1,464 | 1,404 | 1,822 | 1.30 | | Calcium gluconate | ••• | 554 | 350 | .63 | | Other therapeutic nutrients | 2,756 | 490 | 544 | 1.11 | | Vitamins, total | 17,582 | 12,042 | 70,752 | 5.88 | | Vitamin A alcohol and esters. total 2 | 1,016 | 756 | 18,817 | 24.89 | | Vitamin A palmitate (feed grade) | 640 | 560 | 11,344 | 20.26 | | All other | 376 | 196 | 7,473 | 38.13 | | Vitamin B-complex, total | 6,276 | 4,918 | 28,584 | 5.81 | | Cyanocobalamin (except U.S.P. crystalline) 22 | 2 | | | ••• | | Niacin (all grades) | 2,206 | 1,787 | 2,106 | 1.18 | | Niacinamide | 1,046 | 952 | 1,854 | 1.95 | | Pantothenic acid and derivatives, total | 1,523 | 940 | 3,251 | 3.46 | | Calcium pantothenate (racemic) (feed grade) | 1,135 | 607 | 1,765 | 2.91 | | All other | 388 | 333 | 1,486 | 4.46 | | Riboflavin (all grades) | 705 | 590 | 6,176 | 10.47 | | Other B-complex vitamins | 794 | 649 | 15,197 | 23.42 | | Vitamin C, total | 9,600 | 5,872 | 12,201 | 2.08 | | Ascorbic acid | 7,581 | 4,543 | 9,163 | 2.02 | | All other | 2,019 | 1,329 | 3,038 | 2.29 | | Vitamin E ¹² | 507 | 406 | 7,908 | 19.48 | | Vitamin K | 156 | 72 | 981 | 13.62 | | Other vitamins | 27 | 18 | 2,261 | 125.61 | | Miscellaneous medicinal chemicals13 | 439 | 314 | 5,108 | 16.27 | ¹ The data on production and sales are for bulk medicinal chemicals only; they exclude finished preparations and dosage-form products which are manufactured from bulk chemicals. All quantities are given in terms of 100% active ingredient. Calculated from rounded figures except as noted. ³ The term "benzenoid," as used in this report, describes any cyclic medicinal chemical whose molecule contains either a six-membered carbocyclic ring with conjugated double bonds (e.g., the benzene ring or the quinone ring) or a six-membered heterocyclic ring with 1 or 2 hetero atoms and conjugated double bonds, except the pyrimidine ring (e.g., the pyridine ring or the pyrazine ring). Includes antibiotics of unknown structure. with the exception of bacitracin, the penicillins, and a few other antibiotics which were reported in terms of U.S.P. units, all quantities for antibiotics were reported as grams of antibiotic base. (Thus production of 480,900 grams of tetracycline hydrochloride, for example, would have been reported as 444,430 grams of tetracycline base.) For inclusion in the main statistical table all quantities were converted from grams of antibiotic base to pounds of antibiotic base (453.6 grams = 1 pound) or from U.S.P. units to pounds (22.7 million units of bacitracin, 458 million units of procaine penicillin G, 723 million units of potassium penicillin G, etc. = 1 pound). The following ## Footnotes for table 13A--Continued tabulation shows statistics for all individually publishable antibiotics in terms of kilograms of antibiotic base (Kg.) or billions of U.S.P. units (BU): | | Unit of | | | Sales | | | | |------------------------------------|---------------------|-----------|---------|------------|------------|--|--| | Antibiotic | quantity Production | Quantity | Value | Unit value | | | | | | | | | 1,000 | | | | | | | 1 | 1 | dollars | | | | | Bacitracin, total | BU | 4,331 | 3,986 | 4,229 | \$1,060.96 | | | | For medicinal use | BU | 267 | 181 | 913 | 5,044.20 | | | | For other uses | BU | 4,064 | 3,805 | 3,316 | 871.48 | | | | Neomycin, for all uses | Kg | 88,801 | 48,136 | 2,928 | 60.83 | | | | Penicillins, total | BU | 1,676,281 | 853,571 | 21,766 | 25.50 | | | | For medicinal use, total | BU | 1,278,564 | 507,328 | 16,078 | 31.69 | | | | Penicillin G, potassium | BU | 587,543 | | ••• | • • • | | | | Penicillin G, procaine | BU | 345,171 | 209,670 | 4,024 | 19.19 | | | | All other | BU | 345,850 | 297,658 | 12,054 | 40.50 | | | | For other uses: Penicillin G salts | BU | 397,717 | 346,243 | 5,688 | 16.43 | | | | Streptomycin, for all uses | Kg | 360,317 | ••• | ••• | | | | | Tetracyclines, for all uses | Kg | 1,668,078 | 667,486 | 37,617 | 56.36 | | | ⁶ Chiefly procaine penicillin G. 7 Calculated from full figures. Sales of rauwolfia and veratrum alkaloids amounted to 482 pounds. Includes 2 or more of the following 6 drugs which are subject to Federal control under the Drug Abuse Control Act: Chlordiazepoxide hydrochloride, diazepam, ethchlorvynol, ethinamate, glutethimide, and methylprylon. U.S. production of these 6 drugs amounted to 508 thousand pounds in 1966. Sales data for 1965 and earlier years included some sales of aspirin tablets which were inadvertently reported 10 Sales data for 1965 and earlier years included some sales of aspirin tablets which were inadvertently reported as bulk sales. Statistics for sales of bulk aspirin (excluding tablets) in 1966 cannot be published without disclosing the operations of individual producers. 11 Includes sales of anticonvulsants, hypnotics, and sedatives (except barbiturates), of antidepressants, and of salicylates. 12 All quantities for vitamins A, B₁₂, D₂, D₃, and E were reported in terms of grams or units, but were converted to pounds for inclusion in the main statistical table (1.317 billion units of vitamin A acetate, 0.824 billion units of vitamin A palmitate, 453.6 grams of vitamin B₁₂, 18.14 billion units of vitamins D₂ and D₃, 617,000 units of d-alpha tocopheryl acetate, 454,000 units of dl-alpha tocopheryl acetate, etc. = 1 pound). The following tabulation shows statistics for these vitamins, except for the D vitamins, which were not separately publishable, in terms of kilograms (Kg.), millions of international units (MU), or billions of U.S.P. units (BU): | | Unit of | D 1 11 | | Sales | Sales | | |---|----------|--------------------|--------------------|------------------
--|--| | Vitamin | quantity | Production | Quantity | Value | Unit value | | | | | | | 1,000
dollars | | | | Cyanocobalamin (Vitamin B ₁₂) (except U.S.P. crystalline) | Kg | 762 | ••• | ••• | ••• | | | Vitamin A alcohol and esters, total | BU | 943,652 | 655,512 | 18,817 | \$28.70 | | | Vitamin A palmitate (feed grade)All other | BU | 527,584
416,068 | 461,755
193,757 | 11,344
7,473 | 24.5 ⁷
38.5 ⁷ | | | Vitamin E | MU | 276,863 | 233,830 | 7,908 | 33.8; | | $^{^{13}}$ Includes diagnostic agents, hematological agents (except anticoagulants), smooth-muscle relaxants, and miscellaneous unclassified medicinal chemicals. ## Flavor and Perfume Materials Flavor and perfume materials are organic chemicals used in the manufacture of foods, beverages, cosmetics, and soaps. Aromatic organic chemicals are utilized to neutralize or to mask unpleasant odors in industrial processes and products as well as in consumer products. Most of them have desirable flavors or odors, and some have the ability to enhance natural flavors when added to certain foods. This report includes data on materials derived from natural products by actual chemical processes and from coal tar. These materials are grouped as either cyclic or acyclic materials, according to their chemical structures. Cyclic materials are further classified as (1) benzenoid and naphthalenoid, and (2) terpenoid, heterocyclic, and alicyclic. Not included are data on purely natural products, such as floral essences, essential oils, and other materials that are obtained by simple extraction or by distillation from natural plant and animal sources. Statistics on production and sales of flavor and perfume materials in 1966 are given in table 14A. Total domestic production of flavor and perfume materials covered in this report in 1966 amounted to 110.7 million pounds, or 11.5 percent more than the 99.2 million pounds produced in 1965. Sales of these materials in 1966 amounted to 98.3 million pounds, valued at \$92.6 million, in 1966. Production of cyclic flavor and perfume materials in 1966 amounted to 61.4 million pounds-15.4 percent more than the 53.2 million pounds produced in 1965. Sales of cyclic flavor and perfume materials in 1966 were 49.6 million pounds, valued at \$60.9 million, compared with 44.6 million pounds, valued at \$56.8 million, in 1965. The individual chemical in the cyclic group that was produced in the greatest volume in 1966, supplanting methyl salicylate which was the leader for some years, was benzyl alcohol (5.1 million pounds). In 1966, production of synthetic sweeteners, as a group, amounted to 17.3 million pounds, an increase of 35 percent over the output of 12.8 million pounds in 1965. The average unit value of sales of all synthetic sweeteners in 1966 was \$0.68 per pound, compared with \$0.89 per pound in 1965. Reflecting this lower unit value, total value of sales for synthetic sweeteners was \$8.3 million in 1966, compared with \$9.0 million in 1965. The output of acyclic flavor and perfume materials in 1966 amounted to 49.3 million pounds, 7.1 percent more than the 46.0 million pounds produced in 1965. Monosodium glutamate was by far the most important of the acyclic chemicals, and the individual flavor and perfume chemical produced in the greatest volume; output of this flavor-enhancing chemical totaled 45.7 million pounds in 1966, compared with 43.1 million pounds in 1965. Sales of acyclic flavor and perfume materials in 1966 amounted to 48.7 million pounds, valued at \$31.7 million, compared with 43.1 million pounds, valued at \$28.2 million, in 1965. TABLE 14A. -- Flavor and perfume materials: U.S. production and sales, 1966 [Listed below are all synthetic organic flavor and perfume materials for which any reported data on production or sales may be published. (Leaders are used where the reported data are accepted in confidence and may not be published or where no data were reported.) Table 14B in pt. III lists all flavor and perfume materials for which data on production or sales were reported and identifies the manufacturer of each | | | | Sales | | |---|---|--|---|--| | Material | Production | Quantity | Value | Unit
value ¹ | | Grand total | 1,000
pounds
110,670 | 1,000
pounds
98,314 | 1,000
dollars
92,634 | Per
pound
\$0.94 | | FLAVOR AND PERFUME MATERIALS, CYCLIC | | | | | | Total | 61,406 | 49,597 | 60,915 | 1.23 | | Benzenoid and Naphthalenoid | | | | | | Total | 26,972 | 24,052 | 27,030 | 1.12 | | 4-Allyl-2-methoxyphenol (Eugenol)- Anethole (p-Propenylanisole)- p-Anisaldehyde (p-Methoxybenzaldehyde)- Benzylacetate- Benzyl acctate- Benzyl alcohol²- Benzyl butyrate- Benzyl cinnamate- Benzyl ether- Benzyl phenylacetate (Benzyl α-toluate)- Benzyl propionate- | 336
1,983
1,022
182
1,122
5,110
9
4
122 | 304
1,907
979
124
1,041
4,595
6
5
102
2 | 526
1,230
1,367
128
453
1,758
8
19
19 | 1.73
.65
1.40
1.03
.43
.38
1.36
3.94
.19
2.52 | ⁶See also table 14B, pt. III, which lists these products and identifies the manufacturers, and table 23 in the appendix, which shows im ports of benzenoid flavor and perfume materials during the years 1965-66. TABLE 14A. -- Flavor and perfume materials: U.S. production and sales, 1966--Continued | | L | | Sales | | |--|-----------------|-----------------|------------------|----------------------------| | Material | Production | Quantity | Value | Unit
value ¹ | | FLAVOR AND PERFUME MATERIALS, CYCLIC Continued | | | | | | Benzenoid and NaphthalenoidContinued | 1,000
pounds | 1,000
pounds | 1,000
dollars | Per
pound | | Benzyl salicylate | 304 | 270 | 335 | \$1.24 | | Cinnemaldehyde | 1,319 | 1,207 | 852 | •7 | | Cinnamyl acetate | 15 | 3
175 | 8
241 | 2.5
1.3 | | Cinnamyl alcohol | 215 | 1/3 | 241 | | | Isobutyl phenylacetate (Isobutylα-toluate) | 27 | 25 | 22 | .8 | | Technical colinariate | 85 | 51 | 44 | .8 | | Iconentyl salicylate (Isoamyl salicylate) | 538 | 502 | 340 | .6 | | // Methorwegetophenone | 20 | 17 | 40 | 2.3
2.7 | | 2-Methoxy-4-propenylphenol (Isoeugenol) | 142 | 128
13 | 351
13 | .9 | | p-Methylanisole (p-Cresyl methyl ether) | | 180 | 340 | 1.8 | | methyl antiranilateα-Methylcinnemaldehyde | 16 | 12 | 26 | 2.0 | | Methyl cinnamate | 76 | ••• | ••• | ••• | | Methyl salicylate (Synthetic wintergreen oil) | 3,994 | 4,001 | 1,874 | .4 | | α_Pentylcinnemaldehyde (α_Amylcinnamaldehyde) | 436 | 485
10 | 606
21 | 1.2
2.1 | | Phenethyl isobutyrate | 12 37 | 24 | 66 | 2.7 | | Phenethyl propionate | 2 | ĩ | . 3 | 2.7 | | 3-Phenyl-1-propanol (Hydrocinnamic alcohol) | 26 | 19 | 35 | 1.8 | | 4-Propenylveratrole (Isoeugenyl methyl ether) | | 11 | 40 | 3.6
3.2 | | p-Tolyl acetate (p-Cresyl acetate) | 92 | 3
81 | 9
207 | 2.5 | | All other benzenoid and naphthalenoid materials | 9,703 | 7,757 | 16,030 | 2.0 | | All other benzehold and naphonalenold madellage | 7,102 | ., | | | | Terpenoid, Heterocyclic, and Alicyclic | | | | | | Total | 34,434 | 25,545 | 33,885 | 1.3 | | Cedryl acetate | | 151 | 368 | 2.4 | | Citrol o (Compniol) | 316 | 84 | 323 | 3.8 | | Citronollol | 653 | 544 | 822
.37 | 1.5 | | Citronellyl acetate | 21 32 | 22
17 | 34 | 2.0 | | Coumarin | 1,031 | 1,192 | 2,377 | 1.9 | | Ferential oils chemically modified | 254 | 246 | 707 | 2.8 | | Compariol | 1,117 | 887 | 1,159 | 1 | | Company contato | 91 | 91 | 156
24 | 1.' | | Geranyl formate | 513 | 11
514 | 1,973 | 3. | | Underwreitmonellel dimethyl acetal | 15 | 9 | 54 | 6. | | Tonones | 340 | 305 | 998 | 3. | | Trobownyl acetate | 978 | 997 | 378 | | | Menthol synthetic tech. & U.S.P | 574 | 551 | 2,151
75 | 3. | | Menthone | 32
520 | 21
377 | 1,681 | 4. | | Nonol | 10 | 6 | 34 | 5. | | Pineronal (Heliotropin) | 253 | 263 | 568 | 2. | | Phodinol | 11 | 8 | 221 | 27. | | Sweeteners, synthetic | 17,346 | 12,181 | 8,317 | : | | Terpineolsα-Terpinyl acetate | 3,543
473 | 3,546 | 1,132 | | | Vetivenyl acetate | 30 | 25 | 457 | 18. | | All other terpenoid, heterocyclic and alicyclic materials- | 6,267 | 3,064 | 9,570 | 3. | | FLAVOR AND PERFUME MATERIALS, ACYCLIC | | | | | | Total | 49,264 | 48,717 | 31,719 | • | | Allyl hexanoate (Allyl caproate) | 9 | 9 | 23 | 2. | | Ethyl butyrate | 355 | 328 | 221 | | | Ethyl heptanoate (Ethyl enanthate) | 45 727 | /5 2017 | 20 662 | ••• | | Glutamic acid, monosodium salt (Monosodium glutamate) 4-Hydroxyundecanoic acid, γ -lactone (γ -Undecalactone) | 45,727 | 45,397 | 28,662 | 5. | | Isopentyl butyrate (Isoamyl butyrate) | 80 | 58 | 47 | | | All other acyclic materials | 3,073 | 2,916 | 2,721 | | ¹ Calculated from the unrounded figures. 2 Includes some technical grade. ## Plastics and Resin Materials Plastics and resin materials are condensation and polymerization products of organic chemicals, containing necessary plasticizers, fillers, extenders, stabilizers, and coloring agents. At some stage in their manufacture they exist in such physical condition that they can be shaped or otherwise processed by the application of heat and pressure. Some types of plastics materials may be molded, cast, or extruded into semifinished or finished forms. Other types are used as adhesives, for the treatment of textiles and
paper, and for protective coatings. (Statistics on U.S. production and sales of synthetic plastics and resin materials for 1966 are given in table 15A⁷). In general, the statistics follow the outline of the Tariff Commission's monthly report on the production and sales of synthetic plastics and resin materials (S.O.C. Series P-66). However, the data given include some companies which are not covered in the monthly reports, and TABLE 15A.--Plastics and resin materials: U.S. production and sales, by chemical classes and uses, 1966 [Quantities and values are given in terms of the total weight of the materials (dry basis). Listed below are all plastics and resin materials for which any reported data on production or sales may be published. (Leaders are used where the reported data are accepted in confidence and may not be published or where no data were reported.) Table 15B in pt. III lists all plastics and resin materials for which data on production or sales were reported and identifies the manufacturer of each] | What and are | | | Sales | | | |---|--|--|-------------------------------|----------------------------|--| | Kind and use | Production | Quantity | Value | Unit
value ¹ | | | Grand total | 1,000
pounds,
dry basis ²
13,584,872 | 1,000
pounds,
dry basis²
11,471,638 | 1,000
dollars
2,740,081 | Per
pound
\$0.24 | | | Plastics and resin materials, benzenoidPlastics and resin materials, nonbenzenoid | 5,066,571
8,518,301 | 4,254,211
7,217,427 | 988,001
1,752,080 | •23
•24 | | | THERMOSETTING RESINS | | | • | | | | Total | 3,647,341 | 2,913,716 | 756,632 | .26 | | | Alkyd resins, total | 666,063 | 350,845 | 90,053 | .26 | | | Phthalic anhydride type | 584,543
81,520 | 285,692
60,202
4,951 | 73,308
15,472
1,273 | .26
.26 | | | Coumarone-indene and petroleum polymer resins, total | 334,496
70,283 | 319,741
70,076 | 34,821 | .11 | | | Rubber compounding | 66,547
197,666 | 65,613
158,272
25,780 | ••• | ••• | | | Epoxy resins: Unmodified, total | 139,791

4,590 | 133,095
15,144
54,358
27,672
17,451
18,470
4,024 | 68,264

4,451 | .51 | | | Colyester resins, total | 470,046 | 406,658 | 122,627 | .30 | | | Sheets, flat and corrugated | | 39,344
253,772
6,547
95,192
11,803 | | ••• | | $^{^7}$ See also table 15B, pt. III which lists these products by chemical type and by end uses, and identifies the manufacturers. # PLASTICS AND RESIN MATERIALS TABLE 15A,--Plastics and resin materials: U.S. production and sales, by chemical classes and uses, 1966--Continued | | | | Sales | Sales | | | |--|--|---|---------------------------------------|----------------------------|--|--| | Kind and use | Production | Quantity | Value | Unit
value ¹ | | | | • | 4 000 | 1 000 | | | | | | | 1,000 | 1,000 | 1 | | | | | | pounds, | pounds, | 1.000 | Per | | | | THERMOSETTING RESINSContinued | dry | dry | dollars | | | | | | basis ² | basis ² | | pound | | | | henolic and other tar acid resins, total | 1,046,742 | 855,804 | 203,559 | \$0.24 | | | | Molding materials | 307,481 | 278,278 | ••• | ••• | | | | Bonding and adherive regins for: | | 4 | | | | | | I ominoting | 143,114 | 86,972 | ••• | • • • | | | | Conted and honded abrasives | 31,544 | 21,958 | ••• | ••• | | | | The otion motorials | 43,955 | 38,097 | • • • | • • • | | | | Thormal ingulation | 128,061 | 62,054 | • • • | • • • | | | | Foundmy or shell molding | 76,854 | 72,671 | ••• | • • • | | | | D1 774 OOd | 156,028 | 146,138 | ••• | ••• | | | | Fibrous and granulated wood | 42,866 | 36,121 | ••• | ••• | | | | Protective costings, unmodified and modified | 34,291 | 26,760 | • • • | • • • | | | | All other uses | 82,548 | 72,987 | | • • • | | | | Sales for export | | 13,768 | | • • • | | | | pares for exportane | | | ľ | | | | | Polyurethane and diisocyanate resins | 71,514 | 48,528 | 28,809 | . 59 | | | | Rosin modifications, total | 130,796 | 129,909 | 27,825 | .2 | | | | Rosin and rosin esters, unmodified (ester gums) | 56,117 | 58,770 | 12,105 | .2. | | | | All other | 74,679 | 71,139 | 15,720 | .2 | | | | All other | 14,017 | 1,-,, | 10,120 | | | | | Silicone resins | 9,029 | 8,956 | 17,023 | 1.90 | | | | Silicone resins | 3,023 | 0,750 | 11,025 | | | | | | 718,322 | 611,072 | 144,111 | .2 | | | | Urea and melamine resins, total | | 73,612 | | • • • | | | | Textile treating and coating resins | 81,221 | | ••• | | | | | Paper treating and coating resins | 64,822 | 48,624 | ••• | • • • | | | | Ponding and adhesive resins for: | 4 | 24 888 | | | | | | Iominating | 59,851 | 38,777 | ••• | • • • | | | | D1 | 142,490 | 121,936 | ••• | ••• | | | | Fybrous and granulated wood | 159,545 | 147,482 | ••• | ••• | | | | Protective costings | 63,575 | 38,562 | ••• | ••• | | | | All other uses (including molding) | 146,818 | 125,611 | • • • | • • • | | | | Sales for export | • • • | 16,468 | ••• | ••• | | | | | | | | _ | | | | All other thermosetting resins4 | 55,952 | 45,084 | 15,089 | .5 | | | | THERMOPLASTIC RESINS | | | | | | | | Total | 9,937,531 | 8,557,922 | 1,983,449 | .2 | | | | | | | | | | | | Cellulose plastics materials, total | 186,707 | 183,462 | 122,513 | .6 | | | | Charle and invoice | | | | | | | | Shee is, continuous. | | | • • • | ••• | | | | The on 003 gage | 21,335 | 22,442 | | | | | | Under 0.003 gage | 48,734 | 49,584 | ••• | ••• | | | | Under 0.003 gage 0.003 gage and over | 48,734
5,827 | 49,584
6,432 | | ••• | | | | Under 0.003 gage 0.003 gage and over | 48,734 | 49,584 | | ••• | | | | Under 0.003 gage 0.003 gage and over | 48,734
5,827 | 49,584
6,432 | ••• | ••• | | | | Under 0.003 gage 0.003 gage and over All other sheets, rods, and tubes Molding and extrusion materials | 48,734
5,827 | 49,584
6,432 | ••• | | | | | Under 0.003 gage 0.003 gage and over | 48,734
5,827
110,811
92,618 | 49,584
6,432
105,004
82,133 | ••• | | | | | Under 0.003 gage 0.003 gage and over All other sheets, rods, and tubes Molding and extrusion materials | 48,734
5,827
110,811 | 49,584
6,432
105,004 |

72,604 | | | | | Under 0.003 gage | 48,734
5,827
110,811
92,618
70,300 | 49,584
6,432
105,004
82,133
61,823 | 72,604
59,521 | | | | | Under 0.003 gage 0.003 gage and over | 48,734
5,827
110,811
92,618
70,300
22,318 | 49,584
6,432
105,004
82,133
61,823
20,310 | 72,604
59,521
13,083 | • | | | | Under 0.003 gage | 48,734
5,827
110,811
92,618
70,300 | 49,584
6,432
105,004
82,133
61,823 | 72,604
59,521 | • | | | | Under 0.003 gage | 48,734
5,827
110,811
92,618
70,300
22,318 | 49,584
6,432
105,004
82,133
61,823
20,310 | 72,604
59,521
13,083 | • | | | | Under 0.003 gage | 48,734
5,827
110,811
92,618
70,300
22,318 | 49,584
6,432
105,004
82,133
61,823
20,310
2,320,740 | 72,604
59,521
13,083 | | | | | Under 0.003 gage | 48,734
5,827
110,811
92,618
70,300
22,318 | 49,584
6,432
105,004
82,133
61,823
20,310
2,320,740
226,745 | 72,604
59,521
13,083 | | | | | Under 0.003 gage | 48,734
5,827
110,811
92,618
70,300
22,318 | 49,584
6,432
105,004
82,133
61,823
20,310
2,320,740
226,745
2,547,485
323,464 | 72,604
59,521
13,083
401,090 | : | | | | Under 0.003 gage 0.003 gage and over | 48,734
5,827
110,811
92,618
70,300
22,318 | 49,584
6,432
105,004
82,133
61,823
20,310
2,320,740
226,745
2,547,485
323,464
42,503 | 72,604
59,521
13,083
401,090 | | | | | Under 0.003 gage 0.003 gage and over | 48,734
5,827
110,811
92,618
70,300
22,318 | 49,584
6,432
105,004
82,133
61,823
20,310
2,320,740
226,745
2,547,485
323,464
42,503
1,100,493 | 72,604
59,521
13,083
401,090 | ٠ | | | | Under 0.003 gage | 48,734
5,827
110,811
92,618
70,300
22,318 | 49,584
6,432
105,004
82,133
61,823
20,310
2,320,740
226,745
2,547,485
323,464
42,503
1,100,493
313,164 | 72,604
59,521
13,083
401,090 | | | | | Under 0.003 gage 0.003 gage and over | 48,734
5,827
110,811
92,618
70,300
22,318 | 49,584
6,432
105,004
82,133
61,823
20,310
2,320,740
226,745
2,547,485
323,464
42,503
1,100,493 | 72,604
59,521
13,083
401,090 | | | | | Under 0.003 gage | 48,734
5,827
110,811
92,618
70,300
22,318 | 49,584
6,432
105,004
82,133
61,823
20,310
2,320,740
226,745
2,547,485
323,464
42,503
1,100,493
313,164
275,768 | 72,604
59,521
13,083
401,090 | | | | | Under 0.003 gage 0.003 gage and over | 48,734
5,827
110,811
92,618
70,300
22,318 | 49,584
6,432
105,004
82,133
61,823
20,310
2,320,740
226,745
2,547,485
323,464
42,503
1,100,493
313,164 | 72,604
59,521
13,083
401,090 | | | | ${\it TABLE~15A.--Plastics~and~resin~materials:~U.S.~production~and~sales, by~chemical~classes~and~uses,~1966--Continued}$ | W-1 | David 1 | | Sales | | |--|---------------|----------------------|------------------|----------------------------| | Kind and use | Production | Quantity | Value | Unit
value ¹ | | MINEDACON AGENTA DECENIA CONT. | | | | |
| THERMOPLASTIC RESINSContinued | 1,000 | 1,000 | | | | rotyolefin plastics materialsContinued | pounds, | pounds, | 4 000 | | | Polyethylene, density over 0.940: | dry
basis² | dry
basis² | 1,000
dollars | Per | | Production and sales | 6 910,343 | 830,640 | 145,967 | pound
\$0.18 | | Used by reporting companies in processing | | 60,244 | | Ψ0.10 | | Sales and use, total | | 890,884 | | ••• | | Injection molding | | 178,800 | | ••• | | Blow molding | | 346,864 | ••• | • • • | | Film and sheet | | 45,423 | ••• | ••• | | Extrusion coating on paper and other substrates | | 6,715 | ••• | ••• | | Wire and cable Pipe and conduit | ••• | 30,193 | ••• | ••• | | Other extruded products | ••• | 39,059 | ••• | • • • | | All other domestic uses | | 22,384 | ••• | ••• | | Export sales | | 139,068
82,378 | ••• | ••• | | Polypropylene: | ••• | 02,570 | ••• | ••• | | Production and sales | 553,533 | 372,475 | 84,211 | .23 | | Used by reporting companies in processing | | 172,009 | ••• | ••• | | Sales and use, total | | 544,484 | | ••• | | Molding | ••• | 238,568 | | • • • | | Extrusion | | 232,373 | | • • • | | All other uses (including export) | | 73,543 | ••• | ••• | | Styrene type plastics materials, totalABS and SAN resins7: | 2,384,519 | 2,172,345 | 430,194 | .15 | | Production and sales | 361,645 | ⁸ 362,446 | 119,002 | .33 | | Sales and use, total | 301,043 | 362,446 | 119,002 | ••• | | Molding | | 159,988 | | ••• | | Extrusion | | 111,132 | | ••• | | All other domestic uses | | 50,380 | | ••• | | Export sales | | 40,946 | ••• | • • • | | Styrene and styrene copolymer resins: | | | | | | Production and sales | 2,022,874 | 1,809,899 | 311,192 | .17 | | Used by reporting companies in processing Sales and use, total | ••• | 245,676 | ••• | ••• | | Molding | ••• | 2,055,575 | ••• | ••• | | Textile and paper treating and coating | | 1,024,729 | ••• | ••• | | Emulsion paint | | 42,332 | ••• | ••• | | Extrusion | | 245,022 | | ••• | | All other domestic uses | | 446,047 | ••• | ••• | | Export sales | ••• | 90,108 | | ••• | | Vinyl resins (resin content): Polyvinyl chloride and copolymers: | · | : | | | | Production and sales, total | 2,163,561 | 1,816,457 | 301,743 | .17 | | Suspension homopolymers | 1,224,286 | | ••• | ••• | | Suspension copolymers | 657,768 | | ••• | ••• | | Dispersions (paste) | 281,507 | | ••• | ••• | | Used by reporting companies in processing | ••• | 309,984 | ••• | ••• | | Sales and use, total | ••• | 2,126,441 | ••• | • • • | | Flooring: | ••• | 438,882 | ••• | ••• | | Calendered | | 296,800 | | | | Coated | | 62,202 | ••• | ••• | | Paper and textile uses: | | 02,232 | | ••• | | Coating | ••• | 117,217 | ••• | ••• | | Other | ••• | 15,576 | ••• | ••• | | Protective coatings and adhesives | | 54,418 | ••• | ••• | | Wire and cable | ••• | 225,967 | ••• | ••• | | | ••• | 65,956 | ••• | ••• | | Extruded film and sheet | | | | | | Other extruded products | ••• | 281,558 | ••• | ••• | | Other extruded productsSound records | ••• | 114,396 | • • *• | ••• | | Other extruded productsSound records Injection and blow molding | ••• | 114,396
64,608 | | ••• | | Other extruded productsSound records | ••• | 114,396 | • • *• | ••• | | TABLE 15A,Plastics and resin materials: | U.S. production and sales, | by chemical classes | |---|----------------------------|---------------------| | and uses 19 | 66Continued | | | 4,22 1500 | | | | | | |--|---|---|------------------------------------|----------------------------|--| | | | Sales | | | | | Kind and use | Production | Quantity | Value | Unit
value ¹ | | | THERMOPLASTIC RESINS——Continued Vinyl resins (resin content)—Continued Polyvinyl acetate: Production and sales, total——————————————————————————————————— | 1,000
pounds,
dry
basis ²
335,961
238,442
97,519

38,337 | 1,000 pounds, dry basis* 231,429 73,992 305,421 110,090 105,444 25,702 10,205 51,719 2,261 8 37,926 8 129,424 | 1,000 dollars 66,354 16,438 67,784 | Per pound \$0.29 | | | All other thermoplastic resins ¹¹ | 492,239 | 380,891 | 274,551 | .72 | | 1 Calculated from rounded figures. ² For the purpose of this report, "dry basis" is defined as the total weight of the material, including resin, plasticizers, fillers, extenders, colors and stabilizers, and excluding water, solvents, and other liquid diluents. The term "polyester resins" includes unsaturated alkyds copolymerized with a monomer such as styrene, and polyallyl resins such as diallyl phthalate and allyl diglycol carbonate. Includes data for acetone-formaldehyde resins, styrene-alkyd polyesters, toluenesulfonamide resins, silicone resins, and other thermosetting resins which were produced in small quantities. Also included are saturated poly- esters for urethanes. Represents production of polyethylene by the high pressure process and of ethylene copolymers. 6 Represents production of polyethylene by the low pressure process. 7 ABS resins are polymers of acrylonitrile, styrene, and butadiene. SAN resins are polymers of styrene and acrylonitrile. ⁸ Data for intra-company consumption may not be shown separately, and are included with sales at an estimated unit value. 9 Includes straight polystyrene, 848,429 thousand pounds; rubber modified polystyrene, 724,413 thousand pounds; styrene-butadiene copolymers, 306,603 thousand pounds; and all other, 143,429 thousand pounds. 10 Includes data for polyvinyl butyral, polyvinyl formal, and polyvinylidene chloride. 11 Includes data for acrylic, fluorocarbon, polycarbonate, polycaymethylene, polyterpene, and other thermoplastic resins. also some adjusted figures supplied by the original reporting companies. Consequently, many of the figures given in table 15A are revised from those shown in the Commission's monthly release dated April 11, 1967, which contained year-end cumulative monthly totals for 1966. The end use breakdowns used were developed with the advice of representatives of the plastics industry, and the data reported are the producers' determination of the markets of their materials. Total U.S. production of synthetic plastics and resin materials in 1966 amounted to 13,585 million pounds, or 16.3 percent more than the 11,685 million pounds reported for 1965. Sales in 1966 were 11,472 million pounds, valued at \$2,740 million. Production of benzenoid plastics and resin materials in 1966 amounted to 5,067 million pounds and that of nonbenzenoid materials to 8,518 million pounds. These figures compare with the benzenoid production in 1965 of 4,453 million pounds, and nonbenzenoid production of 7,232 million pounds. The 1966 output of all types of thermosetting resins totaled 3,647 million pounds, compared with 3,237 million pounds in 1965. In 1966 phenolic and other tar acid resins were produced in the largest quantity in the thermosetting group, and exceeded one billion pounds for the first time. Output of phenolic resins amounted to 1,047 million pounds in 1966, compared with 922 million pounds in 1965. Production of urea and melamine resins in 1966 was 718 million pounds, and that of alkyd resins was 666 million pounds. Other thermosetting resins produced in significant amounts in 1966 were polyester resins (470 million pounds); coumarone-indene resins (334 million pounds); epoxy resins (140 million pounds); and polyurethane resins (72 million pounds). The total output of thermoplastic resins in 1966 amounted to 9,938 million pounds, compared with 8,448 million pounds in 1965. In 1966, as in previous years, polyethylene, polystyrene, and polyvinyl chloride were the resins produced in the largest volume. The output of highpressure polyethylene in 1966 was 2,648 million pounds, which corresponds to the output of 2,26 million pounds of low-density polyethylene reported for 1965. Production of low-pressure polyethylene in 1966 was 910 million pounds, corresponding to the 784 million pounds of high-density polyethylene produced in 1965. The total production of styrene-type plastics materials in 1966 was 2,385 million pounds, compared with 2,033 million pounds in 1965. These totals include the ABS and SAN types of resins, for which data are shown for the first time for 1966. In 1966, output of ABS and SAN resins combined amounted to 362 million pounds. Sales were 362 million pounds, valued at \$119 million. Output of other styrene-type resins in 1966, including straight polystyrene, rubbermodified polystyrene, styrene-butadiene copolymer and others, amounted to 2,023 million pounds. Polyvinyl chloride resin production in 1966 amounted to 2,164 million pounds, compared with 1,837 million pounds in 1965. Polyvinyl alcohol production in 1966 was 38.3 million pounds, and that of other vinyl resins including polyvinyl butyral, polyvinyl formal, and polyvinylidene chloride amounted to 132 million pounds. All data on vinyl resins are reported on a resin content basis. ## Rubber-Processing Chemicals Rubber-processing chemicals are organic compounds that are added to natural and synthetic rubbers to give them qualities necessary for their conversion into finished rubber goods. In this report, statistics are given for cyclic and acyclic compounds, by use--such as accelerators, antioxidants, blowing agents, and peptizers. Statistics on production and sales of rubber-processing chemicals in 1966 are given in table 16A.8 TABLE 16A. -- Rubber-processing chemicals: U.S. production and sales, 1966 [Listed below are all rubber-processing chemicals for which any reported data on production or sales may be published. (Leaders are used where the reported data are accepted in
confidence and may not be published or where no data were reported.) Table 16B in pt. III lists separately all rubber-processing chemicals for which data on production or sales were reported and identifies the manufacturer of each] | | · | | | | | |---|----------------------------|---|-----------------------------|----------------------------|--| | Chemical | Production | Sales | | | | | | Troduction | Quantity | Value | Unit
value ¹ | | | Grand total | 1,000
pounds
283,335 | 1,000
pounds
209,285 | 1,000
dollars
138,203 | Per
pound
\$0.66 | | | RUBBER-PROCESSING CHEMICALS, CYCLIC | | | | - | | | Total | 241,248 | 182,790 | 123,581 | .68 | | | Accelerators, activators, and vulcanizing agents, total | 79,518 | 58,358 | 34,946 | .60 | | | Aldehyde-amine reaction products | 2,718 | 2,054 | 2,168 | 1.06 | | | Dithiocarbamic acid derivatives | | 144 | 269 | 1.87 | | | Thiazole derivatives, total | 65,064 | 45,120 | 23,890 | .53 | | | N-Cyclohexyl-2-benzothiazolesulfenamide | 6,563 | 4,396 | 2,738 | .62 | | | 2,2'-Dithiobis(benzothiazole)2-Mercaptobenzothiazole | 23,263 | 10,947 | 5,487 | .50 | | | All other | 6,326 | • | ••• | | | | All other accelerators | 28,912 | 29,777 | 15,665 | .53 | | | MI Owici acception Services | 11,736 | 11,040 | 8,619 | .78 | | | Antioxidants, antiozonants, and stabilizers, total | 148,668 | 113,040 | 74 140 | | | | Amino compounds, total | 115,794 | 89,126 | 78,489 | .69 | | | Substituted p-phenylenediamines, total | 49,495 | 37,220 | 60,381 | .68 | | | N, N'-Diphenyl-p-phenylenediamine | 2,283 | 2,284 | 32,790 | .88 | | | All other | 47,212 | 34,936 | 2,311 | 1.01 | | | Octyldiphenylamine | 2.752 | 2,408 | 30,479 | .87 | | | N-Phenyl-2-naphthylamine | 5,313 | | 1,298 | .54 | | | All other amino antioxidants, antiozonants, and | -, | ••• | ••• | ••• | | | stabilizers | 58,234 | 49,498 | 26,293 | .53 | | | Phenolic and phosphite antioxidants and stabilizers, | , I | , | 20,275 | رر. | | | | 32,874 | 23,914 | 18,108 | .76 | | | Polyphenolics (including bisphenols) | 6,555 | 6,535 | 8,563 | 1.31 | | | Phenol, alkylated | 12,406 | 6,286 | 3,488 | .55 | | | All other phenolic and phosphite antioxidants and | · | ŕ | 2,400 | | | | stabilizers | 13,913 | 11,093 | 6,057 | .55 | | | Blowing agents | 3,681 | 3,304 | 4,874 | 1.48 | | | Peptizers | 5,172 | 4,913 | 3,160 | .64 | | | | - / | 7,710 | ٥٠, ١٥٥ | .04 | | | All other cyclic rubber-processing chemicals, total | 4,209 | 3,175 | 2,112 | .67 | | | N-Nitrosodiphenylamine | 2,773 | | ••• | | | | All other2 | 1,436 | ••• | • • • • | ••• | | | • | | | i | | | $^{^{8}}$ See also table 16B, pt. III, which lists these products and identifies the manufacturer. | TABLE 16A Rubber-processing chemicals | · U.S. | production and sales. | 1966 Continued | |---------------------------------------|--------|-----------------------|----------------| |---------------------------------------|--------|-----------------------|----------------| | | | Sales | | | | |---|--|---|---|---|--| | Chemical | Production | Quantity | Value | Unit
value ¹ | | | RUBBER-PROCESSING CHEMICALS, ACYCLIC | 1,000
pounds
42,087 | 1,000
pounds
26 , 495 | 1,000
dollars
14,622 | Per
pound
\$0.55 | | | Accelerators, activators, and vulcanizing agents, total—Dithiocarbamic acid derivatives, total—Dibutyldithiocarbamic acid, zinc salt—Diethyldithiocarbamic acid, zinc salt—Dimethyldithiocarbamic acid, zinc salt—All other—Thiurams, total—Bis(diethylthiocarbamoyl) disulfide—Bis(dimethylthiocarbamoyl) disulfide—Bis(dimethylthiocarbamoyl) sulfide—All other—All other accelerators, activators, and vulcanizing agents— | 19,925
7,485
1,741
1,513
1,736
2,495
11,994

6,731
1,338
3,925 | 14,463
6,082
1,419
1,115
1,461
2,087
8,116
1,087
5,335

1,694 | 8,919 4,634 1,367 653 682 1,932 3,975 501 2,258 1,216 | .62
.76
.96
.59
.47
.93
.49
.46
.42 | | | Dodecyl mercaptans Dimethyldithiocarbamic acid, sodium salt All other acyclic rubber-processing chemicals ⁵ | 12,658
5,663
3,841 | 7,860
2,351
1,821 | 3,629
1,080
994 | .46
.46 | | ¹ Calculated from rounded figures. ² Includes tackifiers and physical-property improvers. Includes blowing agents, polymerization regulators, shortstops, and conditioning and lubricating agents. Production of rubber-processing chemicals as a group in 1966 amounted to 283 million pounds, or 12.5 percent more than the 252 million pounds reported for 1965. The larger total output of rubber-processing chemicals in 1966 is attributable principally to increased production of amino antioxidants and thiazole accelerators. Sales of rubber-processing chemicals in 1966 amounted to 209 million pounds, valued at \$138 million, compared with 194 million pounds, valued at \$123 million, in 1965. The output of cyclic rubber-processing chemicals in 1966 amounted to 241 million pounds, or 14.1 percent more than the 211 million pounds reported for 1965. Sales in 1966 were 183 million pounds, valued at \$124 million, compared with 166 million pounds, valued at \$109 million, in 1965. Of the total output of cyclic rubber-processing chemicals in 1966, accelerators accounted for 33.0 percent and antioxidants for 61.6 percent. Production of amino and phenolic and phosphite antioxidants, which amounted to 148.7 million pounds in 1966, included 115.8 million pounds of amino compounds and 32.9 million pounds of phenolic and phosphite compounds. Sales of amino antioxidants in 1966 were 89.1 million pounds, valued at \$60.4 million; sales of phenolic and phosphite antioxidants were 23.9 million pounds, valued at \$18.1 million. Production of acyclic rubber-processing chemicals in 1966 amounted to 42.1 million pounds an increase of 3.8 percent over the 40.5 million pounds reported for 1965. Sales in 1966 totaled 26.5 million pounds, valued at \$14.6 million, compared with 27.5 million pounds, valued at \$14.2 million, in 1965. Accelerators, principally dithiocarbamic acid derivatives and tetramethylthiuram sulfides, accounted for 47.3 percent of the output of acyclic rubber-processing chemicals for 1966. Dodecyl mercaptans accounted for 30.1 percent. Blowing agents, peptizers, modifiers, shortstops, and lubricating and conditioning agents accounted for the remainder of the output of acyclic compounds. ³ Data on dithiocarbamates included in this table are for materials used chiefly in the processing of natural and synthetic rubbers. Data on dithiocarbamates which are used chiefly as fungicides are reported in table 20A, "Pesticides and Related Products." ⁴ Includes data for small amounts of tetramethylthiuram sulfides for uses other than in the processing of natural and synthetic rubbers. # Elastomers (Synthetic Rubbers) Elastomers are a group of high polymeric materials which have properties similar to those found in natural rubber. The term "elastomers", as used in this report, is specifically defined as substances in bale, crumb, powder, latex, and other crude forms, which can be vulcanized or similarly processed into materials that can be stretched to at least twice their original length and, after having been so stretched and the stress removed, will return with force to approximately their original length. Statistics on production and sales of elastomers are given in table 17A.9 The total domestic output of all types of synthetic elastomers in 1966 was 3, 929 million pounds, compared with 3,592 million pounds, reported for 1965. Sales of these elastomers amounted to 3,411 million pounds, valued at \$918 million in 1966, compared with 3,041 million pounds, valued at \$843 million, in 1965. Production of cyclic elastomers in 1966 amounted to 2,482 million pounds, compared with 2,300 million pounds in 1965. Of the total U.S. production of cyclic elastomers in 1966, the polybutadiene-styrene type (including vinylpyridine) accounted for 2,470 million pounds, and the polyurethane type for 12 million pounds. Sales of cyclic elastomers in 1966 were 2, 108 million pounds, valued at \$463 million, compared with 1,898 million pounds, valued at \$443 million, in the previous year. TABLE 17A. -- Elastomers (synthetic rubbers): U.S. production and sales, 1966 [Listed below are all elastomers (synthetic rubbers) for which reported data on production or sales may be published. (Leaders are used where the reported data are accepted in confidence and may not be published or where no data were reported.) Table 17B in pt. III lists all elastomers for which data on production or sales were reported and identifies the manufacturer of each | Product | Production | Sales | | | | |--|-------------------------------|---------------------------------|-----------------------------|-------------------------|--| | | | Quantity | Value | Unit value ² | | | Grand total | 1,000
pounds
3,929,187 | 1,000
pounds
3,411,258 | 1,000
dollars
918,018 | Per
pound
\$0.27 | | | ELASTOMERS, CYCLIC | | | | | | | Total | 2,482,375 | 2,108,089 | 463,222 | .22 | | | Polybutadiene-styrene type (S-type)
³ | 2,448,092
21,907
12,376 | 4 2,086,856
10,955
10,278 | 446,413
6,428
10,381 | .21
.59
1.01 | | | ELASTOMERS, ACYCLIC | | | | | | | Total | 1,446,812 | 1,303,169 | 454,796 | .35 | | | Polybutadiene-acrylonitrile type (N-type) | 157,122
230,685
13,392 | 131,942

10,751 | 58,869
39,307 | 3.66 | | | Stereo elastomers, total | 612,689 | 506,148 | 107,362 | .21 | | | Stereo polybutadieneAll other stereo elastomers | 416,922
195,767 | 342,903
163,245 | 67,476
39,886 | .20
.24 | | | All other acyclic elastomers ⁵ | 432,924 | 654,328 | 249,258 | .38 | | ¹ The term "'elastomers" is defined as substances in bale, crumb, powder, latex, and other crude forms which can be vulcanized or similarly processed into materials that can be stretched at 68° F. to at least twice their original length and, after having been so stretched and the stress removed, will return with force to approximately their original length. Note .-- Statistics on the production of S-type, N-type, Butyl, neoprene, and stereo elastomers were compiled in cooperation with the U.S. Bureau of the Census. Calculated from rounded figures. ³ Elastomer-content basis. Partly estimated. Includes data for polyacrylate, polyalkalene sulfide, polychloroprene, polyisobutylene elastomers, and for sales of polyisobutylene-isoprene elastomers. $^{^{9}}$ See also table 17B, pt. III, which lists these products and identifies the manufacturers. PLASTICIZERS 45 The U.S. production of acyclic elastomers in 1966 was 1,447 million pounds, compared with 1,292 million pounds in 1965. Sales of these products in 1966 amounted to 1,303 million pounds, valued at \$455 million. Of the 1966 production of acyclic elastomers, stereo elastomers were produced in the largest amount (613 million pounds), followed by the polyisobutylene-isoprene type (231 million pounds), and the polybutadiene-acrylonitrile type (N-type) (157 million pounds). The stereo elastomers are composed principally of polybutadiene, polyisoprene, and ethylene-propylene rubber. Production of silicone elastomers in 1966 was 13.4 million pounds, and of other acyclic elastomers was 433 million pounds. This latter figure includes data for polyacrylate, polyalkalene sulfide, polychloroprene, polyisobutylene, and other types of elastomers of lesser importance. #### **Plasticizers** Plasticizers are organic chemicals that are added to synthetic plastics and resin materials to (1) improve workability during fabrication, (2) extend or modify the natural properties of these resins, or (3) develop new improved properties not present in the original resins. Plasticizers reduce the viscosity of the resins and make it easier to shape and form them at high temperatures and pressures. They also impart flexibility and other desirable properties to the finished product. Statistics on production and sales of plasticizers are given in table 18A.¹⁰ Total U.S. production of plasticizers in 1966 amounted to 1,209 million pounds--representing an increase of 12.7 percent over the output of 1,073 million pounds reported for 1965. Sales in 1966 of the plasticizers covered by this report amounted to 1,156 million pounds, valued at \$246 million, compared with 1,022 million pounds, valued at \$214 million, in 1965--increases of 13.1 percent in quantity and 14.7 percent in value. TABLE 18A.--Plasticizers: U.S. production and sales, 1966 [Listed below are all plasticizers for which reported data may be published. (Leaders are used where the reported data are accepted in confidence and may not be published or where no data were reported.) Table 18B in pt. III lists all plasticizers for which data on production or sales were reported and identifies the manufacturer of each! | Chemical | Production | Sales | | | | |---|------------------------------|------------------------------|-----------------------------|----------------------------|--| | Chemical | 110440 01011 | Quantity | Value | Unit
value ² | | | Grand total | 1,000
pounds
1,208,991 | 1,000
pounds
1,155,686 | 1,000
dollars
246,001 | Per
pound
\$0.21 | | | PLASTICIZERS, CYCLIC | | | | | | | Total | 897,249 | 873,109 | 156,967 | .18 | | | Phosphoric acid esters: Cresyl diphenyl phosphate Tricresyl phosphate Triphenyl phosphate | 19,956
39,812
8,847 | 20,147
39,147 | 5,309
11,909 | .26
.30 | | | Phthalic anhydride esters, total | 754,473 | 742,433 | 116,826 | .16 | | | phthalate) | 17,222
20,236 | 17,544
19,307 | 2,436
3,675 | .14
.19 | | | Dicyclohexyl phthalate Diethyl phthalate Dihexyl phthalate | 6,739
21,451
987 | 16,220
716 | 2,885
110 | .18 | | | Diisodecyl phthalate | 103,311
13,809 | 107,500
12,340 | 15,800
2,537
847 | .15
.21
.20 | | | Dimethyl phthalate Dioctyl phthalates, total ³ Di(2-ethylhexyl) phthalate | 4,433
376,800
253,000 | 4,247
375,800
253,000 | 54,111
35,420 | .14
.14 | | | Diiso-octyl phthalate Mixed dioctyl phthalates (including dicapryl | 103,000 | 103,000 | 15,450 | .15 | | | phthalate and dioctyl isophthalates)Di-tridecyl phthalate | 20,800
19,379
4,800 | 19,800
19,850
4,334 | 3,241
4,363
1,736 | .16
.22
.40 | | | n-Octyl n-decyl phthalateAll other phthalic anhydride esters | 35,036
130,270 | 34,812
129,763 | 6,090
22,236 | .17
.17 | | | Trimellitic acid estersAll other cyclic plasticizers ⁴ | 2,536
71,625 | 2,620
68,762 | 1,080
21,843 | .41
.32 | | ¹⁰Sec also table 18B, pt. III, which lists these products and identifies the manufacturers. TABLE 18A.--Plasticizers: U.S. production and sales, 1966--Continued | | Production | Sales | | | | |--|--------------|----------|---------|----------------------------|--| | Chemical | Froduction - | Quantity | Value | Unit
value ² | | | PLASTICIZERS, ACYCLIC | 1.000 | 1,000 | 1,000 | Per | | | ŕ | pounds | pounds | dollars | pound | | | Total | 311,742 | 282,577 | 89,034 | \$0.32 | | | Adipic acid esters, total | 51,797 | 50,485 | 13,411 | .27 | | | Di(2-(2-butoxyethoxy)ethyl) adipate | 1,413 | 1,322 | 622 | .47 | | | Di(2-ethylhexyl) adipate | 22,278 | 20,647 | 4,875 | .24 | | | Disodecyl adipate | 6,428 | 6,669 | 1,788 | .27 | | | n-Octyl n-decyl adipate | 10,833 | 10,930 | 2,665 | •24 | | | All other | 10,845 | 10,917 | 3,461 | .32 | | | Azelaic acid esters | 15,664 | 18,129 | 5,117 | .28 | | | Complex linear polyesters and polymeric plasticizers | 47,893 | 45,278 | 17,773 | .39 | | | Epoxidized esters, total | 86,635 | 81,630 | 22,187 | .27 | | | Fooridized sova oils | 59,178 | 55,122 | 15,004 | .27 | | | 2-Ethylhexyl epoxytallates | | 11,056 | 2,783 | .25 | | | Octvl epoxytallates | 11,511 | 11,463 | 2,929 | .26 | | | All other | 15,946 | 3,989 | 1,471 | .37 | | | Glycerol monoricinoleate | 441 | 379 | 131 | .35 | | | Isopropyl myristate | 1,161 | 1,125 | 541 | .48 | | | Oleic acid esters: | | | | | | | Butyl oleate | 3,172 | 1,847 | 401 | .22 | | | Glycerol trioleate (Triolein) | 2,785 | 2,461 | 537 | .22 | | | Methyl oleate | 2,973 | 2,096 | 417 | .20 | | | Propyl oleates (including normal and iso) | 1,500 | 1,362 | 269 | .20 | | | Phosphoric acid esters | 13,566 | 10,962 | 4,389 | •40 | | | Sebacic acid esters: Dibutyl sebacate | 5,425 | 3 604 | 2 100 | •59 | | | Didutyl sebacate | | 3,604 | 2,109 | _ | | | Di(2-ethylhexyl) sebacate | 7,189 | 6,895 | 3,520 | .51 | | | Stearic acid esters, total | 7,237 | 7,043 | 1,730 | .25 | | | n-Butyl stearate | 4,192 | 4,118 | 975 | .24 | | | All other | 3,045 | 2,925 | 755 | .26 | | | Triethylene glycol di(caprylate-caprate) | 1,763 | 1,644 | 569 | .35 | | | All other acyclic plasticizers6 | 62,541 | 47,637 | 15,933 | .33 | | ¹ Does not include data for clearly defined extenders or secondary plasticizers. ² Calculated from rounded figures. Note.--The total production and sales statistics are included in this report for some items that are not used exclusively as plasticizers. Production of cyclic plasticizers in 1966, which consisted chiefly of the esters of phthalic anhydride and phosphoric acid, amounted to 897 million pounds, compared with 799 million pounds in 1965. Sales of cyclic plasticizers in 1966 amounted to 873 million pounds, valued at \$157 million, compared with 765 million pounds, valued at \$133 million, in the previous year. Production of acyclic plasticizers in 1966 amounted to 312 million pounds, compared with 274 million pounds in 1965. Sales of acyclic plasticizers in 1966 amounted to 283 million pounds, valued at \$89 million, compared with 257 million pounds, valued at \$81 million, in 1965. Production of complex linear polyesters in 1966 amounted to 48 million pounds, and that of epoxidized esters, to 87 million pounds. Other products included in the acyclic class are the esters of adipic, azelaic, oleic, sebacic, and stearic acids. ³ Statistics for the dioctyl phthalates are partly estimated because part of the data which were published in the preliminary report were erroneously reported. ⁴ Includes data for alkylated naphthalene, glycol dibenzoates, hydrogenated terphenyls, phosphate esters (including sales of triphenyl phosphate), toluenesulfonamides, tetrahydrofurfuryl oleate, and other cyclic plasticizers. Adipic acid polyesters account for most of the production of complex linear polyesters and polymeric plasticizers. ⁶ Includes data for citric and acetylcitric, lauric, myristic, oleic, palmitic, pelargonic, ricinoleic, sebacic, and tartaric acid esters, glycerol and glycol esters, and other acyclic plasticizers. ## Surface-Active Agents The surface-active agents included in this report are organic chemicals that reduce the surface tension of water or other solvents and are used chiefly as detergents, dispersing agents, emulsifiers, foaming agents, or wetting agents in either aqueous or nonaqueous systems. Waxes
and products used chiefly as plasticizers are excluded. Surface-active agents are produced from natural fats and oils; from silvichemicals such as lignin, rosin, and tall oil; and from chemical intermediates derived from coal-tar and petroleum. A major part of the output of the bulk chemicals shown in this report is consumed in the form of packaged soaps and detergents for house-hold and industrial use. The remainder is used in the processing of textiles and leather, in ore flotation and oil drilling operations, and in the manufacture of agricultural sprays, cosmetics, elastomers, foods, lubricants, paints, pharmaceuticals, and many other products. Table 19A¹¹ shows statistics for production and sales of surface-active agents grouped by ionic class and by chemical class and subclass. All quantities are reported in terms of 100-percent organic surface-active ingredient and thus exclude all inorganic salts, water, and other diluents. TABLE 19A. -- Surface-active agents: U.S. production and sales, 1966 [Listed below are all surface-active agents for which reported data on production or sales may be published. (Leaders are used where the reported data are accepted in confidence and may not be published or where no data were reported.) Table 19B in pt. III lists all surface-active agents for which data on production or sales were reported and identifies the manufacturer of each] | | | Sales ² | | | | |--|------------------------------|------------------------------|-----------------------------|----------------------------|--| | Chemical | Production ¹ | Quantity ¹ | Value | Unit
value ³ | | | Grand total | 1,000
pounds
3,321,317 | 1,000
pounds
1,766,053 | 1,000
dollars
314,913 | Per
pound
\$0.18 | | | | | | | | | | Benzenoid ⁴ | 943,680 | 449,685 | 81,468 | .18 | | | Nonbenzenoid ⁵ | 2,377,637 | 1,316,368 | 233,445 | .18 | | | Amphoteric Surface-Active Agents | 5,052 | 4,852 | 3,225 | .6 | | | Anionic Surface-Active Agents | | | | | | | Total | 2,468,729 | 1,111,517 | 141,424 | .12 | | | Carboxylic acids (and salts thereof), total | 962,222 | | | | | | Amine salts of fatty, rosin, and tall oil acids | 1,236 | 502 | 326 | | | | Carboxylic acids having amide or ester linkages, total- | 16,841 | 2,678 | 1,283 | .4 | | | N-Lauroylsarcosine, sodium salt | | 901 | 605 | .6 | | | All other | 16,841 | 1,777 | 678 | .3 | | | Potassium and sodium salts of fatty, rosin, and tall | 10,011 | -, | 0,0 | • • • | | | oil acids, total | 944,145 | | | | | | Coconut oil acids, potassium and sodium salts, total | 106,568 | 3,723 | 955 | .2 | | | Potassium salt | 14,138 | | | | | | Sodium salt | 92,430 | | | • • • • | | | Corn oil acids, potassium and sodium salts | 617 | 617 | 102 | .1 | | | Oleic acid, potassium salt | 3,847 | 337 | 62 | .1 | | | Oleic acid, sodium salt | 2,176 | 1,130 | 253 | .2 | | | Stearic acid, potassium and sodium salts | 2,258 | 918 | 324 | .3 | | | Tall oil acids, potassium and sodium salts, total | 28,635 | 13,796 | 2,071 | .1 | | | Potassium salt | 15,597 | ' | | | | | Sodium salt | 13,038 | | | | | | Tallow acids, sodium salt | 493,847 | 33,361 | 4,768 | .1 | | | All other | 306,197 | | | ••• | | | Phosphoric and polyphosphoric acid esters (and salts | | | | | | | thereof), total | 12,956 | 8,796 | 4,680 | .5 | | | Alcohols and phenols, ethoxylated and phosphated, total- | 7,866 | 5,227 | 2,479 | .4 | | | Mixed linear alcohols, ethoxylated and phosphated | 154 | ••• | ••• | ••• | | | Nonylphenol, ethoxylated and phosphated | 3,588 | 2,037 | 731 | • | | | All other | 4,124 | 3,190 | 1,748 | • 5 | | | Alcohols, phosphated or polyphosphated, total | 5,090 | 3,569 | 2,201 | .6 | | | 2-Ethylhexyl phosphate, sodium salt | 107 | 111 | 27 | .2 | | | All other | 4,983 | 3,458 | 2,174 | • | | $^{^{11}}$ See also table 19B, pt. III, which lists these products and identifies the manufacturers. TABLE 19A. -- Surface-active agents: U.S. production and sales, 1966 -- Continued | m . l . l | | Sales ² | | | | |---|-------------------------|-----------------------|------------------|----------------------------|--| | Chemical | Production ¹ | Quantity ¹ | Value | Unit
value ³ | | | | | | | | | | Anionic Surface-Active AgentsContinued | 1,000 | 1,000 | 1,000 | Per | | | Sulfonic acids (and salts thereof), total | pounds | pounds | dollars | pound | | | Alkylbenzenesulfonates, total | 596,416 | 670,985 | 60,025 | \$0.0 | | | Dodecylbenzenesulfonates, total | 506,544 | 137,936
132,873 | 22,560
21,496 | .1 | | | Dodecylbenzenesulfonic acid | 92,142 | 31,868 | 4,500 | .1 | | | Dodecylbenzenesulfonic acid, calcium salt | 11,287 | 6,888 | 2,610 | .3 | | | Dodecylbenzenesulfonic acid, isopropanolamine salt | 355 | | ••• | • • • | | | Dodecylbenzenesulfonic acid, isopropylamine salt | 3,780 | 0, (2) | 11 56 | ••• | | | Dodecylbenzenesulfonic acid, sodium salt Dodecylbenzenesulfonic acid, triethanolamine salt | 391,921
4,124 | 84,634
4,317 | 11,764
1,066 | .] | | | All other | 2,935 | 5,166 | 1,556 | .2 | | | Other alkylbenzenesulfonates, total | 89,872 | 5,063 | 1,064 | .2 | | | Tridecylbenzenesulfonic acid | 387 | 387 | [*] 50 | .1 | | | Tridecylbenzenesulfonic acid, sodium salt | | 787 | 329 | .4 | | | All other | 89,485 | 3,889 | 685 | .] | | | Benzene-, cumene-, toluene-, and xylenesulfonates, total Xylenesulfonic acid, ammonium salt | 70,922 | 70,791 | 5,117 | .0 | | | Xylenesulfonic acid, sodium salt | 16,781
22,127 | 18,780
20,159 | 1,286
1,807 | .0 | | | All other | 32,014 | 31,852 | 2,024 | .0 | | | Ligninsulfonates, total | 441,537 | 429,550 | 15,719 | | | | Ligninsulfonic acid, calcium salt | 284,018 | 272,933 | 7,109 | .0 | | | Ligninsulfonic acid, sodium salt | 54,308 | 53,406 | 4,097 | .(| | | All other | 103,211 | 103,211 | 4,513 | .(| | | Butylnaphthalenesulfonic acid, sodium salt | 8,277
834 | 6,614 | 2,615 | •4 | | | All other | 7,443 | 6,614 | 2,615 | | | | Other sulfonic acids, total | ••• | 26,094 | 14,014 | .5 | | | N-Methyl-N-oleoyltaurine, sodium salt | 2,797 | 2,589 | 1,335 | .5 | | | Sulfosuccinamic acid derivatives | 1,714 | 1,579 | 857 | • - | | | Sulfosuccinic acid esters, totalSulfosuccinic acid, bis(2-ethylhexyl) ester, | 7,736 | 7,275 | 3,903 | • 5 | | | sodium salt | 5,373 | 4,926 | 2,721 | . : | | | All other | 2,363 | 2,349 | 1,182 | | | | All other sulfonic acids | | 14,651 | 7,919 | .5 | | | Sulfuric acid esters (and salts thereof): | | | | | | | Acids, amides, and esters, sulfated, total | 21,504 | 14,466 | 4,346 | • 3 | | | Coconut oil acids - ethanolamine condensate, sulfated, potassium salt | 28 | 28 | 29 | | | | Esters of sulfated oleic acid, total | 6,597 | 4,806 | 1,343 | 1.0 | | | Butyl oleate, sulfated, sodium salt | 3,432 | 1,772 | 401 | . 2 | | | Isopropyl oleate, sulfated, sodium salt | 357 | 355 | 133 | • . | | | Propyl oleate, sulfated, sodium salt | 512 | 489 | 153 | • : | | | All otherOleic acid, sulfated, disodium salt | 2,296 | 2,190 | 656 | • 2 | | | Tall oil, sulfated, sodium salt | 8,699
768 | 734 | 179 | | | | All other | 5,412 | 8,898 | 2,795 | | | | Alcohols and phenols, sulfated, total | ••• | 28,126 | 12,235 | | | | Dodecyl sulfate salts, total | 39,617 | | ••• | • • • | | | Dodecyl sulfate, magnesium salt | 239 | 225 | 69 | • : | | | Dodecyl sulfate, sodium salt | 14,862 | 11,117 | 5,129 | | | | Dodecyl sulfate, triethanolamine saltAll other | 8,493
16,023 | | ••• | ••• | | | 2-Ethylhexyl sulfate, sodium salt | 1,582 | ::: | ••• | • • • | | | Octadecyl sulfate, sodium salt | | 309 | 163 | ••• | | | Octyl sulfate, sodium salt | 172 | 185 | 76 | •4 | | | All other | 137 (60 | 16,290 | 6,798 | | | | Ethers, sulfated, total | 137,669 | 0 766 | *** | ••• | | | Dodecyl alcohol, ethoxylated and sulfated, ammonium | 9,601 | 8,166 | 1,911 | • 2 | | | saltDodecyl alcohol, ethoxylated and sulfated, sodium salt | 367 | 2 045 | *** | ••• | | | Mixed linear alcohols, ethoxylated and sulfated, | 2,718 | 2,065 | 723 | .3 | | | sodium salt | 4,310 | 4,531 | 670 | .] | | | All other | 120,673 | '," | ••• | • • | | TABLE 19A. -- Surface-active agents: U.S. production and sales, 1966--Continued | On and I | | Sales ² | | | |--|-------------------------|-----------------------|----------------------|----------------------------| | Chemical. | Production ¹ | Quantity ¹ | Value | Unit
value ³ | | Anionic Surface-Active AgentsContinued | | · | | | | | 1,000 | 1,000 | 1,000 | Per | | Sulfuric acid esters (and salts thereof) Continued | pounds
30,421 | pounds | dollars | pound | | Natural fats and oils, sulfated, totalCastor oil, sulfated, sodium salt | 6,504 | 19,520
3,954 | 3,824
1,175 | \$0.20
.30 | | Coconut oil, sulfated, sodium salt | 2,100 | 578 | 142 | .25 | | Cod oil, sulfated, sodium salt | 1,934 | 1,427 | 226 | .16 | | Neat's-foot oil, sulfated, sodium salt | 1,469 | 743 | 152 | .20 | | Peanut oil, sulfated, sodium saltRicebran oil, sulfated, sodium salt | 962
238 | ••• | ••• | ••• | | Soybean oil, sulfated, sodium salt | 247 | 138 | 46 | | | Sperm oil, sulfated, sodium salt | 5,963 | 3,535 | 654 | .18 | | Tallow, sulfated, sodium salt | 9,502 | 7,135 | 931 | .13 | | All other | 1,502 | 2,010 | 498 | .25 | | Other anionic surface-active agents ⁶ | 133,187 | 297,800 | 42,866 | . 14 | | Cationic Surface-Active Agents | | | | | | Total | 161,843 | 126,882 | 50,918 | .40 | | Amine oxides and oxygen-containing amines (except those | | | | | | having amide linkages), total | 38,518 | ••• | ••• | ••• | | 2-(8-Heptadecenyl)-1-(2-hydroxyethyl)-2-imidazoline | 685 | 630 | 257 | .41 | | 2-Heptadecyl-1-(2-hydroxyethyl)-2-imidazoline | 464 | 458 | 210 | .46 | | (Mixed alkyl)amine, ethoxylatedRosin amine, ethoxylated | 3,384
1,084 | ••• | ••• | ••• | | (Soybean oil alkyl)amine,
ethoxylated | 779 | 796 | 375 | | | (Tallow alkyl)amine, ethoxylated | 1,400 | 1,312 | 869 | .66 | | All other | 30,722 | | ••• | ••• | | Amines and amine oxides having amide linkages, total | 17,451 | 15,364 | 6,992 | .46 | | Carboxylic acid - diamine and polyamine condensates, | | · · · · · | | | | total | 9,067 | 8,759 | 3,029 | .35 | | Coconut oil acids - diethylenetriamine condensate | 302 | 75
202 | 45 | .60 | | Oleic acid - diethylenetriamine condensate All other | 8,765 | 8,482 | 62
2 , 922 | .34 | | Carboxylic acid - diamine and polyamine condensates, | ,,,,,, | , | 2,722 | | | ethoxylated, total | 7,046 | 5,337 | 3,607 | .68 | | Oleic acid - ethylenediamine condensate, mono- | , , , , , , | | | | | ethoxylatedStearic acid - ethylenediamine condensate, mono- | 4,579 | ••• | ••• | ••• | | ethoxylatedethoxylated | 2,286 | | | | | All other | 181 | 5,337 | 3,607 | .68 | | Other amines and amine oxides having amide linkages | 1,338 | 1,268 | 356 | .28 | | Amines, not containing oxygen (and salts thereof), total | 59,636 | | ••• | | | Amine salts | 2,135 | 1,936 | 697 | .36 | | Diamines and polyamines, total | 11,761 | 10,405 | 3,602 | .35 | | N-(Coconut oil alkyl)trimethylenediamine
N-(9-Octadecenyl)trimethylenediamine | 1,839
1,807 | 1,291
1,716 | 636
678 | .49 | | N-(Tallow alkyl) trimethylenediamine | 3,905 | 3,895 | 1,540 | .40 | | All other | 4,210 | 3,503 | 748 | .21 | | Primary monoamines, total | 32,252 | 26,083 | 8,292 | .32 | | (Coconut oil alkyl)amine | 1,910 | 1,203 | 657 | .55 | | Dodecylamine(Hydrogenated tallow alkyl)amine | 1,605 | 10 071 | 2 267 | | | 9-Octadecenylamine | 11,292 | 10,071
872 | 2,267
379 | .23 | | Octadecylamine | | 700 | 324 | .46 | | (Tallow alkyl) amine | 5,670 | 4,179 | 1,220 | .29 | | All other | 9,971 | 9,058 | 3,445 | .38 | | Secondary and tertiary monoamines, total | 13,488 | | ••• | ••• | | N, N-DimethyloctadecylamineAll other | 233
13,255 | 254 | 133 | | | | | | | | | Groups listed above for which separate sales data may not | | | | | ${\tt TABLE~19A. --} \textit{Surface-active agents: U.S. production and sales, 1966--Continued}$ | Quaternary ammonium salts having amide linkages | 000
dds
2,470
4,780
8,988
1,559
1,609
8,387
141
65
77
1,280
7,429
3,588
413 | 1,000
pounds
2,121
4,596
37,781
30,959
1,620
17,840
73 59 11,367 6,822 346 | 1,000
dollars
1,622
1,956
16,756
11,021
874
4,759

168
51
5,169
5,735 | Unit value ³ Per pound \$0.76 .43 .44 .36 .54 .27 2.30 | |--|---|--|---|--| | Oxygen-containing quaternary ammonium salts (except those having amide linkages) | ds 2,470 4,780 8,988 1,559 1,609 8,387 141 65 77 1,280 7,429 3,46 3,588 413 | 2,121 4,596 37,781 30,959 1,620 17,840 73 59 11,367 6,822 346 | doillars 1,622 1,956 16,756 11,021 874 4,759 168 51 5,169 | 90.76
\$0.76
.43
.44
.36
.54
.27 | | Oxygen-containing quaternary ammonium salts (except those having amide linkages)———————————————————————————————————— | ds 2,470 4,780 8,988 1,559 1,609 8,387 141 65 77 1,280 7,429 3,46 3,588 413 | 2,121 4,596 37,781 30,959 1,620 17,840 73 59 11,367 6,822 346 | doillars 1,622 1,956 16,756 11,021 874 4,759 168 51 5,169 | 90.76
\$0.76
.43
.44
.36
.54
.27 | | Quaternary ammonium salts having amide linkages | 2,470
4,780
8,988
1,559
1,609
8,387
141
65
77
1,280
7,429
346
3,588
413 | 2,121 4,596 37,781 30,959 1,620 17,840 73 59 11,367 6,822 346 | 1,622 1,956 16,756 11,021 874 4,759 168 51 5,169 | \$0.76
.43
.44
.36
.54
.27
.23
.86 | | Quaternary ammonium salts having amide linkages | 4,780
8,988
1,559
1,609
8,387
141
65
77
1,280
7,429
346
3,588
413 | 4,596 37,781 30,959 1,620 17,840 73 59 11,367 6,822 346 | 1,956 16,756 11,021 874 4,759 168 51 5,169 | .43
.34
.54
.27
.23
.23 | | Quaternary ammonium salts, not containing oxygen, total Acyclic, total | 8,988
1,559
1,609
8,387
141
65
77
1,280
7,429
3,46
3,588
413 | 37,781
30,959
1,620
17,840

73
59
11,367
6,822
346 | 16,756
11,021
874
4,759

168
51
5,169 | .44
.36
.54
.27 | | Acyclic, total——————————————————————————————————— | 1,559
1,609
8,387
141
65
77
1,280
7,429
346
3,588
413 | 30,959
1,620
17,840

73
59
11,367
6,822
346 | 11,021
874
4,759

168
51
5,169 | .36
.54
.27
2.30 | | Acyclic, total——————————————————————————————————— | 1,609
8,387
141
65
77
1,280
7,429
346
3,588
413 | 1,620
17,840

73
59
11,367
6,822
346 | 674
4,759

168
51
5,169 | .54
.27
2.30 | | Bis(hydrogenated tallow alkyl)dimethylammonium chloride | 8,387
141
65
77
1,280
7,429
346
3,588
413 | 17,840
73
59
11,367
6,822
346 | 4,759

168
51
5,169 | 2.30 | | chloride | 141
65
77
1,280
7,429
346
3,588
413 | 73
59
11,367
6,822
346 |
168
51
5,169 | 2.30 | | Dodecyltrimethylammonium bromide and chloride | 77
1,280
7,429
346
3,588
413 | 59
11,367
6,822
346 | 51
5,169 | .86 | | Hexadecyltrimethylammonium bromide | 77
1,280
7,429
346
3,588
413 | 59
11,367
6,822
346 | 51
5,169 | . 8 | | bis-[ammonium chloride] | 1,280
7,429
346
3,588
413 | 11,367
6,822
346 | 5,169 | | | All other———————————————————————————————————— | 1,280
7,429
346
3,588
413 | 11,367
6,822
346 | 5,169 | | | Benzenoid, total | 7,429
346
3,588
413 | 6,822
346 | | /. | | Benzyl(coconut oil alkyl)dimethylammonium chloride Benzyldimethyl(mixed alkyl)ammonium chloride Benzyldimethyloctadecylammonium chloride | 346
3,588
413 | 346 | J. (3) | .8 | | Benzyldimethyl(mixed alkyl)ammonium chloride | 3,588
413 | | 287 | .8 | | Benzyldimethyloctadecylammonium chloride | 413 | 3,052 | 2,551 | .8 | | Benzyldodecyldimethylammonium chloride | | 396 | 356 | .9 | | (3,4-Dichlorobenzyl)dodecyldimethylammonium chloride | 553 | 521 | 374 | .7 | | (Dodecylbenzyl)trimethylammonium chloride | 43 | 35 | 25 | .7 | | All other | 66 | 77. | 52 | .6 | | | 2,420 | 2,395 | 2,090 | .8 | | Nonionic Surface-Active Agents | | | | | | Total 685 | 5,693 | 522,802 | 119,346 | .2 | | | 3,020 | 63,240 | 18,575 | .2 | | Carboxylic acid - alkanolamine condensates, total 80 | 0,105 | 51,587 | 14,644 | .2 | | Diethanolamine condensates (amine/acid ratio=2/1), | | | | | | total | 5,555 | 18,514 | 5,390 | .2 | | Capric acid | 110 | 98 | 43 | .4 | | | 3,194
5,450 | 10,687
2,730 | 3,278
833 | .3 | | | 2,113 | 2,020 | 567 | .2 | | Stearic acid | 864 | 572 | 239 | .4 | | Tall oil acids | 574 | | | ••• | | All other | 3,250 | 2,407 | 430 | .1 | | Diethanolamine condensates (amine/acid ratio = 2/1). | | | | | | total3 | 7,380 | 17 2/2 | | ••• | | | .7,826
.7,069 | 17,343 | 4,504 | .2 | | Oleic acid | 769 | 773 | 277 | | | Stearic acid | 1,037 | 1,035 | 467 | .2 | | All other | 679 | | | ••• | | Ethanolamine condensates (amine/acid ratio = 2/1), | İ | | | | | total | 1,156 | 1,142 | 341 | .3 | | Coconut oil acids | 1,025 | 1,013 | 287 | . 3 | | All other | 131 | 129 | 54 | .4 | | Ethanolamine condensates (other amine/acid ratios) | 9,154 | ••• | ••• | ••• | | Isopropanolamine condensates, total | 5,842
866 | 542 | 181 | ••• | | | 4,976 | ,,, | | ••• | | | 1,018 | 12,238 | 3,484 | | | Carboxylic acid - alkanolamine condensates, ethoxylated- | 522 | 593 | 303 | | | Carboxylic acid - diamine and polyamine condensates | | | | | | (nonionic), total 12 | 2,393 | 11,060 | 3,628 | •3 | | Stearic acid - ethylenediamine condensate (amine/acid | · | | | 1 | | ratio = 1/2) 12 | 2,193 | 10,864 | 3,564 | • | | All other | 200 | 196 | 64 | .3 | | Carboxylic acid esters, total | 6,370
3,787 | 120,871 | 39,916
3.384 | .3 | | Anhydrosorbitol esters, total | 435 | 8,962 | 3,384 | •• | | Anhydrosorbitol monolaurate | 2,381 | ••• | ••• | ••• | TABLE 19A. -- Surface-active agents: U.S. production and sales, 1966--Continued | Character 2 | D., 4, | Sales ² | | | | |---|-------------------------|-----------------------|-----------------------|----------------------------|--| | Chemical | Production ¹ | Quantity ¹ | Value | Unit
value ³ | | | Nonionic Surface-Active AgentsContinued | | | | | | | arboxylic acid estersContinued | 1,000 | 1,000 | 1,000 | Per | | | Anhydrosorbitol estersContinued | pounds | pounds | dollars | pound | | | Aphydrosorbitol trioleate | 748 | ••• | ••• | ••• | | | All other | 10,223 | 8,962 | 3,384 | \$ 0.0 | | | Ethoxylated anhydrosorbitol esters, total | 12,349 | 12,856 | 5,339 | •• | | | Ethoxylated anhydrosorbitol monolaurate | 2,400 | 2,881 | 1,241 | | | | Ethoxylated anhydrosorbitol mono-oleate | 4,753 | 4,650 | 1,920 | •• | | | Ethoxylated anhydrosorbitol monopalmitate | 2.500 | 340
2,634 | 157
1,124 | | | | Ethoxylated anhydrosorbitol monostearateEthoxylated anhydrosorbitol trioleate | 2,580
554 | 526 | 227 | • | | | Ethoxylated anhydrosorbitol trioleaveEthoxylated anhydrosorbitol tristearate | 761 | | 221 | | | | All other | 1,301 | 1,825 | 670 | ••• | | | Ethylene glycol and diethylene glycol esters, total
| 4,291 | 3,892 | 1,306 | | | | Diethylene glycol monolaurate | 548 | 528 | 161 | | | | Diethylene glycol mono-oleate | 126 | 120 | 34 | | | | Diethylene glycol monostearate | 1,025 | 825 | 242 | | | | Ethylene glycol distearate | 490 | 437 | 137 | | | | Ethylene glycol monostearate | 1,016 | 854 | 329 | | | | All other | 1,086 | 1,128 | 403 | | | | Glycerol esters, total | 71,460 | 61,279 | 16,860 | | | | Complex glycerol esters | 4,259 | 2,976 | 1,257 | | | | Glycerol esters of chemically defined acids, total | 23,844 | 22,070 | 7,216 | | | | Glycerol monolaurate | ••• | 51 | 19 | | | | Glycerol mono-oleate | 1,927 | 1,588 | 565 | • | | | Glycerol monoricinoleate | ••• | 52 | 29 | | | | Glycerol monostearate | 20,974 | 19,929 | 6,401 | | | | All otherGlycerol esters of mixed acids | 943
43,357 | 450
36,233 | 202
8 , 387 | | | | Natural fats and oils, ethoxylated, total | 4,181 | 3,542 | 1,254 | | | | Castor oil, ethoxylated | 3,611 | | 1,2,2,4 | ' | | | All other | 570 | 3,542 | 1,254 | | | | Polyethylene glycol esters, total | 24,436 | 16,133 | 5,614 | | | | Polyethylene glycol esters of chemically defined | 2.,.20 | -5, | -, | | | | acids, total | 19,068 | 11,640 | 4,441 | | | | Polyethylene glycol dilaurate | 989 | 808 | 263 | | | | Polyethylene glycol dioleate | 3,042 | 797 | 279 | ! | | | Polyethylene glycol distearate | 361 | 331 | 114 | | | | Polyethylene glycol monolaurate | 5,260 | 2,375 | 957 | | | | Polyethylene glycol mono-oleate | 3,509 | 2,606 | 953 | 1 | | | Polyethylene glycol monostearate | 4,835 | 3,960 | 1,545 | 1 | | | All other | 1,072 | 763 | 330 | | | | Polyethylene glycol esters of rosin and tall oil | | 0.015 | 001 | | | | acids, total | 4,558 | 3,915 | 984 | | | | Polyethylene glycol sesquiester of tall oil acids | 3,771 | 3,138 | 740
244 | | | | All other | 787 | 777 | 189 | | | | Polyethylene glycol esters of other mixed acids, total | 810
258 | 578
181 | 50 | İ | | | Polyethylene glycol sesquiester of coconut oil acids | 552 | 397 | 139 | | | | Polyglycerol esters | 428 | 468 | 230 | 1 | | | Propanediol esters, total | 3,534 | 2,079 | 591 | 1 | | | 1,2-Propanediol monolaurate | 142 | 145 | 69 | | | | 1.2-Propagediol monostearate | 2,817 | 1,649 | 444 | 1 | | | All other | 575 | 285 | 78 | | | | Other carboxylic acid esters | 11,904 | 11,660 | 5,338 | | | | thers, total | 443,871 | 337,431 | 59,760 | | | | Benzenoid ethers, total | 234,032 | 205,858 | 35,905 | | | | Dinonvlohenol, ethoxylated | ••• | 1,821 | 410 | 1 | | | Dodecvlphenol. ethoxylated | ••• | 10,359 | 1,167 | 1 | | | Iso-octvlphenol. ethoxylated | 2,101 | 1,602 | 384 | 1 | | | Nonvinhenol, ethoxylated | 120,370 | 120,276 | 18,749 | | | | Phenol, ethoxylated | 6,507 | ma doc | 15 105 | ••• | | | All other | 105,054 | 71,800 | 15,195 | | | | Nonbenzenoid ethers, total Dodecyl alcohol, ethoxylated | 209,839 | 131,573 | 23,855 | | | | Dodecyl alcohol, ethoxylated Hexadecyl alcohol, ethoxylated | ••• | 2,224
485 | 898
259 | 1 | | | Chemical | | Sales ² | | | | |--|---|--|---|----------------------------|--| | | Production1 | Quantity ¹ | Value | Unit
value ³ | | | Nonionic Surface-Active AgentsContinued | | | | | | | EthersContinued Nonbenzenoid ethersContinued Mixed linear alcohols, ethoxylated 9-Octadecenyl alcohol, ethoxylated Tridecyl alcohol, ethylated All other | 1,000
pounds
104,448
3,684
549
8,329
92,829 | 1,000 pounds 81,516 2,597 7,367 37,384 | 1,000
dollars
10,299
1,358

1,614
9,427 | Per pound \$0.13 .5222 .25 | | TABLE 19A. -- Surface-active agents: U.S. production and sales, 1966--Continued - All quantities are given in terms of 100-percent organic surface-active ingredient. - Sales include products sold as bulk surface-active agents only. - Calculated from rounded figures. The term "benzenoid," as used in this report, describes any surface-active agent, except lignin derivatives, whose molecular structure includes 1 or more 6-membered carbocyclic or heterocyclic rings with conjugated double bonds (e.g., the benzene ring or the pyridine ring). - Includes the ligninsulfonates, which were classed as benzenoid in previous years. - 6 Includes production of "all other" sulfonic acids and of "all other" sulfated alcohols and phenols; also includes sales of "all other" potassium and sodium salts of fatty, rosin, and tall oil acids and of "all other" sulfated ethers. Note: The surface-active agents included in this report are organic chemicals that reduce the surface tension of water or other solvents and are used chiefly as detergents, dispersing agents, emulsifiers, foaming agents, or wetting agents in either aqueous or non aqueous systems. The properties which make a product useful as a surface-active agent are due to a molecular structure in which one or more polar functional groups are balanced by a large non-polar group. The polar, or hydrophilic, groups, which may be anionic, cationic, or nonionic, tend to make the product miscible with water and other polar solvents and immiscible with oil. The nonpolar, or hydrophobic, group, which usually consists of a long-chain alkyl or alkylphenyl radical, tends to make the product miscible with oil and other nonpolar solvent and immiscible with water. Because of this balance between hydrophilic and hydrophobic tendencies, the molecules of surface-active agent concentrate at the liquid phase boundaries and reduce the interfacial tension of any system in which they are introduced. Thus at an oil/water interface they may promote the formation of a stable emulsion; at an air/water interface they may promote the formation of foam; and at a liquid/solid boundary they may act as detergents, dispersing agents, or wetting agents. Total U.S. production of surface-active agents in 1966 amounted to 3,321 million pounds, or 4.8 percent more than the 3,170 million pounds reported for 1965. These statistics include data for fatty monoamines, which were previously reported in the section on Miscellaneous Organic Chemicals, and for potassium and sodium salts of fatty, rosin, and tall oil acids (soaps), which were for the most part not previously reported. Sales of bulk surface-active agents in 1966 amounted to 1,766 million pounds, valued at \$315 million, compared with sales in 1965 of 1,698 million pounds, valued at \$300 million. Sales in 1966 were thus 4.0 percent larger than in 1965 in terms of quantity and 4.9 percent larger in terms of value. Sales statistics for 1965 and 1966 reflect sales of bulk surface-active agents only, whereas sales data reported for earlier years included surface-active agents sold as active ingredients in formulated and packaged products, as well as strictly bulk materials. Thus the statistics for 1965 and 1966 are not strictly comparable with those for earlier years. Production of anionic surface-active agents in 1966 amounted to 2,469 million pounds, or 74.3 percent of the total reported for 1966 and 4.7 percent more than the anionic output reported for 1965. Sales of anionics in 1966 amounted to 1,112 million pounds, valued at \$141 million. Of the total anionic output, 944 million pounds consisted of potassium and sodium salts of fatty, rosin, and tall oil acids, of which 494 million pounds was the sodium salt of tallow acids and 92 million pounds was the sodium salt of coconut oil acids; 596 million pounds consisted of alkylbenzenesulfonates, of which 392 million pounds was the sodium salt of dodecylbenzenesulfonic acid and 92 million pounds was the free acid; and 442 million pounds consisted of ligninsulfonic acid salts, of which 284 million pounds was the calcium salt and 54 million pounds was the sodium salt. Production of nonionic surface-active agents in 1966 amounted to 686 million pounds, or 20.6 percent of the total reported for 1966 and 4.0 percent more than the nonionic output reported for 1965. Sales of nonionics in 1966 amounted to 523 million pounds, valued at \$119 million. Of the total nonionic output, 234 million pounds consisted of alkylphenol ethoxylates and other benzenoid ethers, of which 120 million pounds was nonylphenol ethoxylate; 210 million pounds consisted of alcohol ethoxylates and other nonbenzenoid ethers, of which 104 million pounds was mixed linear alcohol ethoxylate; 80 million pounds consisted of alkanolamides, of which 18 million pounds was coco diethanolamide (made with a 1/1 ratio of diethanolamine to coconut oil acids), 17 million pounds was lauric diethanolamide (1/1 ratio), and 13 million pounds was coco diethanolamide (2/1 ratio); and 71 million pounds consisted of glycerol esters, of which 21 million pounds was glycerol monostearate. Production of cationic surface-active agents in 1966 amounted to 162 million pounds, or 4.9 percent of the total reported for 1966 and 9.4 percent more than the cationic output reported for 1965. Sales of cationics in 1966 amounted to 127 million pounds, valued at \$51 million. Of the total output of cationics, 39 million pounds consisted of quaternary ammonium salts not containing oxygen, of which 18 million pounds was bis(hydrogenated tallow alkyl)dimethylammonium chloride; and 32 million pounds consisted of primary monoamines not containing oxygen, of which 11 million pounds was (hydrogenated tallow alkyl)amine. Production of amphoteric surface-active agents in 1966 amounted to 5.1 million pounds, or approximately 0.2 percent of the total reported for 1966 and 1.2 percent less than the amphoteric output reported for 1965. Sales in 1966 amounted to 4.9 million pounds, valued at \$3.2 million. The difference between production and sales reflects inventory changes and, for 1965 and 1966, captive consumption
of soaps and surface-active agents by synthetic rubber producers and by manufacturers of cosmetics, packaged detergents, bar soaps, and other formulated consumer products. In some instances the difference may also reflect quantities of surface-active agents used as chemical intermediates, e.g. nonionic alcohol and alkylphenol ethoxylates which may be converted to anionic surface-active agents by phosphation or sulfation. #### Pesticides and Related Products This section of the report covers pesticides (fungicides, herbicides, insecticides, and rodenticides) and related products such as plant hormones, seed disinfectants, soil conditioners, soil fumigants and synergists. The data are given in terms of 100-percent active material; they thus exclude such materials as diluents, emulsifiers, and wetting agents. Statistics on production and sales of pesticides and related products in 1966 are given in table 20A. 12 TABLE 20A.--Pesticides and related products: U.S. production and sales, 1966 [Listed below are all pesticides and related products for which any reported data on production or sales may be published. (Leaders are used where the reported data are accepted in confidence and may not be published or where no data were reported.) Table 20B in pt. III lists all pesticides and other organic agricultural chemicals for which data on production or sales were reported and identifies the manufacturer of each] | | | Sales | | | | |--|--|--|--|--|--| | Product | Production | Quantity | Value | Unit
value ¹ | | | Grand total | 1,000
pounds
1,013,110 | 1,000
pounds
822,256 | 1,000
dollars
583,802 | Per
pound
\$0.71 | | | PESTICIDES AND RELATED PRODUCTS, CYCLIC | | | | | | | Total | 776,909 | 605,229 | 446,946 | .74 | | | Fungicides, total | 1,110
1,035
3,211
43,262
426
17,929
33,653 | 82,317
1,031
970
3,124
39,022
390
 | 27,158 509 3,900 833 6,185 924 14,807 | .33
.49
4.02
.27
.16
2.37 | | | Herbicides and plant hormones, total Dinitrobutylphenol (DNBP) Dinitrobutylphenol, ammonium salt | 266,047

85 | 171,439
2,825
70 | 213,642
1,463
110 | 1.25
.52
1.57 | | $^{^{12}}$ See also table 20B, pt. III, which lists these products and identifies the manufacturers. TABLE 20A .-- Pesticides and related products: U.S. production and sales, 1966 -- Continued | | | | Sales | | |---|------------|-----------------|----------------|----------------------------| | Product | Production | Quantity | Value | Unit
value ¹ | | PESTICIDES AND RELATED PRODUCTS, CYCLICContinued | | | | | | | 1,000 | 1,000 | 1,000 | Per | | Herbicides and plant hormonesContinued | pounds | pounds | dollars | pound | | 1-Naphthaleneacetic acid and esters and 'salts | 32 | 31 | 137 | \$4.42 | | Phenoxyacetic acid derivatives: | ļ | | | • | | 2,4-Dichlorophenoxyacetic acid (2,4-D) | 68,182 | 28,021 | 8,785 | .31 | | 2,4-Dichlorophenoxyacetic acid esters and salts, total- | 72,522 | 55,281 | 22,867 | .41 | | 2,4-Dichlorophenoxyacetic acid, n-butyl ester | 17,966 | 20,401 | 9,603 | .47 | | 2,4-Dichlorophenoxyacetic acid, dimethylamine salt | 15,266 | 11,669 | 4,829 | .41 | | 2,4-Dichlorophenoxyacetic acid, iso-octyl ester | 8,328 | 8,181 | 2,979 | .36 | | 2,4-Dichlorophenoxyacetic acid, isopropyl ester All other | 30,962 | 2,598
12,432 | 880
4,576 | .34
.37 | | 2,4,5-Trichlorophenoxyacetic acid (2,4,5-T) | 15,489 | 5,096 | 4,705 | .92 | | 2,4,5-Trichlorophenoxyacetic acid esters and salts, | 17,409 | 7,090 | 4,705 | .92 | | total | 18,059 | 10,037 | 8,119 | .81 | | 2,4,5-Trichlorophenoxyacetic acid, n-butyl ester | 10,146 | 10,057 | 0,117 | •01 | | 2,4,5-Trichlorophenoxyacetic acid, iso-octyl ester | 2,120 | 2,292 | 2,116 | .92 | | All other | 5,793 | 7,745 | 6,003 | .76 | | Phenylmercury acetate (PMA) | 502 | 309 | 2,366 | 7.66 | | All other ³ | 91,176 | 69,769 | 165,090 | 2.37 | | Insecticides and rodenticides, total | 410,236 | 351,473 | 206,146 | .59 | | Aldrin-toxaphene group4 | 130,470 | 128,161 | 65,745 | .51 | | α-Bis(p-chlorophenyl) β,β,β-trichloroethane (DDT) | 141,349 | 101,466 | 16,814 | .17 | | Hexachlorocyclohexane (Benzene hexachloride) and lindane- | | 8,522 | 2,018 | .24 | | Organophosphorus insecticides, total | 73,342 | 57,084 | 66,426 | 1.16 | | 0,0-Diethyl 0-p-nitrophenyl phosphorothicate (Para- | | | | | | thion) | 19,444 | 15,536 | 10,651 | .69 | | 0,0-Dimethyl 0-p-nitrophenyl phosphorothicate (Methyl | 0.5 0.5 | 24 070 | | | | parathion) | 35,862 | 26,973 | 18,709 | .69 | | All other ⁵ All other ⁶ | 18,036 | 14,575 | 37,066 | 2.54 | | All other | 65,075 | 56,240 | 55,143 | .98 | | PESTICIDES AND RELATED PRODUCTS ACYCLIC | | | | | | Total | 236,201 | 217,027 | 136,856 | .63 | | Fungicides, total | 36,780 | 36,080 | 26,117 | .72 | | Dimethyldithiocarbamic acid, ferric salt (Ferbam) | 1,379 | 1,679 | 626 | .37 | | Ethylene bis(dithiocarbamic acid), disodium salt (Nabam)- | 2,053 | 2,209 | 930 | .42 | | Ethylene bis(dithiocarbamic acid), zinc salt (Zineb) | 4,721 | 4,326 | 1,895 | .44 | | All other? | 28,627 | 27,866 | 22,666 | .81 | | Herbicides and plant hormones8 | 57,645 | 50,063 | 43,993 | .88 | | Insecticides, rodenticides, and soil conditioners and | | | | | | fumigants, total | 141,776 | 130,884 | 66,746 | .51 | | 1,2-Dibromo-3-chloropropane (DBCP) | 8,722 | 5,266 | 2,658 | •50 | | Methyl bromide (Bromoethane) | 16,345 | 16,324 | 6,652 | .41 | | Organophosphorus insecticides, total | 46,580 | 39,976 | 48,249 | 1.21 | | Tetraethyl pyrophosphate (TEPP) | | 287 | 280 | .98 | | Other organic phosphorous insecticides 9 | 46,580 | 39,689 | 47,969 | 1.21 | | All other insecticides, rodenticides, and soil condi- | | | , i | | | tioners and fumigants 10 | 70,129 | 69,318 | 9,187 | .13 | 1 Calculated from rounded figures. Includes aldrin, chlordan, dieldrin, endrin, heptachlor, terpene polychlorinates, and toxaphene. cides, sodium dichloropropionate, sodium TCA, and others. Includes DDVP, disulfoton, ethion, malathion, naled, phorate, TEPP (production only), and others. 10 Includes soil conditioners and fumigants, metaldehyde (which is a molluscicide), small quantities of rodenticides, and others. Note: Sale of gamma isomer content in benzenehexachloride and lindane is not publishable for 1966 because publication would reveal the operations of the individual producers. Production of gamma isomer content has not been publishable since 1963. Includes captan, dichlone, folpet, glyodin, pentachloronitrobenzene, sodium pentachlorophenate, tri- and tetrachlorophenols, and others. Includes dimethylurea compounds, dinitrophenol compounds, endothal, isopropyl carbanilates (IPC and CIPC), maleic hydrazide, propanil, triazines, uracils, and others. Includes alarin, chloraan, dielarin, enarin, neptachlor, terpene polychlorinates, and toxaphene. Includes carbophenothion, diazinon, ronnel, other phosphorothioates and phosphorodithioates, and others. Includes DDD, 4,4-Dichlorobenzilate, dicofol, endosulfan, methoxychlor, and other chlorinated insecticides, carbaryl, DEET, small amounts of rodenticides and insect repellents, hexachlorocyclohexane and lindane (production only), synergists, and others. Includes dithiocarbamates including dodine, maneb, mercury compounds, PETD and others. Includes CDAA, methanearsonic acid's disodium salt and sodium salt, thiocarbamate and organophosphorus herbicides. Production of pesticides and related products in 1966 amounted to 1,013 million pounds-about 15 percent more than the 877 million pounds reported for 1965. Sales in 1966 were 822 million pounds, valued at \$584 million, compared with 764 million pounds, valued at \$497 million in 1965. The output of cyclic pesticides and related products included in the cyclic group amounted to 777 million pounds in 1966—about 14 percent more than the 683 million pounds produced in 1965. Sales in 1966 were 605 million pounds, valued at \$447 million, compared with 582 million pounds, valued at \$378 million, in 1965. Production of acyclic pesticides and related products in 1966 amounted to 236 million pounds, compared with the 195 million pounds reported for 1965. Sales in 1966 were 217 million pounds, valued at \$137 million, compared with 182 million pounds, valued at \$119 million, in 1965. ## Miscellaneous Chemicals The term miscellaneous chemicals comprises those synthetic organic products that are not included in the other use groups covered by this report. They include products that are employed in a great variety of uses: The number of chemicals used exclusively for only one purpose is not large. Among the products covered are those used for gasoline and lubricating oil additives, paint driers, photographic chemicals, tanning materials, flotation reagents, refrigerants, textile polymers, sequestering agents, organic fertilizers, antifreeze chemicals, solvents, and acyclic intermediates. Statistics on production and sales of miscellaneous chemicals in 1966 are given in table 21A. 13 Production of miscellaneous cyclic and acyclic chemicals in 1966 totaled 57.3 billion pounds or 13 percent more than the output of 50.8 billion pounds reported for 1965. Sales of miscellaneous chemicals in 1966 amounted to 24.5 billion pounds, valued at \$3.2 billion, compared with 22.0 billion pounds, valued at \$2.9 billion, in 1965. The total output of miscellaneous cyclic chemicals in 1966 was 1.4 billion pounds, or 20 percent more than the output of 1.1 billion pounds, reported for 1965. Sales in 1966 totaled 739 million pounds, valued at \$271 million, compared with 625 million pounds, valued at \$245 million, in 1965. In 1966 the most important
groups of cyclic compounds were the lubricating oil additives, the output of which was 390 million pounds, and synthetic tanning materials, the output of which was 36 million pounds. Total production of miscellaneous acyclic chemicals in 1966 was 55.9 billion pounds or 12 percent more than the output of 49.7 billion pounds reported for 1965. Sales in 1966 totaled 23.8 billion pounds, valued at \$2.9 billion, compared with 21.4 billion pounds, valued at \$2.6 billion, in 1965. The statistics for acyclic chemicals have been regrouped primarily by chemical function. The order of precedence of these functional groups is generally that used in naming and indexing chemical pounds by Chemical Abstracts, but other important considerations are comparability with statistics for earlier years and the need for groupings that will not reveal the operations of individual producers. Some of the groupings by use found in earlier reports have been omitted for 1966, as such groupings are difficult to maintain due to the variety of uses and frequent shifts in principal usage for many important items. In 1966, the most important groups of acyclic chemicals were the halogenated hydrocarbons, the nitrogenous compounds, monohydric alcohols, and aldehydes and ketones. Production of halogenated hydrocarbons, which are used as solvents, intermediates, refrigerants, and aerosol propellants, totaled 11.6 billion pounds. The most important chemicals in this group were dichloroethane (production of 3.6 billion pounds in 1966 compared with 2.5 billion pounds in 1965) and vinyl chloride (2.5 billion pounds compared with 2.0 billion pounds). Output of nitrogenous compounds totaled 8.9 billion pounds. The most important chemical in this group was urea (used principally in fertilizers and as a feed additive), production of which was 3.4 billion pounds in 1966 compared with 2.6 billion pounds in 1965. Monohydric alcohols, which are used largely as solvents and intermediates, were the third largest group in 1966, with production of 8.8 billion pounds. The most important items in the group were synthetic methanol, production of 3.3 billion pounds in 1965 compared with 2.9 billion pounds in 1965; synthetic ethyl alcohol, 1.9 billion pounds compared with 2.0 billion pounds, and isopropyl alcohol, 1.7 billion pounds compared with 1.5 billion pounds. Aldehydes and ketones, which are also used largely as solvents and intermediates, were the next largest group, with production of 8.3 billion pounds. The most important items in the group were formaldehyde, production of 3.7 billion pounds in 1966 compared with 3.1 billion pounds in 1965; acetaldehyde, 1.3 billion pounds compared with 1.2 billion pounds. ¹³ See also table 21B, pt. III, which lists these products and identifies the manufacturers. TABLE 21A.--Miscellaneous chemicals: U.S. production and sales, 1966 [Listed below are all miscellaneous chemicals for which any reported data on production or sales may be published. (Leaders are used where the reported data are accepted in confidence and may not be published or where no data were reported.) Table 21B in pt. III lists alphabetically all miscellaneous chemicals for which data on production or sales were reported and identifies the manufacturer of each] | - | | | | | | |--|-------------------------------|-------------------------------|-------------------------------|----------------------------|--| | Chemical | Production | Sales | | | | | | | Quantity | Value | Unit
value ¹ | | | Grand total | 1,000
pounds
57,252,648 | 1,000
pounds
24,549,157 | 1,000
dollars
3,162,184 | Per
pound
\$0.13 | | | MISCELLANEOUS CHEMICALS, CYCLIC | | | | | | | Total | 1 260 666 | מומי היום | 053 050 | 27 | | | | 1,368,666 | 738,847 | 271,359 | .37 | | | Benzoic acid salts: Sodium benzoate, tech. and U.S.P Benzoyl peroxide | 9,493
5,039
635 | 8,442
5,002 | 2,461
4,887 | .29
.98 | | | Cyclopropane | 122 | 135 | 2,022 | 14.98 | | | 2,6-Di-tert-butyl-p-cresol: Food grade | 7,310 | 8,426 | 4,862 | .58 | | | Tech | 14,702 | 14,990 | 8,429 | .56 | | | p-Dimethoxybenzene (Dimethyl ether of hydroquinone)
Flotation reagents | 918
6,109 | ••• | ••• | ••• | | | - · | | ••• | ••• | • • • | | | Gasoline additives, total ² N,N'-Di-sec-butyl-p-phenylenediamine | 18,587
2,731 | 13,688 | 10,040 | .73 | | | N, N'-Disalicylidene-1, 2-propanediamine | 902 | 1,764
938 | 1,528
1,455 | .87
1.55 | | | All other | 14,954 | 10,986 | 7,057 | .64 | | | Hexamethylenetetramine, tech | 78,761 | 61,643 | 10,822 | .18 | | | Inbricating oil and grease additives, total | 389,838 | 243,407 | 51,428 | .21 | | | Oil-soluble petroleum sulfonate, barium salt Oil-soluble petroleum sulfonate, calcium salt | 41,479 | ••• | •••• | • • • | | | Oil-soluble petroleum sulfonate, sodium salt | 132,256
73,177 | 50,084 | 10,006 | | | | All other | 142,926 | 193,323 | 41,422 | .21 | | | Morpholine | 18,889 | 18,493 | 8,209 | .44 | | | Naphthenic acid salts, total ³ 4 | 23,317 | 20,127 | 6,934 | .34 | | | Calcium naphthenateCobalt naphthenate | 1,892
3,612 | 1,353
3,069 | 593 | .44 | | | Iron naphthenate | 296 | 294 | 2,038 | .66
.34 | | | Lead naphthenate | 14,267 | 12,621 | 2,841 | .23 | | | Manganese naphthenate | 1,652 | 1,253 | 460 | .37 | | | Zinc naphthenateAll other | 1,107
491 | 1,040
497 | 465
437 | .45
.88 | | | | .,_ | | , | .00 | | | Photographic chemicals: Benzotriazole | 28 | 31 | 149 | 4.81 | | | 2,5-Diethoxy-4-morpholinobenzenediazonium chlorozincate- | 24 | 26 | 307 | 11.81 | | | p-Diethylaminobenzenediazonium chloride (p-Diazo-N, N-diethylaniline) - zinc chloride | 119 | 112 | 276 | 2.46 | | | N,N-Diethyltoluene-2,5-diamine, monohydrochloride | 168 | 234 | 654 | 2.79 | | | Pinene (α - and β -) | 89,766
117 | 51,428
••• | 5,437 | .11 | | | Tall oil salts, total ³ | 10,296 | 10,202 | 3,588 | .35 | | | Calcium tallateCobalt tallate | 2,792 | 2,797 | 975 | .35 | | | Lead tallate | 2,753
3,608 | 2,728
3,519 | 1,419
851 | .52
.24 | | | Manganese tallate | 711 | 682 | 214 | .31 | | | All other | 432 | 476 | 129 | .27 | | | Tanning materials, synthetic, total | 36,343 | 35,702 | 7,683 | .22 | | | 2-Naphthalenesulfonic acid, formaldehyde condensate
and salts | 31,983 | 31,530 | 5,726 | .18 | | | All other | 4,360 | 4,172 | 1,957 | .47 | | TABLE 21A. -- Miscellaneous chemicals: U.S. production and sales, 1966--Continued | Chemical | D-1 | Sales | | | | |--|-------------------|-------------------|--------------------|----------------------------|--| | Onemical | Production | Quantity | Value | Unit
value ¹ | | | MISCELLANEOUS CHEMICALS, CYCLIC Continued | 1,000
pounds | 1,000
pounds | 1,000
dollars | Per
pound | | | Textile chemicals, other than surface-active agents, total 1,3-Bis(hydroxymethyl)-2-imidazolidone (Dimethylol ethylene urea) | 2,441 | 1,783 | 1,277 | \$0.72
.37 | | | All other | 2,349 | 1,648 | 1,227 | .74 | | | All other miscellaneous cyclic chemicals | 655,644 | 244,976 | 141,894 | .58 | | | MISCELLANEOUS CHEMICALS, ACYCLIC | | | | | | | Total | 55,883,982 | 23,810,310 | 2,890,825 | .12 | | | Cellulose Esters and Ethers | | | | | | | Total | 1,026,063 | 301,736 | 122,596 | .41 | | | Cellulose esters, total | 930,130 | 211,213 | 72,107 | .34 | | | Cellulose acetáte | 750,304 | | | ••• | | | All otherCellulose ethers, total | 179,826
95,933 | 211,213
90,523 | 72,107
50,489 | .34
.56 | | | Sodium carboxymethylcellulose, 100% | 48,736 | 48,355 | 20,758 | .43 | | | All other | 47,197 | 42,168 | 29,731 | .70 | | | Lubricating Oil Additives | | | | | | | Total | 456,986 | 178,369 | 37,582 | .2 | | | Phosphorodithicates (Dithiophosphates) | 100,819 | 49,268 | 12,265 | .25 | | | Sulfurized lard oil | 3,132 | ••• | ••• | ••• | | | Sulfurized sperm oilAll other | 23,073 | | | ••• | | | | 329,962 | 129,101 | 25,317 | .20 | | | Nitrogenous Compounds | | | . [| | | | Total ⁵ | 8,869,388 | 4,323,581 | 420,026 | .10 | | | Acrylonitrile | 716,074 | 318,169 | 40,285 | .11 | | | Amines, total | 784,337 | 197,237 | 58,130
408 | .2' | | | Di-n-butylamine | 1,405 | 1,862 | 816 | .4 | | | Di-n-propylamine | 6,356 | 6,685 | 2,526 | .3 | | | Ethylamines, mono-, di-, and tri | 25,393 | 17,636 | 4,932 | .2 | | | Isopropylamines, mono-, and di | 11,078 | 10,982 | 2,029 | .1 | | | Methylamines, mono-, di-, and triAll other | 105,216 | 62,712
96,479 | 8,351 | .1 | | | 1/_Azobi sformamide | 2,991 | 2,419 | 39,068
2,698 | 1.1 | | | Caprolactam (2-Oxohexamethylenimine) | | 141,809 | 34,997 | .2 | | | 2-Chloro-N, N-dimethylethylamine (Dimethylaminoethyl | | | | | | | chloride) hydrochloride | 299 | 316 | 376 | 1.1 | | | 2-Diethylaminoethanol | | 2,854 | 1,199 | .4 | | | P-Dimethylaminoethanol | 2,303 | 1,792
170,977 | 1,133
28,477 | .6
.1 | | | 2-Aminoethanol (Monoethanolamine) | 70,262 | 57,581 | 10,538 | :1 | | | 2,2'-Iminodiethanol (Diethanolamine) | 79,246 | 55,831 | 7,908 | .i | | | 2,2',2''-Nitrilotriethanol (Triethanolamine) | 58,286 | 57,565 | 10,031 | .1 | | | 2-Methyllactonitrile (Acetone cyanohydrin) | 401,128 | ••• | | ••• | | | titriloacids and salts, total (Ethylenedinitrilo)tetraacetic acid, disodium salt | 44,904
579 | 29,296 | 11,919
437 | .6 | | | (Ethylenedinitrilo) tetraacetic acid, tetrasodium salt | 24,773 | 15,118 | 5,622 | .3 | | | (Ethylenedinitrilo)tetraacetic acid, trisodium salt | 473 | 505 | 219 | .4 | | | (N-Hydroxyethylethylenedinitrilo)triacetic acid, | 1 | | | • | | | trisodium salt | 4,187 | 3,405 | 1,612 | -4 | | | All other | 14,892 | 9,583 | 4,029 | .4 | | | Nylon, 6 and 6/6 polymer for fiber | 1,001,689 | ••• | ••• | • • • | | | OleamidePentaerythritol tetranitrate | 3,042 | 3 140 | ••• | ••• | | | tenogery out
toot of praint place | 5,249 | 3,169 | 2,420 | .7 | | TABLE 21A.--Miscellaneous chemicals: U.S. production and sales, 1966--Continued | Chemical | Production | | Sales | | | |--|----------------------|-------------------|----------------------|----------------------------|--| | Onemical . | 110000 51011 | Quantity | Value | Unit
value ¹ | | | MISCELLANEOUS CHEMICALS, ACYCLICContinued | | | | | | | Nitrogenous CompoundsContinued | 1,000 | 1,000 | 1,000 | Per | | | • | pounds | pounds | dollars | pound | | | arcosine and salt | 1,751 | 1,009 | 590 | \$0.5 | | | tearamide (1000 hogis) | 1,327
6 3,432,703 | 3 263 426 | ⁷ 135,731 | ••• | | | rea in compounds or mixtures (100% basis), total In feed compounds | 385,961 | 3,263,426 | 14,570 | | | | In liquid fertilizer | 1,331,692 | 1,244,652 | 51,131 | .(| | | In solid fertilizer | 1,387,079 | 1,415,091 | 60,861 | .0 | | | All other | 327,971 | 219,630 | 9,169 | • 4 | | | ll other nitrogenous compounds | 2,263,797 | 191,108 | 102,071 | • : | | | Acids, Acyl Halides and Anhydrides | | | | | | | Total | 5,103,665 | 1,045,584 | 156,153 | • : | | | cetic acid, synthetic, 100%8 | 1,408,768 | 333,955 | 23,042 | | | | cetic anhydride. 100% | 1,596,825 | 77 000 | | ••• | | | orylic aciditipic acid | 62,477 | 11,080 | 3,180 | • | | | utyric acid | 964,457 | 88,585
979 | 18,803 | • | | | hloroscetic scid mono | 66,094 | | | ••• | | | ecanovl chloride | 1,362 | | ••• | ••• | | | ormic acid. 90% | 27,208 | 25,880 | 3,361 | • | | | maric acid | 46,125 | 37,084 | 6,313 | • | | | duconic acid, techauroyl chloride | 3,828 | 3,677 | 1,233 | • | | | auroyi enioridealeic anhydride | 10,756
168,575 | 118,946 | 15,106 | ••• | | | xalic acid | 22,854 | 22,412 | 4,713 | | | | almitovl chloride | 281 | ••• | • • • | • • • | | | ropionic acid | 36,989
687,066 | 23,786
379,200 | 2,479
77,723 | • | | | Salts of Organic Acids | 007,000 | 317,200 | 11,123 | • | | | Total | 241,971 | 189,187 | 61,572 | • | | | Acetic acid salts, total | 27,634 | 25,391 | 5,612 | | | | Ammonium acetate | 641 | 610 | 228 | | | | Conner acetate | 294 | 186 | 135 | • | | | Potassium acetate | 3,351 | 3,206 | 710 | • | | | Sodium acetate | 17,401 | 15,716 | 2,449 | | | | Zinc acetateZirconium acetate | 286
340 | 459
319 | 199
114 | | | | All other | 5,321 | 4,895 | 1,777 | | | | -Ethylhexanoic acid (α-Ethylcaproic acid) salts, total | 4,262 | 3,235 | 2,474 | | | | Calcium 2-ethylhexanoate | ••• | 331 | 149 | | | | Cobalt 2-ethylhexanoate | 701 | 608 | 688 | 1 | | | Lead 2-ethylhexanoateZinc 2-ethylhexanoate | 241
413 | 231
385 | 86
194 | | | | Zirconium 2-ethylhexanoate | 814 | 835 | 580 | | | | All other | 2,093 | 845 | 777 | | | | ormic acid. aluminum salt | 337 | | | | | | luconic acid, sodium salt, tech | 11,618 | 10,014 | 2,870 | | | | inoleic acid salts. total | 346 | 346 | 111 | | | | Calcium linoleate | 144 | 142
28 | 28
15 | | | | All other | 179 | 20
176 | 68 | | | | ercaptoacetic (Thioglycolic) acid. salts | 4,250 | 3,955 | 6,423 | 1 | | | lleic acid salts | 337 | 455 | 329 | | | | xalic acid salts | 12,260 | 5,310 | 1,566 | | | | Palmitic acid aluminum salt | 131 | 2 500 | | ••• | | | | 2,806 | 3,527 | 4,147 | 1 | | | Promionic ecid selts total | | 13 001 | 2682 | | | | Calcium propionateSodium propionate | 12,311
12,311 | 13,991
9,288 | 2,683
1,792 | | | TABLE 21A.--Miscellaneous chemicals: U.S. production and sales, 1966--Continued | m | Dec du chi i | Sales | | | | |--|---|---|--|----------------------------|--| | Chemical | Production - | Quantity | Value | Unit
value ¹ | | | MISCELLANEOUS CHEMICALS, ACYCLICContinued | | | | | | | Salts of Organic AcidsContinued | 1,000
pounds | 1,000
pounds | 1,000
dollars | Per
pound | | | Stearic acid salts, total 10 | 43,871 | 40,303 | 13,173 | \$0.33 | | | Aluminum stearates, total | 5,825 | 5,606 | 2,044 | .36 | | | Aluminum distearateAluminum monostearate | 4,241
941 | 4,090
891 | 1,474 | .36 | | | Aluminum tristearate | 643 | 625 | 222 | .36 | | | Calcium stearate | 18,977 | 19,295 | 5,236 | .27 | | | Lead stearate | 422 | 436 | 182 | .42 | | | Lithium stearate | 452
2,458 | 494
2,399 | 261
888 | .52
.3' | | | Zinc stearate | 11,527 | 10,455 | 3,794 | .30 | | | All other | 4,210 | 1,618 | 768 | .41 | | | All other salts of organic acids | 121,808 | 82,660 | 22,184 | .27 | | | Aldehydes and Ketones | | | | | | | Total | 8,288,347 | 3,220,793 | 185,073 | .06 | | | Acetaldehyde | 1,300,450 | 242,376 | 13,192 | .05 | | | Acetone, total | 1,330,178 | 841,222 | 40,197 | .0: | | | From isopropyl alcohol | 881,020
449,158 | 478,444
362,778 | 24,943
15,254 | .0: | | | 2-Butanone (Methyl ethyl ketone) | 399,077 | 351,783 | 38,896 | .1 | | | Chloral (Trichloroacetaldehyde) | 70,456 | | | • • • | | | Formaldehyde (37% by weight) | 3,712,568 | 1,359,981 | 36,751 | •0 | | | -Hydroxy-4-methyl-2-pentanone (Diacetone alcohol) | | 30,818 | 3,877 | .1 | | | 4-Methyl-2-pentanone (Methyl isobutyl ketone)All other aldehydes and ketones | 198,387
1,277,231 | 167,977
226,636 | 20,635
31,525 | .1 | | | Alcohols, Monohydric, Unsubstituted | | | | | | | Total | 8,813,287 | 4,264,844 | 280,652 | .0 | | | Alcohols, C, or lower, totalButyl alcohols: | 8,344,716 | 4,004,199 | 242,103 | .0 | | | n-Butvl alcohol (n-Propvlcarbinol) | 396,934 | 234,469 | 22,111 | .0 | | | Isobutyl alcohol (Isopropylcarbinol) | 92,918 | 73,947 | 5,577 | .0 | | | Ethyl alcohol, synthetic 11 | 1,881,275 | 1,175,924 | 72,902 | .0 | | | 2-Ethyl-1-hexanol | 318,902
99,994 | 148,660
98,721 | 17,027
11,711 | .1 | | | Isopropyl alcohol | 1,714,308 | 695,079 | 41,565 | | | | Methanol, synthetic | 3,268,923 | 1,373,497 | 44,776 | .0 | | | All other, including mixtures | 571,462 | 203,902 | 26,434 | .] | | | Alcohols, C ₁₀ or higher, total | 468,571 | 260,645 | 38,549 | | | | Isodecyl alcohol | | 72,476 | 8,798
455 | .3 | | | 1 Herodeconol (Cetyl slochol) | 1 673 | 1 408 | | | | | 1-Hexadecanol (Cetyl alcohol)All other, including mixtures | 1,673
344,755 | 1,408
186.761 | 29,296 | | | | 1-Hexadecanol (Cetyl alcohol) | 1,673 | | | .1 | | | 1-Hexadecanol (Cetyl alcohol)All other, including mixtures | 1,673 | | | | | | 1-Hexadecanol (Cetyl alcohol) | 1,673
344,755 | 186.761 | 29,296
376,847
211,623 | .1 | | | 1-Hexadecanol (Cetyl alcohol) | 1,673
344,755
4,127,227
2,890,675
2,081,156 | 2,870,871
1,886,163
1,250,384 | 29,296
376,847
211,623
101,888 | ī.
 | | | 1-Hexadecanol (Cetyl alcohol) | 1,673
344,755
4,127,227
2,890,675
2,081,156
80,836 | 2,870,871
1,886,163
1,250,384
65,603 | 29,296
376,847
211,623
101,888
15,351 | | | | 1-Hexadecanol (Cetyl alcohol) | 1,673
344,755
4,127,227
2,890,675
2,081,156
80,836
258,826 | 2,870,871
1,886,163
1,250,384
65,603
215,480 | 29,296
376,847
211,623
101,888
15,351
21,120 | | | | 1-Hexadecanol (Cetyl alcohol) | 1,673
344,755
4,127,227
2,890,675
2,081,156
80,836
258,826
65,801 | 2,870,871
1,886,163
1,250,384
65,603
215,480
52,097 | 29,296
376,847
211,623
101,888
15,351
21,120
10,339 | .: | | | 1-Hexadecanol (Cetyl alcohol) | 1,673
344,755
4,127,227
2,890,675
2,081,156
80,836
258,826 | 2,870,871
1,886,163
1,250,384
65,603
215,480 | 29,296
376,847
211,623
101,888
15,351
21,120 | .: | | | 1-Hexadecanol (Cetyl alcohol) | 1,673
344,755
4,127,227
2,890,675
2,081,156
80,836
258,826
65,801
404,056
134,187
1,102,365 | 186.761 2,870,871 1,886,163 1,250,384 65,603 215,480 52,097 302,599 140,767 843,941 | 29,296
376,847
211,623
101,888
15,351
21,120
10,339
62,925
27,868
137,356 | | | | 1-Hexadecanol (Cetyl alcohol) | 1,673
344,755
4,127,227
2,890,675
2,081,156
80,836
258,826
65,801
404,056
134,187 | 2,870,871 1,886,163 1,250,384 65,603 215,480 52,097 302,599 140,767 843,941 64,738 | 29,296
376,847
211,623
101,888
15,351
21,120
10,339
62,925
27,868
137,356
11,164 | .: | | | 1-Hexadecanol (Cetyl alcohol) | 1,673
344,755
4,127,227
2,890,675
2,081,156
80,836
258,826
65,801
404,056
134,187
1,102,365 | 186.761 2,870,871 1,886,163 1,250,384 65,603 215,480 52,097 302,599 140,767 843,941 | 29,296
376,847
211,623
101,888
15,351
21,120
10,339
62,925
27,868
137,356 | | | TABLE 21A.--Miscellaneous chemicals: U.S. production and sales, 1966--Continued | | | | Sales | | | |--|--------------------|---------------------|------------------|----------------------------|--| | Chemical | Production - | Quantity | Value | Unit
value ¹ | | | MISCELLANEOUS CHEMICALS, ACYCLICContinued | | | | | | | Polyhydric Alcohols and Their Esters and EthersContinued | | | | | | | | 1,000 | 1,000 | 1,000 | Per | | | Polyhydric alcohol ethersContinued | pounds | pounds | dollars | pound | | | 2-Ethoxyethanol (Ethylene glycol monoethyl ether) | ••• | 49,437 | 7,842 | \$0.16 | | | 2-(2-Ethoxyethoxy)ethanol (Diethylene glycol monoethyl ether) | 33,916 | 23,976 | 4,210 | .18 | | | 2-[2-(2-Ethoxyethoxy)ethoxy]ethanol (Triethylene glycol | | | | | | | monoethyl ether) | 3772 404 | 3,773 | 538 | .14
.18 | | | Glycerol tri(polyoxypropylene) ether | 173,896
96,264 | 149,250
77,260 | 26,760
12,814 | .17 | | |
2-Methoxyethoxy)ethanol (Diethylene glycol mono- | 70,204 | 77,200 | 12,014 | • | | | methyl ether) | 8,837 | | | • • • | | | 2-[2-(2-Methoxyethoxy)ethoxy]ethanol(Triethylene glycol | | | | | | | monomethyl ether) | 5,245 | ••• | ••• | ••• | | | 1-Methoxy-2-propanol
Polyethylene glycol | 10,603
41,362 | 36,492 | 8,875 | | | | Polypropylene glycol | 100,558 | 86,522 | 14,147 | .16 | | | Triethylene glycol | 59,065 | 49,894 | 8,307 | .17 | | | All other ethers of polyhydric alcohols | 284,743 | 118,957 | 22,001 | .18 | | | Esters of Monohydric Alcohols | | | | | | | Total | 1,912,276 | 940,372 | 155,845 | .17 | | | Butyl acetates, total | 129,543 | 135,215 | 12,885 | .10 | | | n-Butvl acetate | 84,560 | 86,403 | 8,367 | .10 | | | All other | 44,983 | 48,812 | 4,518 | .09 | | | Dibutyl maleate | 6,233 | ••• | ••• | ••• | | | Dilauryl 3,3'-thiodipropionate | 1,537 | 1,400 | 1,368 | .98
.10 | | | Ethyl acetate, 854Ethyl acrylate | 121,596
129,995 | 114,909
58,656 | 11,218
12,159 | .21 | | | Ethylene carbonate | | 1,064 | 407 | .38 | | | Iso-octvl mercaptoacetate | 2,369 | 2,150 | 1,493 | .69 | | | Isopropyl acetate | 47,636 | 41,964 | 4,577 | .11 | | | Methyl acetate | 8,785 | 30,778 | 12,790 | | | | Phosphorus acid esters, not elsewhere specified Vinyl acetate, monomer | 48,461
605,544 | 254,239 | 27,204 | .11 | | | All other esters of monohydric alcohols | 810,577 | 299,997 | 71,744 | .24 | | | Halogenated Hydrocarbons | | | | | | | Total | 11,564,094 | 4,527,697 | 509,409 | .11 | | | Carbon tetrachloride | 647,959 | 615,360 | 42,201 | .07 | | | Chlorinated paraffins | 60,051 | 60,734 | 7,936 | .13 | | | Chlorodifluoromethene | | 56,472 | 35,640 | .63 | | | Chloroform | 676,953 | 274,740 | 18,315 | .07
.08 | | | Chloroform | 178,953
236,889 | 143,558
104,224 | 10,815
7,473 | .07 | | | Dichlorodifluoromethane | 286,326 | 266,894 | 75,275 | .28 | | | 1.2-Dichloroethane (Ethylene dichloride) | 3,616,599 | 291,029 | 12,261 | .04 | | | Dichloromethane (Methylene chloride) | 267,213 | 225,833 | 22,494 | .10 | | | 1.2-Dichloropropane (Propylene dichloride) | 76,283 | 10, 017 | 0 000 | | | | Dichlorotetrafluoroethane | 462,678 | 17,211
424,797 | 9,928
34,491 | .08 | | | 1.1.1-Trichloroethane (Methylchloroform) | 242,943 | 249,683 | 27,853 | .11 | | | Trichloroethylene | 480,219 | 462,853 | 39,095 | .08 | | | Trichlorofluoromethane | 170,350 | 155,004 | 31,147 | .20 | | | Vinyl chloride, monomer (Chloroethylene) | 2,499,549 | 836,172 | 49,552 | .06 | | | All other halogenated hydrocarbons | 1,661,129 | 343,133 | 84,933 | .25 | | TABLE 21A .-- Miscellaneous chemicals: U.S. production and sales, 1966--Continued | Chemical | Production | Sales | | | | |---|-----------------------|-----------------------|-----------------------|----------------------------|--| | | | Quantity | Value | Unit
value ¹ | | | MISCELLANEOUS CHEMICALS, ACYCLICContinued | | | | | | | All Other Miscellaneous Acyclic Chemicals | 1,000
pounds | 1,000
pounds | 1,000
dollars | Per
pound | | | Total | 5,480,678 | 1,947,276 | 585,070 | \$0.30 | | | 2-Butanone peroxidetert-Butyl hydroperoxidetert-Butyl peroxide (Di-tert-butyl peroxide) | 1,896
176
1,367 | 1,828
179
1,367 | 2,782
311
1,943 | 1.52
1.74
1.42 | | | Carbon disulfide | 752,296
28,446 | 544,818 | 22,362 | .04 | | | Decancyl peroxide | 1,028
3,417,762 | 925 | 1,259 | 1.36 | | | Ethylene oxideEthyl ether, all grades | 2,326,901
107,222 | 304,162
93,911 | 29,598
6,032 | .10 | | | Isopropyl ether | 11,125 | 4,881 | 396 | .08 | | | Propylene oxide | 710,471 | 83,257 | 8,648 | .10 | | | All other epoxides, ethers, and acetals | 262,043
1,891 | 1,791 | 1,748 | .98 | | | Phosgene (Carbonyl chloride) | 329,751
5,224 |
5,070 | 1,137 | | | | Sodium methoxide (Sodium methylate) | 5,134 | 3,741 | 1,199 | .32 | | | Tetraethyllead Tetramethyllead | 543,406
109,328 | . 557,740
95,648 | 299,276
49,865 | .54 | | | Zinc formaldehydesulfoxylate | 1,248 | 1,246 | 577 | .46 | | | All other | 281,725 | 246,712 | 157,937 | .64 | | 1 Calculated from rounded figures. Quantities are given on the basis of solid naphthenate, tallate, or linoleate content. 6 Production of urea in primary solution totaled 3,543,436 thousand pounds. Includes estimated values for sales of urea in nitrogen compounds. 9 Statistics exclude production and sales of potassium and sodium oleate. Statistics on these cleates are included in the section "Surface-Active Agents." 10 Statistics exclude production and sales of potassium and sodium stearates. Statistics on these stearates are included in the section "Surface-Active Agents." 11 Statistics on production of ethyl alcohol from natural sources by fermentation are issued by the Alcohol The West Tational Parents Service Tax Unit, U.S. Internal Revenue Service. ² Statistics exclude production and sales of tricresyl phosphate. Statistics on tricresyl phosphate are given in the section "Plasticizers." ⁴ Statistics exclude production and sales of copper napthenate. Statistics on copper naphthenate are given in the section "Pesticides and Related Products." Statistics exclude production and sales of fatty amines. Statistics on fatty amines are given in the section "Surface-Active Agents." In addition, sales of recovered acetic acid totaled 75,812 thousand pounds, valued at 4,359 thousand dollars. # PART III. LIST OF INDIVIDUAL PRODUCTS, BY GROUPS, AND NAMES OF MANUFACTURERS This section of the report consists of (1) a series of tables that supplement the statistical information given in parts I and II, and (2) a Directory of Manufacturers. The tables with numbers that include the letter "B" supplement the tables in part I and II with numbers that include the letter "A"; for example, table 8B in part III supplements table 8A in part II. Each table in part III lists the individual items in each group for which data on production or sales were reported for 1966. The tables include data on only those chemicals for which the volume of production or sales in 1966 exceeded 1,000 pounds or for which the value of sales exceeded \$1,000. Where separate statistics for an item are given in the tables in part I or part II, an asterisk (*) precedes the name of the item in the tables in part III. The manufacturers of each product are indicated by identification codes which are listed in the Directory of Manufacturers (table 22). A few companies, however, have specifically requested that they not be identified as having produced or sold certain items. These manufacturers are indicated by a small letter "x" in the tables. ## Tar Crudes TABLE 4B. -- Tar crudes for which U.S. production or sales were reported, identified by manufacturer, 1966 [Tar crudes for which separate statistics are given in table 4A are marked below with an asterisk (*); products not so marked do not appear in table 4A because the reported data are accepted in confidence and may not be published. Manufacturers' identification codes shown below are taken from table 22. Table 22 identifies all U.S. producers of tar crudes (except producers that report to the Division of Bituminous Coal, U.S. Bureau of Mines)] | Product | Manufacturers' identification codes (according to list in table 22)1 | |------------------|---| | *Crude light oil | CBT. ² ACY, KPP. ACY, KPP. ACY, KPP. ACY, NEW, PAI. ACP, PAI. ACP, PAI. ACP, KPT. COP. KPT. ACP, KPT, PRD, RIL. ACP, COP, KPT, RIL. ACP, COP, KPT, PRD. ACP, CBT, COP, HUS, KPT, RIL, WTC. ACP, JEN, KPT, RIL. | Does not include manufacturers' identification codes for producers that report to the Division of Bituminous Coal, U.S. Bureau of Mines. These producers are listed in the U.S. Bureau of Mines Mineral Industry Survey, August 29, 1967, entitled "Coke Producers in the U.S. in 1966." 2 Crude light oil production and sales of this company are not included with the U.S. Bureau of Mines figures given in table 4A. ## Crude Products From Petroleum and Natural Gas for Chemical Conversion TABLE 5B.--Crude products from petroleum and natural gas for chemical conversion for which U.S. production or sales were reported, identified by manufacturer, 1966 [Crude products from petroleum and natural gas for chemical conversion for which separate statistics are given in table 5A are marked below with an asterisk (*); products not so marked do not appear in table 5A because the reported data are accepted in confidence and may not be published. Manufacturers' identification codes shown below are taken from table 22. An x signifies that the manufacturer did not consent to his identification with the designated product] | Chemical | Manufacturers' identification codes (according to list in table 22) | |---|---| | AROMATICS AND NAPHTHENES | | | | | | *Benzene (except motor grade): | ACU, APR, ASH, ATR, CCP, COR, CSD, DLH, DXS, ENJ, GOC, | | 20.00.0, 1 | GRS, MOC, MON, PLC, RIC, SHO, SKO, SM, SNT, SOG, SUN | | | TOC, TX, UOC, VEL, VPT. | | *Benzene, 2° | ACC, CO, DOW, SHO, SOC. | | Cresylic acid, crude | ATR, PRD, RIC, SHO. | | *Naphthalene, all grades | ASH, COL, MON, SUN, TID. | | *Naphthenic acids: Acid number lower than 150 | RIC, SUN, TX. | | *Acid number 150-199 | PRD, RIC, SM, SOC, SUN. | | Acid
number 200-224 | PRD, RIC, SM, SOC. | | Acid number 225-249 | soc. | | *Sodium carbolate and phenate, crude | ATR, GOC, SIN. | | *Toluene: | AGU AMB GOD GOD DOU THE GOD THE COLOR | | *Nitration grade, 1° | | | | SHC, SHO, SIN, SNT, SOG, SUN, TOC, TX, UCC, UOC, VEI | | *Pure commercial grade, 2° | DOW, MON, RIC. | | *Solvent grade | CO, FG, SKO. | | *All other | ACC, COR, CSD, CSO, DXS, ELP, GRS, PLC, RIC, SHO, SM, | | *Yerlanda miyadı | SOC, TOC, TX, VPT. | | *Xylenes, mixed: Aviation grade | CSD, CSO, SOG. | | *3° | ATR, COR, DLH, MOC, MON, SNT, UOC. | | 5° | ASH, SIN, SUN, TX. | | All other | CCP, COR, CSD, CSO, GRS, LEN, RIC, SHO, SM, SOC, SOG, | | | SUN, TOC. | | *All other aromatics, naphthenes, distillates and solvents | ACC, DUP, ELP, ENJ, FG, GOC, JCC, LEN, MOC, MON, OMC, | | BOT (C) (B) | PLC, SHC, SM, SOC, SOG, SOI, USI, VPT. | | ALIPHATIC HYDROCARBONS | , | | C ₁ hydrocarbon: Methane | CCP, MON. | | *Co hadrogerhone: | , | | *Acetylene | ACY, DOW, DUP, MNO, MON, UCC, x. | | *Ethane | ACU, CCP, CSO, ENJ, MON, PAN, SHC, SHO, SM, SOI, | | *Ethylene | UCC, USI. | | *CorrA Terre | BFG, CBN, CCP, CSO, DOW, DUP, EKX, ELP, ENJ, GOĆ, JCC, KPP, MON, OMC, PLC, RIC, SHC, SM, SNO, UCC, USI. | | C2 and C3 hydrocarbons, mixed | COR, GYR, MON, PLC. | | *Ca hydrogarbons: | ,,, . <u>.</u> | | *Propane | AMO, APR, ASH, CCP, CSD, CSO, DXS, ENJ, GOC, GRS, OMC, | | | PAN, PLC, SHM, SHO, SIN, SM, SNT, SOG, SOI, SPI, UCC | | *Propylene | UOC, USI. | | *LIODATERIE | AMO, ASH, BFG, CBN, CCP, CSO, DOW, EKX, ELP, ENJ, GOC, JCC, MCC, MON, PLC, RIC, SHC, SHO, SIN, SIO, SM, SNT | | | SOG, SOI, SPI, SUN, UCC, UCC. | | *C ₄ hydrocarbons: | ,,,, | | *1,3-Butadiene, grade for rubbers (elastomers) | CRN CDV DOW FID FAIL FDS CCC TIC MON DIG DOWN | | 71,3-bu datiene, grade 101 lubbers (cras comers) | ODN, OFF, DOW, ELF, END, FIG, GGC, TLC, MON, PLC, PII, | | | SHC, SHO, SM, SOC, SPI, TID, TUS, UCC. | | *Butadiene and butylene fractions | DOW, GOC, GYR, MOC, PLC, PTT, SHC, SHO, SIN, T., SOC, | | *Butadiene and butylene fractions | SHC, SHO, SM, SOC, SPI, TID, TUS, UCC. DOW, GOC, GYR, MOC, PLC, PTT, SHC, SHO, SIM, ~, SOC, SPI. | | | SHC, SHO, SM, SOC, SPI, TID, TUS, UCC. DOW, GOC, GYR, MOC, PLC, PTT, SHC, SHO, SIN, ~, SOC, SPI. COR, CSD, DXS, GRS, OMC, PAN, SHO, SM, SNT, SUC, SOG, | | *Butadiene and butylene fractions *n-Butane | SHC, SHO, SM, SOC, SPI, TID, TUS, UCC. DOW, GCC, GYR, MOC, PLC, PTT, SHC, SHO. SIN, ~, SOC, SPI. COR, CSD, DXS, GRS, OMC, PAN, SHO, SM, SNT, SUC, SOG, SOI, UCC, USI. | | *Butadiene and butylene fractions *n-Butane 1-Butene 2-Butene | SHC, SHO, SM, SOC, SPI, TID, TUS, UCC. DOW, GOC, GYR, MOC, PLC, PTT, SHC, SHO, SIN, ~, SOC, SPI. COR, CSD, DXS, GRS, OMC, PAN, SHO, SM, SNT, SUC, SOG, | | *Butadiene and butylene fractions *n-Butane | SHC, SHO, SM, SOC, SPI, TID, TUS, UCC. DOW, GOC, GYR, MOC, PLC, PTT, SHC, SHO. SIN, T., SOC, SPI. COR, CSD, DXS, GRS, OMC, PAN, SHO, SM, SNT, SUC, SOG, SOI, UCC, USI. GOC, PLC, PTT. MON, PLC, PTT. CSO, ENJ, GOC, PLC, PTT, SHO, SOC, SPI, TX, UOC. | | *Butadiene and butylene fractions *n-Butane 1-Butene 2-Butene | SHC, SHO, SM, SOC, SPI, TID, TUS, UCC. DOW, GCC, GYR, MOC, PLC, PTT, SHC, SHO. SIA, ~, SOC, SPI. COR, CSD, DXS, GRS, OMC, PAN, SHO, SM, SNT, SUC, SOG, SOI, UCC, USI. GOC, PLC, PTT. MON, PLC, PTT. CSO, ENJ, GOC, PLC, PTT, SHO, SOC, SPI, TX, UOC. CCP, ELP, ENJ, GRS, OMC, PAN, PLC, SHO, SM, SDI, | | *Butadiene and butylene fractions | SHC, SHO, SM, SOC, SPI, TID, TUS, UCC. DOW, GOC, GYR, MOC, PLC, PTT, SHC, SHO. SIN, ~, SOC, SPI. COR, CSD, DXS, GRS, OMC, PAN, SHO, SM, SNT, SUC, SOG, SOI, UCC, USI. GOC, PLC, PTT. MON, PLC, PTT. CSO, ENJ, GOC, PLC, PTT, SHO, SOC, SPI, TX, UOC. CCP, ELP, ENJ, GRS, OMC, PAN, PLC, SHO, SM, SDI, UCC, USI. | | *Butadiene and butylene fractions *n-Butane | SHC, SHO, SM, SOC, SPI, TID, TUS, UCC. DOW, GOC, GYR, MOC, PLC, PTT, SHC, SHO. SIN, ~, SOC, SPI. COR, CSD, DXS, GRS, OMC, PAN, SHO, SM, SNT, SUC, SOG, SOI, UCC, USI. GOC, PLC, PTT. MON, PLC, PTT. CSO, ENJ, GOC, PLC, PTT, SHO, SOC, SPI, TX, UOC. CCP, ELP, ENJ, GRS, OMC, PAN, PLC, SHO, SM, SOI, UCC, USI. DXS, ENJ, PTT, SIN, UOC. | | *Butadiene and butylene fractions | SHC, SHO, SM, SOC, SPI, TID, TUS, UCC. DOW, GOC, GYR, MOC, PLC, PTT, SHC, SHO. SIN, ~, SOC, SPI. COR, CSD, DXS, GRS, OMC, PAN, SHO, SM, SNT, SUC, SOG, SOI, UCC, USI. GOC, PLC, PTT. MON, PLC, PTT. CSO, ENJ, GOC, PLC, PTT, SHO, SOC, SPI, TX, UOC. CCP, ELP, ENJ, GRS, OMC, PAN, PLC, SHO, SM, SDI, UCC, USI. | | *Butadiene and butylene fractions | SHC, SHO, SM, SOC, SPI, TID, TUS, UCC. DOW, GCC, GYR, MOC, PLC, PTT, SHC, SHO. SIN, ~, SOC, SPI. COR, CSD, DXS, GRS, OMC, PAN, SHO, SM, SNT, SUC, SOG, SOI, UCC, USI. GOC, PLC, PTT. MON, PLC, PTT. CSO, ENJ, GOC, PLC, PTT, SHO, SOC, SPI, TX, UOC. CCP, ELP, ENJ, GRS, OMC, PAN, PLC, SHO, SM, SOI, UCC, USI. DXS, ENJ, PTT, SIN, UOC. APR, BFG, ENJ, JCC, MON, PLC, SM, SOI, UCC, USI. | | *Butadiene and butylene fractions *n-Butane | SHC, SHO, SM, SOC, SPI, TID, TUS, UCC. DOW, GOC, GYR, MOC, PLC, PTT, SHC, SHO. SIN, ~, SOC, SPI. COR, CSD, DXS, GRS, OMC, PAN, SHO, SM, SNT, SUC, SOG, SOI, UCC, USI. GOC, PLC, PTT. MON, PLC, PTT. CSO, ENJ, GOC, PLC, PTT, SHO, SOC, SPI, TX, UOC. CCP, ELP, ENJ, GRS, OMC, PAN, PLC, SHO, SM, SOI, UCC, USI. DXS, ENJ, PTT, SIN, UOC. | TABLE 5B.--Crude products from petroleum and natural gas for chemical conversion for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued | Chemical | Manufacturers' identification codes
(according to list in table 22) | |--|--| | ALIPHATIC HYDROCARBONSContinued | | | *C ₅ hydrocarbonsContinued | | | All other | APR, ENJ, GYR, MON, PLC, SHC, USI. | | C ₆ hydrocarbons: | THE DIG GOO HOO | | *Hexane | ENJ, PLC, SOG, UOC. | | Neohexane (2,2-Dimethylbutane)All other | PIC.
APR, PIC. | | C- hardwagerhang: | | | Nontone | EKX, ENJ, PLC, UOC. | | VII | CSD, ENJ, GOC, HOU, SIN, SOG, SOI, TID. | | All other | PLC. | | Cs hydrocarbons: | AMD DOM MY | | *Disobutylene (Disobutene) | ATR, PTT, TX. | | n (ntene | ENJ, PLC. | | 2,2,4-Trimethylpentane (Iso-octane) | GRS, PLC. | | All other | PLC. | | Hydrocarbons, C9 and above: | ATR. | | Eicosane | AMO, ATR, ENJ, GOC, RIC, UOC. | | *Nonene (Tripropylene) | ACC, CSD, SOC, SOI. | | *Rollete (111p10p10tto)=================================== | CO, DXS, ENJ, GOC, MOC, RIC, SNT, SOC, SUN, TX, UOC. | | *Tetrapropylene Tridecene concentrate | ENJ. | | Tricecene concentrate Trisobutylene | ATR. | | All other | CO, ENJ, GOC, HOU, KEN, PLC, SOC, SUN, TID, x. | | All Other | , | | *All other aliphatic hydrocarbons and derivatives: | | | Hydrocarbons: | | | wallba clofing Molecular weight ranges: | | | 7 7 | GOC, GYR, PLC, SOC. | | 7 7 | GOC, SOC. | | 0 0 | ENJ, GOC, SOC. | | All other | EKX, GOC, SOC. | | Ethane-ethylene | TX. | | Propane-propylene mixture | GOC, TX. | | *Hydrocarbon derivatives: | DAG | | 1-Butanethiol | PAS. | | tert-Butyl-mercaptan (2-Methyl-2-propanethiol) | PLC. | | Di-tert-butyl disulfide | PAS, PIC. SOC. | | Ethyl mercaptan (Ethanethiol) Isopropyl mercaptan | | | Methyl mercaptan (Methanethiol) | ACC, PAS. | | tert-Octyl mercaptan | PAS, PLC. | | n-Propyl mercaptan (1-Propanethiol) | PAS, PLC. | | All other | EKX, PAS, PLC, SOC, UCC. | | ATT Office | | ## Cyclic Intermediates ## TABLE 7B.--Cyclic intermediates for which U.S. production or sales were reported, identified by manufacturer, 1966 [Cyclic intermediates for which separate statistics are given in table 7A are marked below with an asterisk (*); cyclic intermediates not so marked do not appear in table 7A because the reported data are accepted in confidence and may not be published. Manufacturers' identification codes shown below are taken from table 22. An x signifies that the manufacturer did not consent to his identification with the designated product] | Chemical | Manufacturers' identification codes
(according to list in table 22) | |---|---| | According to a language the land of the land | ICI. | | Aceanthrylenc[2,1-a] aceanthrylene-5,13-dione | TRC. | | 2-naphthol. | | | 5-Acetamido-2-aminobenzenesulfonic acid | GAF. | | 3-[(2-Acetamido-4-aminophenyl)azo]-1,5-naphthalenedisul- | TRC. | | fonic acid. | TOT | | 2-Acetamido-3-chloroanthraquinone α -Acetamido-p-toluenesulfonamide | ICI.
SDW. | | *Acetanilide, tech | CTN, EKT, MRK, SAL, SW. | | p-Acetanisidide | | | Acetic acid, phenyl ester | UCC. | | Acetoacetanilide | FMP, UCC. | | o-Acetoacetanisidide | FMP, SDH, UCC. | | o-Acetoacetotoluidide | FMP, UCC. | | 2',4'-Acetoacetoxylidide | FMP. | | 1'-Acetonaphthone | GIV. | | Acetone phenylhydrazone | DUP. | | p-Acetophenetidide | AAP. | | *Acetophenone, tech | ACP, SKO, UCC. | | p-Acetotoluidide
N-Acetylanthranilic acid | DUP. | | p-Acetylbenzenesulfonamide | LIL. | | p-Acetylbenzenesulfonic acid, sodium salt | LIL. | | p-Acetylbenzenesulfonylurethane | LIL. | | 1-(N-Acetyl)methylamino-4-bromoanthraquinone | AAP. | | N-Acetylsulfanilic acid, sodium salt | ALL. | | N-Acetylsulfanilyl chloride | ACY, CTN, MRK, SAL. | | Adenine | KF. | | Adenine bisulfate | KF. | | *Alkylbenzenes: | | | Dodecylbenzene (including tridecylbenzene): | ATTR CO MON MAC DIO MOO | | Straight chain Other | ATR, CO, MON, NAC, PLC, UCC, WCC. | | Other alkylbenzenes: Straight chain | co, soc. | | Alkylphenols,
mixed | GAF, ORO. | | Alkylpiperazines, mixed | HOU. | | Alkylpyridine | UCC. | | [o-(Allylcarbamoyl)phenoxy]acetic acid | LIL. | | | Intro | | 6-Allyl-o-cresol | 100. | | $\begin{array}{llllllllllllllllllllllllllllllllllll$ | | | 6-Ally1-o-cresol α-d1-5-Ally1-6-imino-1-methy1-5-(1-methy1-2-pentyny1)- barbituric acid. | ICO. | | $\begin{array}{lll} 6-\text{Allyl-o-cresol} \\ \alpha-\text{dl-5-Allyl-6-imino-l-methyl-5-(l-methyl-2-pentynyl)-} \\ \text{barbituric acid.} \\ \alpha-\text{dl-5-Allyl-5-(l-methyl-2-pentynyl)-l-methylbarbituric} \end{array}$ | 100. | | 6-Ally1-o-cresol | ICO.
LIL. | | 6-Ally1-o-cresol | ICO. LIL. SDW. | | 6-Ally1-o-cresol | ICO. LIL. SDW. ICI. | | 6-Ally1-o-cresol | ICO. LIL. LIL. SDW. ICI. GAF, TRC. | | 6-Ally1-o-cresol | ICO. LIL. LIL. SDW. ICI. GAF, TRC. DUP, GAF, NAC, TRC. | | 6-Ally1-o-cresol | ICO. LIL. LIL. SDW. ICI. GAF, TRC. DUP, GAF, NAC, TRC. CTN, SDH. | | 6-Ally1-o-cresol | ICO. LIL. LIL. SDW. ICI. GAF, TRC. DUP, GAF, NAC, TRC. | | 6-Ally1-o-cresol | ICO. LIL. SDW. ICI. GAF, TRC. DUP, GAF, NAC, TRC. CTM, SDH. CMG, GAF, TRC, YAW. | | 6-Ally1-o-cresol | ICO. LIL. SDW. ICI. GAF, TRC. DUP, GAF, NAC, TRC. CTM, SDH. CMG, GAF, TRC, YAW. | | 6-Ally1-o-cresol | ICO. LIL. SDW. ICI. GAF, TRC. DUP, GAF, NAC, TRC. CTN, SDH. CMG, GAF, TRC, YAW. TRC. | | 6-Ally1-o-cresol- α-d1-5-Ally1-6-imino-1-methy1-5-(1-methy1-2-pentyny1)- barbituric acid. α-d1-5-Ally1-5-(1-methy1-2-pentyny1)-1-methylbarbituric acid. N-Ally1salicy1amide | ICO. LIL. LIL. SDW. ICI. GAF, TRC. DUP, GAF, NAC, TRC. CTN, SDH. CMG, GAF, TRC, YAW. TRC. TRC. | | 6-Ally1-o-cresol- α-d1-5-Ally1-6-imino-1-methy1-5-(1-methy1-2-pentyny1)- barbituric acid. α-d1-5-Ally1-5-(1-methy1-2-pentyny1)-1-methylbarbituric acid. N-Ally1salicy1amide | ICO. LIL. LIL. SDW. ICI. GAF, TRC. DUP, GAF, NAC, TRC. CTN, SDH. CMG, GAF, TRC, YAW. TRC. TRC. NAC. CMG, TRC. | | 6-Ally1-o-cresol- α-d1-5-Ally1-6-imino-1-methy1-5-(1-methy1-2-pentyny1)- barbituric acid. α-d1-5-Ally1-5-(1-methy1-2-pentyny1)-1-methylbarbituric acid. N-Ally1salicy1amide | ICO. LIL. LIL. SDW. ICI. GAF, TRC. DUP, GAF, NAC, TRC. CTN, SDH. CMG, GAF, TRC, YAW. TRC. TRC. NAC. CMG, TRC. PCW. | | 6-Ally1-o-cresol- α-d1-5-Ally1-6-imino-1-methy1-5-(1-methy1-2-pentyny1)- barbituric acid. α-d1-5-Ally1-5-(1-methy1-2-pentyny1)-1-methylbarbituric acid. N-Ally1salicy1amide | ICO. LIL. LIL. SDW. ICI. GAF, TRC. DUP, GAF, NAC, TRC. CTN, SDH. CMG, GAF, TRC, YAW. TRC. TRC. NAC. CMG, TRC. PCW. TRC. | | 6-Ally1-o-cresol- \(\alpha \dagger{d} -5-Ally1-6-imino-1-methy1-5-(1-methy1-2-pentyny1)-barbituric acid. \(\alpha \dagger{d} -5-Ally1-5-(1-methy1-2-pentyny1)-1-methylbarbituric acid. \(N-Ally1salicy1amide | ICO. LIL. LIL. SDW. ICI. GAF, TRC. DUP, GAF, NAC, TRC. CTN, SDH. CMG, GAF, TRC, YAW. TRC. TRC. NAC. CMG, TRC. PCW. TRC. AAP, ACY, DUP, GAF, ICI, MAY, NAC, TRC. | | 6-Ally1-o-cresol- \(\alpha \dagger{d} -5-Ally1-6-imino-1-methy1-5-(1-methy1-2-pentyny1) - barbituric acid. \(\alpha \dagger{d} -41-5-Ally1-5-(1-methy1-2-pentyny1) - 1-methylbarbituric acid. \(\alpha \dagger{d} -41-5-Ally1-5-(1-methy1-2-pentyny1) - 1-methylbarbituric acid. \(\alpha \dagger{d} -41\) Allylsalicylamide | ICO. LIL. LIL. SDW. ICI. GAF, TRC. DUP, GAF, NAC, TRC. CTN, SDH. CMG, GAF, TRC, YAW. TRC. TRC. NAC. CMG, TRC. PCW. TRC. AAP, ACY, DUP, GAF, ICI, MAY, NAC, TRC. ACY, DUP, GAF, NAC, TRC. | | 6-Ally1-o-cresol- α-d1-5-Ally1-6-imino-1-methy1-5-(1-methy1-2-pentyny1)- barbituric acid. α-d1-5-Ally1-5-(1-methy1-2-pentyny1)-1-methylbarbituric acid. N-Allylsalicylamide | ICO. LIL. LIL. SDW. ICI. GAF, TRC. DUP, GAF, NAC, TRC. CTN, SDH. CMG, GAF, TRC, YAW. TRC. TRC. NAC. CMG, TRC. PCW. TRC. AAP, ACY, DUP, GAF, ICI, MAY, NAC, TRC. AAP, ACY, DUP, GAF, NAC, TRC. GAF. | | 6-Ally1-o-cresol- α-d1-5-Ally1-6-imino-1-methy1-5-(1-methy1-2-pentyny1)- barbituric acid. α-d1-5-Ally1-5-(1-methy1-2-pentyny1)-1-methylbarbituric acid. N-Allylsalicylamide | ICO. LIL. LIL. SDW. ICI. GAF, TRC. DUP, GAF, NAC, TRC. CTN, SDH. CMG, GAF, TRC, YAW. TRC. TRC. NAC. CMG, TRC. PCW. TRC. AAP, ACY, DUP, GAF, ICI, MAY, NAC, TRC. AAY, DUP, GAF, NAC, TRC. GAF. DUP. | | 6-Ally1-o-cresol- \(\alpha \dagger{d} -5-Ally1-6-imino-1-methy1-5-(1-methy1-2-pentyny1) - barbituric acid. \(\alpha \dagger{d} -5-Ally1-5-(1-methy1-2-pentyny1) - 1-methylbarbituric acid. \(\text{N-Ally1salicy1amide} | ICO. LIL. LIL. SDW. ICI. GAF, TRC. DUP, GAF, NAC, TRC. CTN, SDH. CMG, GAF, TRC, YAW. TRC. TRC. NAC. CMG, TRC. PCW. TRC. AAP, ACY, DUP, GAF, ICI, MAY, NAC, TRC. ACY, DUP, GAF, NAC, TRC. DUP. DUP. DUP. | | 6-Ally1-o-cresol- α-d1-5-Ally1-6-imino-1-methy1-5-(1-methy1-2-pentyny1)- barbituric acid. α-d1-5-Ally1-5-(1-methy1-2-pentyny1)-1-methylbarbituric acid. N-Allylsalicylamide | ICO. LIL. LIL. SDW. ICI. GAF, TRC. DUP, GAF, NAC, TRC. CTN, SDH. CMG, GAF, TRC, YAW. TRC. TRC. NAC. CMG, TRC. PCW. TRC. AAP, ACY, DUP, GAF, ICI, MAY, NAC, TRC. AAY, DUP, GAF, NAC, TRC. GAF. DUP. | TABLE 7B.--Cyclic intermediates for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued | Chemical | | N | | | | | fication
in tabl | • | | |---|------------|--------|--------|--------|------|------|---------------------|---|--| | | | | | | | | | | | | p-Aminobenzamide*1-Amino-4-benzamidoanthraquinone | SDH. | MAY. | NAC, | TRC. | | | | | | | *1_Amino_5_benzamidoanthraquinone | | | NAC, | | | | | | | | 7-[p-(p-Aminobenzamido)benzamido]-4-hydroxy-2-naphthalene- | CMG, | DUP. | | | | | | | | | sulfonic acid.
*7-(p-Aminobenzamido)-4-hydroxy-2-naphthalenesulfonic acid | CMG, | DUP, | GAF, | NAC. | | | | | | | 7_(n_Aminobenzamido) -5-hydroxy-3-naphthalenesulfonic acid | VPC. | • | • | | | | | | | | 3'-Aminohenzanilide | DUP. | | | | | | | | | | 4'-Aminobenzanilide | GAF. | GAF, | MAC | | | | | | | | *2-Amino-p-benzenedisulfonic acid [SO ₃ H=1] | FMT, | | MAO. | | | | | | | | 2 Aminohongimidegole | EK. | | | | | | | | | | 5 Amino 3 hengimidegolinone | DUP. | | | | | | | | | | p-Aminobenzoic acid, tech | GAF. | LEM. | | | | | | | | | p-Aminobenzoic acid, butyl esterp-Aminobenzoic acid, 2-(dimethylamino)ethyl ester | SDW. | | | | | | | | | | 4-Aminobenzophenone | DUP. | | | | | | | | | | 2_Amino_6_henzothiazolecarboxvlic acid | DUP. | | | | | | | | | | 2_(m_Aminobenzovl)-o-acetanisidide | GAF. | | | | | | | | | | p-Amino-N-benzyl-N-ethylbenzenediazonium chlorostannate | ESA. | | | | | | | | | | p-Amino-N-benzyl-N-ethylbenzenediazonium chlorozincate
2-Amino-1-bromo-3-chloroanthraquinone | ICI. | | | | | | | | | | *1-Amino-4-bromo-9,10-dihydro-9,10-dioxo-2-anthracene- | | DUP, | GAF, | ICI, | NAC, | TRC. | | | | | sulfonic acid and sodium salt. | | | | - | | | | | | | *1_Amino_2_bromo_4_hydroxyanthraguinone | | DUP, | GAF, | ICC, | TRC. | | | | | | 1-Amino-4-bromo-2-methylanthraquinone | ICI. | TCT | TIPC | | | | | | | | *1-Amino-2-bromo-4-p-toluidinoanthraquinone | | | TRC. | MAY. | NAC. | TRC. | | | | | 1_Amino_8_chloroanthraquinone | DUP. | , | , | , | , | | | | | | 2_Amino_l_chloroanthraquinone | | GAF. | | | | | | | | | 2_Amino_3_chloroanthraquinone | | | TRC. | | | | | | | | 4-Amino-6-chloro-m-benzenedisulfonamide4-Amino-6-chloro-m-benzenedisulfonamide hydrochloride | ABB. | | | | | | | | | | 4-Amino-6-chloro-m-benzenedisuiionamide nydrochloride
5-Amino-2-chlorobenzoic acid | TRC. | | | | | | | | | | 2_Amino_5_chlorobenzophenone | 1 - | ICI | | | | | | | | | 2_Amino_6_chlorobenzothiazole hydrochloride | DUP. | | | | | | | | | | *o_(3_Amino_4_chlorobenzovl)benzoic acid | | GAF, | , ICI. | | | | | | | | 2-Amino-5-chloro-p-cumenesulfonic acid2-Amino-5-chloro-4-ethylbenzenesulfonic acid | SW. | SW. | | • | | | | | | | *3_Amino_5_chloro_2_hydroxybenzenesulfonic acid | 1 | | TRC. | | | | | | | | 2. Amino. 4. chloro. 6. ni trophenol. | CMG. | - | | | | | | | | | 2_Amino_4_chlorophenol==================================== | | | , NAC. | | | | | | | | 2-Amino-6-chloropyrazine | ACY. | | | | | | | | | | 2-Amino-5-chloro-p-toluenesulfonic acid [SO ₃ H=1] | | , HSC | . sw. | | | | | | | | *6-Amino-4-chloro-m-toluenesulfonic acid [SO3H=1] | , . | | , HSC, | NAC, | SW. | | | | | | 2_Amino_n_creso] | TRC | | | | | | m n.a | | | | *1-Amino-2,4-dibromoanthraquinone | | | , GAF, | , ICC, | ICI, | NAC, | TRC. | | | | 5(and 8)-Amino-6,8(and 5,7)-dibromo-9,10-dihydro-9,10-dioxo-1-anthracenesulfonic acid. | ICI. | • | | | | | | | | | 2-Amino-4.5-dichlorobenzenesulfonic acid | sw. | | | | | | | | | | 6-Amino-2.4-dichloro-m-cresol | x. | | | | | | | | | | 4'-Amino-2'.5'-diethoxybenzanilide | ALL | | | | | | | | | | 1-Amino-9,10-dihydro-9,10-dioxo-2-anthracenesulfonic acid | GAF | TRC | | | | | | | | | 5(and 8) -Amino-9,10-dihydro-9,10-dioxo-1-anthracenesulfonic acid. | 101 | , 1110 | • | | | | | | | | 1-Amino-9,10-dihydro-9,10-dioxo-2-anthroic acid | DUP | | | | | | | | | | *1-Amino-9,10-dihydro-9,10-dioxo-4-p-toluenesulfonamido-2- | AAP | , DUP | , GAF | • | | | | | | | anthracenesulfonic acid, sodium salt. | moo | | | | | | | | | | 5-Amino-4,5'-dihydroxy-3,4'-[(2-methoxy-5-methyl-
p-phenylene)bis(azo)]-di-2,7-naphthalenedisulfonic acid, | TRC | • | | | | | | | | | p-pnenylene/bis(azo)j-di-2,7-naphtmarenedisdifonic acid,
5'-benzenesulfonate. | | | | | | | | | | | 2-Amino-4-(α,α-dimethylbenzyl)phenol | TRC | | | | | | | | | | 2-Amino-4.6-dinitrophenol and salt | x. | | | | | | | | | | 3-Amino-4-ethoxyacetanilide | AAP | | | | | | | | | | 3-Amino-9-ethylcarbazole | ICO
ESA | , SDC | • | | | | | | | | p-Amino-N-ethyl-N-hydroxyethyl benzenediazonium
chlorozincate. | EASA. | • | | | | | | | | | | SDW | | | | | | | | | | 3-Amino-α-ethylhydrocinnamic acid | | | | | | | | | | | 3-Amino-α-ethylhydrocinnamic acidp-Amino-N-ethyl-N-1-naphthylbenzamide2-Amino-N-ethyl-5-nitrobenzenesulfonanilide | GAF | | | | | | | | | TABLE 7B.--Cyclic intermediates for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued | Chemical | Manufacturers' identification
codes
(according to list in table 22) | |---|--| | 1 Amino / hydroxyronthmoguinons | CAP | | 1-Amino-4-hydroxyanthraquinone2-Amino-3-hydroxyanthraquinone | GAF. NAC. | | 1-Amino-4-hydroxy-2-methoxyanthraquinone | TRC. | | 4-Amino-5-hydroxy-2,7-naphthalenedisulfonic acid, benzenesulfonate. | TRC. | | 3-Amino-5-hydroxy-2,7-naphthalenedisulfonic acid (2R acid), monosodium salt. | DUP, NAC. | | 4-Amino-5-hydroxy-1,3-naphthalenedisulfonic acid (Chicago acid), monosodium salt. | DUP, NAC. | | *4-Amino-5-hydroxy-2,7-naphthalenedisulfonic acid (H acid), monosodium salt. | DUP, MON, NAC. | | *4-Amino-3-hydroxy-1-naphthalenesulfonic acid (1,2,4 acid)4-Amino-5-hydroxy-1-naphthalenesulfonic acid (S acid), sodium salt. | ACY, GAF, NAC, TRC, VPC.
NAC. | | *6-Amino-4-hydroxy-2-naphthalenesulfonic acid (Gamma acid), sodium salt. | DUP, GAF, NAC, TRC. | | *7-Amino-4-hydroxy-2-naphthalenesulfonic acid (J acid), | BKS, CMG, DUP, NAC, TRC. | | sodium salt. | mpa | | 3'-Amino-2'-hydroxy-5'-nitroacetanilide | TRC. | | 1-(6-Amino-1-hydroxy-3-sulfo-2-naphthylazo)-6-nitro-2-naphthol-4-sulfonic acid. | TRC. | | 5-Aminoisophthalic acid | GAF. | | 4-Amino-3- $(\beta$ -methanesulfanamidoethyl)-N,N-diethylaniline hydrochloride. | EKT. | | *N-(4-Amino-3-methoxy-1-anthraquinony1)-p-toluenesulfona-
mide. | AAP, DUP, GAF. | | 5-Amino-6-methoxy-2-naphthalenesulfonic acid | NAC, TRC. | | m-[(4-Amino-3-methoxyphenyl)azo]benzenesulfonic acid | DUP, TRC. | | 8-Amino-6-methoxyquinoline | SDW. | | naphthalenedisulfonic acid, benzenesulfonate. | 1110. | | 3-[(4-Amino-5-methoxy-o-toly1)azo]-1,5-naphthalene- | TRC. | | disulfonic acid. 7-[(4-Amino-5-methoxy-o-tolyl)azo]-1,3-naphthalene- | TRC. | | disulfonic acid. | | | *4'-Amino-N-methylacetanilide | CMG, GAF, NAC. | | 1-Amino-2-methylanthraquinone | DUP, ICI. | | stilbenedisulfonic acid. | | | 8-Amino-7-methyl-1-phenazinol (Tolazine base) | NAC. | | 2-Amino-3-methylpyridine | RIL. | | 2-Amino-6-methylpyridine | RIL. | | 2-Amino-4-methylpyrimidine (2-Amino-4-methyl-1,3-diazine) 2-Amino-4-(methylsulfonyl)phenol | ACY. | | 2-Amino-5-methyl-1,3,4-thiadiazole | NAC, TRC. | | 1-Amino-2-methyl-4-p-toluidinoanthraquinone | ICI. | | 1-Aminonaphth[2,3-c] acridan-5,8,14-trione | DUP. | | 4-Aminonaphth[2,3-c]acridan-5,8,14-trione | DUP. | | *2-Amino-1,5-naphthalenedisulfonic acid | ACY, SDH, SW. | | 3-Amino-1,5-naphthalenedisulfonic acid (C acid) | GAF, TRC. | | 3-Amino-2,7-naphthalenedisulfonic acid | NAC, TRC. | | 4-Amino-1,6-naphthalenedisulfonic acid | DUP. | | *6-Amino-1,3-naphthalenedisulfonic acid (Amino I acid) | ACY, DUP, NAC, TRC. | | *7-Amino-1,3-naphthalenedisulfonic acid (Amino G acid) 6-Amino-1-naphthalenesulfonamide | ACY, DUP, GAF, NAC, TRC. | | 1-Amino-2-naphthalenesulfonic acid (o-Naphthionic acid) | DUP. | | 2-Amino-1-naphthalenesulfonic acid (Tobias acid) | ACY, HSC, SW. | | *4-Amino-1-naphthalenesulfonic acid (Naphthionic acid) 4-Amino-1-naphthalenesulfonic acid, sodium salt | ACY, DUP, NAC. | | 4(and 5)-Amino-1-naphthalenesulfonic acid | ACY, TRC. | | 5-Amino-l-naphthalenesulfonic acid (Laurent's acid) | DUP, NAC. | | *5-Amino-2-naphthalenesulfonic acid (1,6-Cleve's acid) *5(and 8)-Amino-2-naphthalenesulfonic acid (Cleve's acid, mixed). | ALL, DUP, GAF, NAC, TRC. ALL, DUP, NAC, TRC. | | *6-Amino-2-naphthalenesulfonic acid (Broenner's acid)6(and 7)-Amino-1-naphthalenesulfonic acid | NAC, SNA, TRC.
DUP, VPC. | TABLE 7B.--Cyclic intermediates for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued | Chemical | Manufacturers' identification codes
(according to list in table 22) | |--|--| | | | | *8-Amino-1-naphthalenesulfonic acid (Peri acid) | DUP, NAC, SDC, TRC. | | *8-Amino-2-naphthalenesulfonic acid (1,7-Cleve's acid) | ALL, DUP, NAC, TRC. | | 7-Amino-1,3,6-naphthalenetrisulfonic acid8-Amino-1,3,6-naphthalenetrisulfonic acid (Koch's acid) | DUP, NAC. | | 3_Amino_2_naphthoic acid | RSA. | | 5(and 8)_Amino_2_naphthol | GAF. | | *8-Amino-2-naphthol | CMG, GAF, TRC, VPC.
 DUP, GAF, NAC, TRC. | | 2_Amino_{-nitrophenol | DUP, GAF, NAC, TRC. | | 2_Amino_5_nitronhenol | NAC. | | 4_Amino_2_nitrophenol | ACY. | | 2-Amino-(p-nitrophenylazo)naphthalene | AAP. | | 2-Amino-1-(p-nitrophenyl)-1,3-propanediol | GAF, ICI, NAC, TRC. | | 2_Amino_5_nitrothiazole | ACY. | | *3'-Aminooxanilic acid | CMG, DUP, TRC. | | 4'-Aminooxanilic acid | DUP. | | 3-Amino-2-oxezolidinone | NOR. | | acid. | | | n-Aminophenethyl alcohol | EKT. | | 5_Amino_2_o_nhenetidinohenzenesulfonic acid | NAC. | | o-Aminopheno1 | SDC. ABB, DUP, SDC. | | m-[(p-Aminophenyl)azo]benzenesulfonic acid | AAP, DUP, TRC. | | *p_[(p_Aminophenyl)azo]benzenesulfonic acid | ACY, CMG, DUP, GAF, NAC, TRC. | | 7-[(4-Aminophenyl)azo]-1.3-naphthalenedisulfonic acid | TRC. | | 5-Amino-8-(phenylazo)-2-naphthol | AIL. | | 8-Amino-5-(phenylazo)-2-naphthol5-[(p-Aminophenyl)azo] salicylic acid | TRC, VPC. | | 2,2'-(m-Aminophenylimino)diethanol, diacetate ester | DUP. | | 2-(p-Aminophenyl)-6-methylbenzothiazole | DUP, NAC. | | 2-(p-Aminophenyl)-6-methyl-7-benzothiazolesulfonic acid | DUP, TRC. | | and salt.
1-(m-Aminophenyl)-5-oxo-2-pyrazoline-3-carboxylic acid | TRC, VPC | | 2_Ami nonyridine | NEP, RIL. | | 3_Aminonvridine | RIL. | | 4_Aminopyridine | NEP. | | 2-Aminopyrimidine | ACY. AAP, TRC. | | N-(4-Amino-3-sulfo-1-anthraquinonyl) anthranilic acid | GAF. | | 3'-(3-Amino-4-sulfophenylsulfamoyl)-3''-sulfamoyl- | DUP. | | 3-phthalocyaninesulfonic acid, copper derivative. | ACY MOV | | 2-Aminothiazole
3-Amino-p-toluamide | ACY, MRK. | | \[\alpha = Amino-p-toluenesulfonamide | SDW. | | 5_Amino_o_toluenesulfonanilide | GAF. | | *4-Amino-m-toluenesulfonic acid SO3H=1 | ACY, DUP, GAF. | | *6-Amino-m-toluenesulfonic acid [SO3H=1]5-Amino-2-p-toluidinobenzenesulfonic acid | DUP, HSC, NAC, SNA, SW. DUP, NAC, TRC. | | m-(4-Amino-m-tolylazo) benzenesulfonic acid | TRC. | | 3-[(4-Amino-o-tolv])azol-1.5-naphthalenedisulfonic acid | TRC. | | 7-[(4-Amino-o-tolv1)azol-1.3-naphthalenedisulfonic acid | TRC. | | *16-Aminoviolanthrone5-Amino-2,4-xylenesulfonic acid | ACY, GAF, TRC. | | *Aniline (Aniline Oil) | ACY, DOW, DUP, MOB, NAC, RUC. | | Aniline hydrochloride | ACY. | | 1-Anilino-9.10-dihvdro-9.10-dioxo-2-anthroic acid | NAC. | | 1-Anilino-4-hydroxyanthraquinone | AAP. | | 6-Anilino-4-hydroxy-2-naphthalenesulfonic acid (Phenyl gamma acid). | DUP, NAC. | | *7-Anilino-4-hydroxy-2-naphthalenesulfonic acid (Phenyl | ALT, CMG, DUP, NAC, TRC. | | J acid). | AND AGY DID WAS TOO TOO | | *Anilinomethanesulfonic acid and salt | AAP, ACY, DUP, NAC, TRC, VPC. | | *8-Anilino-1-naphthalenesulfonic acid (Phenyl peri acid) o-Anisic acid | CMG, DUP, NAC, SDC. | | n_Anisic acid | IICO. | | m Anisidine | I EK. | | wo-Anisidinep-Anisidine | AAP, DUP, MON. | | 1-n-Anisidino-4-hydroxyanthraguinone | · I AAP• | | *o-Anisidinomethanesulfonic acid | AAP, DUP, GAF, NAC, TRC, VPC. | | | | ${\tt TABLE~7B.--Cyclic~intermediates~for~which~U.S.~production~or~sales~were~reported,~identified~by~manufacturer,~1966---Continued}$ | Chemical | Manufacturers' identification codes (according to list in table 22) | | | | | | | | |---|---|--|--|--|--|--|--|--| | 2-o-Anisidino-5-nitrobenzenesulfonic acid | TRC. | | | | | | | | | p-Anisoin | CTN. | | | | | | | | | Anisole, tech | DUP, LIL. | | | | | | | | | p-Anisoyl chloride | ICO. | | | | | | | | | Anthracene, refined | ACP. | | | | | | | | | Anthranilic acid (o-Aminobenzoic acid) 1 | DUP, LEM, MEE, NAC. | | | | | | | | | Anthra[1,9-cd]pyrazol-6(2H)-one (Pyrazoleanthrone) | | | | | | | | | | Anthraquinone, 100% | DUP, GAF, TRC. | | | | | | | | | | DUP. | | | | | | | | | 1,1'-[1,5(and 1,8)-Anthraquinonylenediamino]bisnaphth | DUF. | | | | | | | | | [2,3-c]acridan-5,8,14-trione. | DID TOT | | | | | | | | | N,N'-(1,5-Anthraquinonylene)dianthranilic acid | DUP, ICI. | | | | | | | | | N, N'-(1,5-Anthraquinonylene) dioxamic acid | GAF, MEE. | | | | | | | | | (1-Anthraquinony1)-1,2-hydrazinedisulfonic acid, disodium | DUP, GAF. | | | | | | | | | salt. | TOT | | | | | | | | | Anthrone | ICI. | | | | | | | | | Arsamilic acid and salt, tech | ABB, FIM. | | | | | | | | | Aryldiamines, mixed | DA. | | | | | | | | | 4',4'''-Azobis[4-biphenylcarboxylic acid] | DUP, GAF. | | | | | | | | | 4',4'''-Azobis[N-(1-chloro-2-anthraquinony1)-4- | GAF. | | | | | | | | | biphenylcarboxamide]. | | | | | | | | | | Barbituric acid | ABB, KF, LIL. | | | | | | | | | Barbituric acid, sodium derivative | ABB, KF. | | | | | | | | | Benzaldehyde, tech | BPC, HN, VEL. | | | | | | | | | 4-[(4-Benzamido-1-anthraquinonyl)amino]naphth[2,3-c] | DUP. | | | | | | | | | acridan-5,8,14-trione. | | | | | | | | | | N-(5-Benzamido-1-anthraquinonyl)-p-toluenesulfonamide | ICI, NAC. | | | | | | | | | 1-Benzamido-4-bromoanthraquinone | AAP. | | | | | | | | | 1-Benzamido-4-chloroanthraquinone | GAF. | | | | | | | | | 1-Benzamido-5-chloroanthraquinone | ACY, DUP, GAF, ICI, MAY, NAC, TRC. | | | | | | | | | 1-(4-Benzamido-2,5-diethoxyphenyl)-3-[methyl-3- | GAF. | | | | | | | | | (2-sulfoethyl)triazene]. | | | | | | | | | | 4-Benzamido-5-hydroxy-2,7-naphthalenedisulfonic acid | TRC. | | | | | | | | | 7-Benzamido-4-hydroxy-2-naphthalenesulfonic acid | TRC. | | | | | | | | | N-(4-Benzamido-6-methoxy-m-tolyl)-N-(methylazo)glycine | GAF. | | | | | | | | | Benzanilide | DUP, PCW. | | | | | | | | | 7H-Benz[de] anthracen-7-one (Benzanthrone) | AAP, ACY, ATL, CMG, DUP, ICI, MAY, NAC, SDC, TRC. | | | | | | | | | Benzeneboronic acid | EDC. | | | | | | | | | m-Benzenedisulfonic acid | KPT. | | | |
			m-Benzenedisulfonyl chloride	NES.									Benzenesulfonamide	NES.									Benzenesulfonic acid	NES, UPF.									Benzenesulfonic acid, 2-propyn-1-ol ester	ABB.									Benzenesulfonyl chloride	NES.									1,2,4,5-Benzenetetracarboxylic acid	DUP, x.									1,2,4,5-Benzenetetracarboxylic-1,2:4,5-dianhydride	DUP, x.									1,3,5-Benzenetricarboxylic acid	ACC.									1,2,4-Benzenetricarboxylic acid, 1,2-anhydride	ACC.									1,2,4-Benzenetricarboxylic acid, 1,2-anhydride-4-acid	ICO.									chloride.	1									Benzhydrol (Diphenylmethanol)	TBK.									Benzidine hydrochloride and sulfate										Benzil (Bibenzoyl)	CWN, LAK, NAC, x.									Benzilic acid	LEM.									Benzilic acid	BPC, LEM.									Benzoic acid. tech ¹	EK.										HK, HN, MON, VEL.									Benzoin	BPC, LEM.									Benzonitrile	VEL.									Benzophenonetetracarboxylic dianhydride	GOC.									2-Benzothiazolethiol (2-Mercaptobenzothiazole), sodium	ACY, GYR, MON, USR.									salt.	l									Benzo[b]thiophen-3(2H)-one	GAF.									lH-Benzotriazole	MEE.									2H-3,1-Benzoxazine-2,4(1H)-dione	MEE.									Benzoylacetic acid, ethyl ester	FMP.									o-Benzoylbenzoic acid	ACY, DUP, GAF.									Benzoyl chloride	HK, VEL.										DUP.									2-Benzoyl-4-sulfobenzoic acid	l .									2-Benzoyl-4'-(p-toluenesulfonamido)acetanilide	EK.										l .								TABLE 7B. --Cyclic intermediates for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	Chemical	Manufacturers' identification codes (according to list in table 22)		--	--		4-(Benzylamino)-6-chloro-m-benzenedisulfonic acid	ABB.		2-(Benzylamino)ethanol	MLS.		4-Benzyl-6-chloro-3-keto-2-methyl-7-sulfamyl-1,2,4-	ABB.		benzylthiadiazine-1,1-dioxide.			4-Benzyl-6-chloro-3-keto-7-sulfamyl-1,2,4-	ABB.		henzylthiadiazine-l.l-dioxide.			1-Benzyl-4,5-dimethyl-6-(p-methoxybenzyl)-1,2,3,6-	SDW.		tetrahydropyridine oxalate.			Pongyil digulfide	CCW, FIN.		Benzyl ether (Dibenzyl ether)	BPC.		5_(Renzylethylamino)-o-toluenesulfonic acid	NAC.		N_Benzyl_N_ethyl_m_toluidine	DUP, NAC.		4.4'-Benzylidenedi-o-toluidine	ACY.		Benzyl p-nitrophenyl ether	GAF.		p-(Benzyloxy)phenol	EK.		1-Benzyl-4-phenylisonipecotic acid, benzyl ester	SDW.		1-Benzyl-4-phenylisonipecotonitrile	RIL.		4-Benzylpiperidine	HK.		Benzyl polysulfideBenzyl sulfide	BPC.		Benzyl suffideBenzyltrimethylammonium chloride	MLS.		Benzyltrimethylammonium chiorideBenzyltrimethylammonium hydroxide	MIS.		Benzyltrimethylammonium methoxide	MIS.		[3,3'-Bianthra[1,9-cd]pyrazole]-6,6'(2H,2'H)dione	DUP, GAF, TRC.		(Pyrazoleanthrone yellow).			[3,3'-Bi-7H-benz[de]anthracene]-7,7'-dione	DUP, NAC.		-[/, // _Ri_7H_henz[de]anthracene]-7.7 -dione	ACY, DUP, GAF, ICI, MAY.		11 1'_Rinanhthalenel-8.8'-dicarboxylic acid	DUP, GAF, NAC.		Binheny1	DOW, MON.		3 3' 4 4'-Biphenyltetramine	AAP.		2.2'.4.4'-Biphenvltetrol	FMT, IDC.		2.2'-Biguinoline	EK.		41.4-Bis[1-anthraquinonylamino]anthraquinone	ACY, DUP, GAF, ICI, MAY, TRC.		1.4-Bis[1-anthraquinonylamino]anthraquinone and 1,4-Bis	TRC.		[5-chloro-1-anthraquinonylamino anthraquinone (mixed).			1,5-Bis[1-anthraquinonylamino] anthraquinone	DUP, NAC.		Bis [1-anthraquinonylamino]violanthrene	GAF.		1,4-Bis[(5-benzamido-1-anthraquinonyl)amino]-	ICI.		anthraquinone.	AOV		α ² , α ⁶ -Bis[5-tert-butyl-6-hydroxy-m-tolyl]mesitol	ACY.		Bis(chlorosulfonyl)phthalocyaninedisulfonic acid, copper	TRC.		derivative.	GAF.		4,4'-Bis [diethylamino] benzhydrol	GAF.		4,4'-Bis[diethylamino]benzhydrol, 2,6-naphthalene-	· ·		disulfonate. 4,4'-Bis[diethylamino]benzhydrol salt, 2,7-naphthalene-	TRC.		disulfonic acid mixture.	1		4,4'-Bis[diethylamino]benzophenone (Ethyl ketone base)	DSC, SDH.		4-Bis[(p-diethylaminophenyl)methyl]-2,7-naphthalene-	TRC.		digulfonic acid. leuco form.			4 4'-Ris[dimethylamino]benzhydrol (Michler's hydrol)	SDH.		*4.4'_Bis[dimethylamino]benzophenone (Michler's ketone)	DSC, DUP, NAC, SDH.		Risin-(dimethylamino)phenyl methanesulfonic acid and salt	NAC.		1.5-Bis[2.4-dinitrophenoxy]-4,8-dinitroanthraquinone	DUP.		1,5(and 1,8)-Bis[2,4-dinitrophenoxy]-4,8(and 4,5)-	DUP.		dinitroanthraquinone.			Bis(2.3-epoxycyclopentyl)ether (Epoxide 205)	UCC.		3'-[Bis(2-hydroxyethyl)amino acetanilide	GAF.		3'-[Bis(2-hydroxyethyl)amino]benzanilide, diacetate ester	DUP.		3'-[Bis(2-hydroxyethyl)amino]methanesulfonanilide,	DUP.		diacetate ester.	про		4,4'-Bis[(p-hydroxyphenyl)azo]-2,2'-stilbenedisulfonic	TRC.		acid (C.I. Direct Yellow 4).	JNS.		4,4-Bis[p-hydroxyphenyl]valeric acid	LIL.		4,4-Bis(p-methoxyphenyl)-3-hexanoneBis(2-methyl-1-aziridinyl)phenylphosphine oxide	ICO.		Bis(2-methyl-1-aziridinyl)phenylphosphine oxide	PAS.		2,4-Bis(1-methyl-5-phenyloxazolyl)] benzene (Dimethyl-	ARA.		POPOP).			Bis(p-nitrophenyl)disulfide	SDW.		Bis(o-nitrophenyl)sulfide	x.		DIST 18-01 PERMISSION TOUTT TRESTANDA	i	TABLE 7B.--Cyclic intermediates for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	,4-Bis[2-(5-phenyloxazolyl)]benzene (POPOP)	ARA.						 			--	--------------	-------	------	------	------	------	------	--		-Bromoacetophenone											EK.										EK.									-Bromoaniline	EK.									-Bromoanisole	EK,	OPC.								-Bromo-7H-benz[de]anthracen-7-one (3-Bromobenzanthrone)	ACY,	DUP,	GAF,	ICI,	MAY,	NAC.				romobenzene, mono	DOW.		-	_						-Bromobenzenesulfonyl chloride	1									-Bromobenzoic acid	EK.									romochlorobenzene	DOW.									-Bromo-6-chloro-4-nitroaniline	MEE.									-Bromo-4,6-dinitroaniline	AAP,	TRC.								romoethylbenzene	DOW.	1110.								-(Bromoethyl)thiophene	SDW.									-Bromo-3'-hydroxyacetophenone benzoate	SDH.									-Bromo-4-(N-methylacetamido)anthraquinone	GAF.									-Bromo-4-(methylamino)anthraquinone	AAP,	DUP,	GAF,	ICI.						-Bromo-3-methyl-7H-dibenz[f,ij]isoquinoline-2,7-		GAF.	•							(3H)dione.										-Bromonaphthalene	EK,	RSA.								-Bromo-4'-nitroacetophenone	GAF.									- [(9-Bromo-7-oxo-7H-benz [de] anthracen-3-y1) amino] -	NAC.									anthraquinone. -(4-Bromopentyl)phthalimide	CDW									-Bromophenol	SDW.	004								-Bromophenol	EK,	wa.								o-Bromophenyl) acetonitrile	BPC.									-Bromophenylhydrazine hydrochloride	EK.									-Bromopyridine	FMT,	NEP.								-Bromopyridine	RIL.									-Bromotoluene	RSA.									-Bromotoluene	BPC.									-Bromotoluene	EK.									-Butoxy-3-piperidinopropiophenone	ICO.									ButylacetanilideButylanilineButylaniline	UCC.									tert-Butylanthraquinone	DUP.									tert-Butylbenzaldehyde	GIV.									Butylbenzene	PLC.									c-Butylbenzene	PLC.									rt-Butylbenzene	PLC.									tert-Butylbenzoic acid	SHC.									(p-tert-Butylbenzoyl)benzoic acid	DUP.									tert-Butyl-m-cresol	KPT,	PRD.								tert-Butyl-p-cresol	ACY.									Butyl- α -(dimethylamino)-o-cresol	GIV.									tert-Butyl-4-ethylphenol	RH.									-Butyl-4-methoxymetanilamide	PCW.									tert-Butyl-5-methylanisole	GIV.									sec-Butylphenol	DOW,	TNA.								sec-Butylphenol	DOW.									tert-Butylphenol	TNA.									tert-Butylphenol	DOW,	PRD,	UCC.							tylphenols, mixed	DOW.	•								tert-Butyltoluene	GIV,	SHC.								tert-Butyl-1,2,3-trimethylbenzene	GIV.									tert-Butyl-m-xylene	GIV.	מממ								mphoric acid	KPT,	_								mphoric anhydride	FIN, FIN.	010.								10-Camphorsulfonic acid	OTC.									mphosulfonic acid	PYL.									rbazole, refined	SDC.																			N'-Carbonylbis[4-methoxymetanilic acid]	GAF.									N'-Carbonylbis[4-methoxymetanilic acid]N'-Carbonylbis[4-methoxy-6-nitrometanilic acid]	GAF.									N'-Carbonylbis[4-methoxymetanilic acid]									TABLE 7B.--Cyclic intermediates for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	Chemical	Manufacturers' identification codes (according to list in table 22)									--	--	--	--	--	--	--	--	--			GAF.									-[(Carboxymethyl)thio]benzoic acid	LIL.									-[(Carboxymethyl)thio benzoid addu	GIV.									(o-Carboxyphenyl)thio ethylmercury	FMP, UCC.									edrene/ Chloroacetoacetanilide	EK.									'-Chloroacetoacetamilide'''''''																																																																																																																																																																																																																																																																																																																																																																																																																																																																																														
						'-Chloroacetophenone'''	EK.									'-Chloroacetophenone'Chloroacetophenone	IIL.									/-Chloroacetophenone	DUP.									(Chloroacetyl) acetanilide	DUP, GAF.									-Chloroaniline	AAP, DUP, MON.									-Chloroaniline	DUP, MON.									o-Chloroaniline	EKT.									e-(o-Chloroanilino)ethanol	BUC, DUP.										ALL, BUC.									5-Chloro-o-anisidine [Nh2-1] (4-Ohiolo-o-diameter)										[OCH ₃ =1]).	GAF.									[OCH ₃ =1]). 5-Chloro-o-anisidine hydrochloride	DUP.									5-Chloro-o-anisidine hydrochloride	ACY, DUP, GAF, ICI, MAY, NAC, TRC.									-Chloroanthranilic acid	ACT CAT NAC TRC									l-Chloroanthraquinone	ACY, GAF, NAC, TRC.									2-Chloroanthraquinone	ICI.									N-(5-Chloro-1-anthraquinony1)-p-001denebullona- p-Chlorobenzaldehyde	1										HN.										GAF.																			Chloro-7H-benz[de]anthracen-7-one (Chlorodenzamon)	ACS, DOW, DVC, HK, HKD, MON, MTO, OMC, PPG, WOI.									Chloro-7H-benz de anthracen-7-one (chlorocentaliste et al., Chlorobenzene, mono	TRC.									Chlorobenzene, mono	ACY, NES.									p-Chlorobenzenesulfinic acid	CAF									p-Chlorobenzenesulfonamide	GAF.									p-Chlorobenzenesulfonic acid	NES.									p-Chlorobenzenesulfonyl chlorideo-Chlorobenzoic acid	1 *																			p-Chlorobenzoic acidp-Chlorobenzonitrile	- EK.									p-Chlorobenzonitrile5-Chloro-2-benzoxazolinone	MEE.																			p-Chlorobenzoy1 benzoic actu	- HN.									p-Chlorobenzyli chloride	- GAF.									4,4'-(o-Chlorobenzylidene)di-z, y-xylidino propanol	- LIL.									α-(p-Chlorobenzyl)-α-phenyl-1-pyrrolidine propanol	- OPC.									α-(p-Chlorobenzyl)-α-pnenyl-1-pyllottune propunc Chloro(p-chloropenyl)phenylmethane	- ACY.																																																											2-Chloro-1,4-dihydroxyanthraquinone	- HSH.																																																																					1-Chloro-2,4-dinitropenzene and 2-chloro-1,5-dimensional										mixture.	- TRC.									mixture. 3-Chloro-4,6-dinitrobenzenesulfonic acid	- CA									3-Chlorodiphenylamine	- SK.										1									N-(2-Chloroethyl) -4-(2-chloro-4-nitrophenylazo) -	GAF.																			N-ethylaniline. N-(2-Chloroethyl)-N-ethylaniline	GAF.									N-(2-Chloroethyl)-N-ethylamino] benzaldehyde	GAF.																																																																															3-Chloro-4-hydroxyquinoline-3,4-carbonic acid	SDH.																																																	5-Chlorometanilic acid	DUP, GAF, SW, TRC.									*6-Chlorometanilic acid									TABLE 7B.--Cyclic intermediates for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	Chemical			Manuf (ac	actur cordi	ers'	identi list	fication in tabl	on code Le 22)	s			--	-------------	--------------	--------------	----------------	------	----------------	------------------	-------------------	---	--		N-[(5-Chloro-2-methoxyphenyl)azo sarcosine	- ATL											p-(Chloromethyl)anisole												*1-Chloro-2-methylanthraquinone		, DUP,	GAF,	ICI,	NAC.	TRC.						6-Chloro-4-methyl-1,3,2-benzothiazathiolium chloride	- DUP.		•	•	,			,				4-(Chloromethyl)-1,2-dimethylbenzene												4-(Chloromethyl)-1,3-dimethylbenzene												1-(Chloromethyl)naphthalene4-Chloro-N-methyl-3-nitrobenzenesulfonamide												4-Chloro-3-(3-methyl-5-oxo-2-pyrazolin-1-yl)benzene-												sulfonic acid.	DOP,	, GAF.										2-Chloro-5-(N-methylsulfamoyl)sulfanilamide	- ABB											5-Chloro-2-(N-methylsulfamyl)-4-sulfamyl-N-benzylaniline												4-Chloro-3-(methylsulfonyl)nitrobenzene												Chloronaphthalenes												9-Chloronaphthol [1,2-b] thiophen-3(2H) -one												*2-Chloro-4-nitroaniline (o-Chloro-p-nitroaniline)		DUP,	HSC,	SDC.								*4-Chloro-2-nitroaniline (p-Chloro-o-nitroaniline)		DUP,	SDC,	VPC.								4-Chloro-2-nitrosnisole	,	BUC.										*1-Chloro-5-nitroanthraquinone1-Chloro-8-nitroanthraquinone		DUP,	MAY,	NAC,	TRC.							*1-Chloro-2-nitrobenzene (Chloro-o-nitrobenzene)	,,	MAY.	1011									1-Chloro-2(and 4)-nitrobenzene (Chloronitrobenzenes,		DUP,	MON,	UPM.								o- and p-).	SDC.											*1-Chloro-3-nitrobenzene (Chloro-m-nitrobenzene)	פתות	GAF,	MON	IIDM								*1-Chloro-4-nitrobenzene (Chloro-p-nitrobenzene)	,	DUP,										2-Chloro-5-nitrobenzenesulfinic acid			11011,	01 141.								*4-Chloro-3-nitrobenzenesulfonamide		CMG,	DUP.	EKT.	ICC.	TRC.						4-Chloro-3-nitrobenzenesulfonanilide	TRC.	. ,	,	,		11101						2-Chloro-5-nitrobenzenesulfonic acid	AAP,	CMG,	NAC,	TRC.								2-Chloro-5-nitrobenzenesulfonic acid, sodium salt	DUP,	GAF.										4-Chloro-3-nitrobenzenesulfonic acid		NAC,	TRC.									2-Chloro-5-nitrobenzenesulfonyl chloride*	TRC.											*4-Chloro-3-nitrobenzenesulfonyl chloride2-Chloro-4-nitrobenzoic acid		DUP,	EKT.									2-Chloro-5-nitrobenzoic acid	SAL.											*o-(4-Chloro-3-nitrobenzoyl)benzoic acid		GAF,	TCT									4-Chloro-2-nitrophenol		MEE.	101.									4-Chloro-3-nitrophenyl methyl sulfone	TRC.											2-Chloro-4-nitrotoluene	DUP.											2-Chloro-6-nitrotoluene	DUP.											4-Chloro-2-nitrotoluene	BUC,	DUP.										*4-Chloro-3-nitrotoluene		BUC,	DUP.									α-Chloro-m-nitrotolueneChloropentafluorobenzene	EK.											m-Chlorophenol	WHC.											o-Chlorophenol	EK.	CAE	MON									p-Chlorophenol		GAF, MON.	MON.									2-Chlorophenothiazine	SK.	MOIV.										(p-Chlorophenyl)acetonitrile	ICO,	OPC.										4-Chloro-α-phenyl-o-cresol	MON.	0100										4-Chloro-o-phenylenediamine	FMT.							•				3-(o-Chlorophenyl)-5-methyl-4-isoxazolecarbonyl chloride	ICO,	OTC.										3-(o-Chlorophenyl)-5-methyl-4-isoxazolecarboxylic acid	ICO.											1-(p-Chlorophenyl) -3-methyl-2-pyrazolin-5-one	DÚP,	TRC.										p-Chlorophenyl methyl sulfone	TRC.											2-Chloro-4-phenylphenol	DOW.											2-(4-Chlorophenylthio) benzoic acid4-Chlorophthalic acid	MEE.	a										Chlorophthalic anhydride	DUP,	SW.										(3-Chloropropenyl)benzene (Cinnamyl chloride)	HK. SDW.					•						1-(3-Chloropropyl)-4-methylpiperazine	SK.											N ¹ -(6-Chloro-3-pyridazinyl) sulfanilamide	ACY.											2-Chloropyridine	FMT.											dl-2-[p-Chloro-2-(2-pyridyl)benzyl]oxy-N, N-dimethylethyl-	x.											amine maleate.												7-Chloro-4-quinolinol	SDW.											4-Chlororesorcinol	AAP,	GAF.										2-Chlorothiaxanthen-9-one	TRC.												MEE.										TABLE 7B.--Cyclic intermediates for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	Chemical	Manufacturers' identification codes (according to list in table 22)									--	---	--	--	--	--	--	--	--			GAM.									2-Chlorothiophenem-Chlorotoluene	HK.									p-Chlorotoluene	HN.									p-Chlorotoluene (Benzyl chloride)	BPC, GRH, HK, HN, MON, TBK, VEL.									*a-Chlorotoluene (Benzyl Chloride)	DUP.									3-Chloro-o-toluidine [NH ₂ =1]3-Chloro-p-toluidine [NH ₂ =1]	DUP.										ACY, PCW.									4-Chloro-o-toluidine [NH ₂ =1] and hydrochioride	ATL, BUC, DUP.									*5-Chloro-o-toluidine [NH ₂ =1] (4-Chloro-o-toluidine	RIB, Boo, Boi.									[CH ₃ =1]).	BUC, SDH.									5-Chloro-o-toluidine hydrochloride [NH ₂ =1]	ALL, ATL, GAF.									*N-[(5-Chloro-o-tolyl)azo]sarcosine	TRC.									1-(6-Chloro-o-tolyl)-3-methyl-2-pyrazolin-5-one	ACY, ALL, GAF, NAC.									*[(4-Chloro-o-tolyl)thio] acetic acid										4-Chloro-α, α, α-trifluoro-3-nitrotoluene	MEE.									5-Chloro-\alpha,\alpha,\alpha-trifluoro-2-nitrotoluene	HK.									p-Chloro-\alpha, \alpha, \alpha-trifluorotoluene	AAP, MEE.									6-Chloro-α,α,α-trifluoro-m-toluidine	MEE.									4-Chloro-α,α,α-trifluoro-o-toluidine	EK.									2-Chloro-1,3,5-trinitrobenzene	ADA DV									Chlorotriphenylmethane	ARA, EK.									2-Chloro-p-xylene	DUP.									4-Chloro-2,5-xylenesulfonyl chloride	NAC.					
		/ Chloro-3 5_vvlenol	· UTA.									[// Chloro-2 5-vylvl)thiolacetic acid	· NAC.									50 Choleston 3 R-01	· SDW ·									Chalia aaid	· 1 WITI.									Cinnamoyl chloride	ICO, TBK, x.									va12	ł.									m-Cresol	KPT, PRD.									*o-Cresol:										From coal tar	- KPT, PRD.									From netroleum	- ACY, MER, NPC, PRD, SW.									p-Cresol	- HPC, SW.									Cresols, mixed: ²										*(m n)_Cresol·										From coel ter	- ACP, KPT, PRD.									From petroleum	- MER, NPC, PIT, PRD.									(o m n) Cresol: From cosl tar	- ACP, KPT.									2.3-Cresotic acid	- DOW.									*Crocyrlic acid refined."										#From coel ter	- ACP, KPT.									*From netroleum	- ATR, MER, NPC, PIT, SHO.									*Cumene	ACC, ACP, CLK, DOW, GOC, HPC, MON, SHC, SKO, SNT, SOC										TX.									α-Cyano-d ¹ ,α-cyclohexaneacetic acid, ethyl ester	- SDW.									α_Gvano-l_cvclohexene-l-acetic acid, ethyl ester	- SDW.									4_[(2_Cvancethv1)ethvlamino -o-tolualdehyde	- DUP, GAF.									n_[(2_Cyanoethyl)methylamino benzaldehyde	- DUP, GAF.									<pre>R_Cveno_1_nephthalenesulfonic acid</pre>	- DOP.									*Cyclohexane	ASH, CO, CSD, DUP, EKX, ENJ, GOC, GRS, PLC, RIC, SOG,										TX, UOC.									1,2-Cyclohexanedicarboxylic anhydride	- NAC.									Cyrolohevanol	- I DUP, MON, NAC.									*Cyclohexanone	- DBC, DUP, MON, NAC.									Cyclohexanone oxime	- NAC, x.									Cyclohexene	- EK, PLC.									4-Cyclohexene-1,2-dicarboximide	- CHO.									4-Uyclonexene-1,2-dicarboximide	- NAC, PTT.									4-Cyclohexene-1,2-dicarboxylic anhydride	ABB, JCC, MON, PAS, VGC, x.									*Cyclonexylamne	- GIV.									Cyclohexyl-2-propanone	- GIV- - GAF.									N-Cyclohexyltaurine, sodium salt	- GAR.									Cyclopentanepropionic acid	- ADA TIT									Cyclopentanol	- ARA, LIL.									Cyclopentene	- PLC.									(2-Cyclopenten-1-y1)-2-propanone	- III.									1 Cyclonentyl_2_(methylamino)propage	- 1 1.1.1									n Camono	- I HNW. HPC. NAC.									Decographolic acid	- I Will.									1,5(and 1,8)-Diacetamidoanthraquinone3,5-Diacetamido-2,4,6-triiodobenzoic acid	- AAP.																		TABLE 7B.--Cyclic intermediates for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	Chemical	Manufacturers' identification codes (according to list in table 22)		---	---		3/_[Di(2_egetovvethyl)eminol_n_sectorhonetidide			3'-[Di(2-acetoxyethyl)amino]-p-acetophenetidide3-(Diallylcarbamoyl)-1,2,2-trimethylcyclopentanecarboxylic acid.	TRC. WYT.		N ² , N ² -Diallylmelamine	ACY.		*1,4-Diaminoanthraquinone	CMG, DUP, GAF, NAC, TRC.		1,5-Diaminoanthraquinone	GAF, TRC.		1,5(and 1,8)-Diaminoanthraquinone	AAP, ICI, TRC.		*2,6-Diaminoanthraquinone	AAP, GAF, ICI, NAC, TRC, VPC.		3,4-Diaminobenzanilide3',4-Diaminobenzanilide	DUP.		2,4-Diaminobenzenesulfonic acid [SO ₃ H=1]	VPC. DUP, NAC, TRC.		2,5-Diaminobenzenesulfonic acid [SO ₃ H=1]	TRC.		4,4'-Diamino-2,2'-biphenyldisulfonic acid	AAP, ACY, NAC.		1,5-Diamino-2,6-dibromo-4,8-di-p-toluidinoanthraquinone	ICI.		1,4-Diamino-2,3-dichloroanthraquinone	CMG, DUP.		*1,4-Diamino-2,3-dihydroanthraquinone	ACY, ATL, DUP, GAF, HSH, ICC, ICI, MAY, TRC.		4,8-Diamino-9,10-dihydro-1,5-dihydroxy-9,10-dioxo-2,6-anthracenedisulfonic acid.	TRC.		1,4-Diamino-9,10-dihydro-9,10-dioxo-2,3-anthracene-dicarbonitrile.	DUP.		1,4-Diamino-9,10-dihydro-9,10-dioxo-2,3-anthracene- dicarboximide.	DUP.		1,5-Diamino-4,8-dihydroxyanthraquinone	DUP, GAF, ICC, VPC.		1,5(and 1,8)-Diamino-4,8(and 4,5)-dihydroxyanthraquinone	DUP.		4,5-Diamino-1,8-dihydroxyanthraquinone	ICI.		3,6-Diamino-2,7-dimethylacridine	DUP.		3,6-Diamino-2,7-dimethylacridine sulfate	DUP.		4,4'-Diamino-5,5'-dimethyl-2,2'-biphenyldisulfonic acid 2,4-Diamino-6-phenyl-s-triazine	AAP.		2,6-Diaminopyridine	RH, VEL.		6,7-Diamino-2,3-quinolinediol	BJL.		4,4'-Diamino-2,2'-stilbenedisulfonic acid	ACY, DUP, GAF, GGY, NAC, SDH, TRC, VPC.		1,5-Diamino-2,4,6,8-tetrabromoanthraquinone	ICI.		4,6-Diamino-m-toluenesulfonic acid [SO ₃ H=1]	NAC.		3,5-Diamino-p-toluenesulfonic acid [SO ₃ H=1]	GAF.		3,5-Diamino-2,4,6-triiodobenzoic acid	SDW.		1,5-Dianilino-9,10-dihydro-9,10-dioxo-2,6-anthracene-	GAF, NAC.		dicarboxylic acid.	, and , and ,		2,4-Dianilino-l-hydroxyanthraquinone	GAF.		6,8-Dianilino-1-naphthalenesulfonic acid	NAC.		2,5-Dianilinoterephthalic acid	MEE.		Diarylguanidine	DUP.		sulfonate-6-sulfonic acid, sodium salt.	IDC.		5(and 3)-Diazo-6-oxo-1,3(and 1,4)-cyclohexadiene-	DUP.		1-carboxylic acid.			1,5-Dibenzamidoanthraquinone	GAF, TRC.		6,11-Dibenzamido-16H-dinaphtho[2,3- α ,2',3'-i]-carbazole-5,	ICI.		10,15,17-tetrone. 4,5'-Dibenzamido-1,1'-iminodianthraquinone	ACV DUD GAD TOT MAN		Dibenzo[b,def] chrysene-7,14-dione	ACY, DUP, GAF, ICI, MAY, NAC, TRC.		1,5-Dibenzoylnaphthalene	ATL, ICI. ACY, DUP, GAF, HST, ICI, TRC, VPC.		N,N'-Dibenzylethylenediamine	WYT.		N,N'-Dibenzylethylenediamine diacetate	WYT.		N, N'-Dibenzylidenetoluene-α,α-diamine	SDH.		N,N-Dibenzylsulfanilic acid	ICI.		2,4'-Dibromoacetophenone3,9-Dibromo-7H-benz[de]anthracen-7-one	EK.		p-Dibromobenzene	DUP, EK, GAF, MAY, NAC, TRC.		ar-Dibromoethylbenzene	DOW.		2,6-Dibromo-4-nitrophenol	MEE.		5,13-Dibromo-8,16-pyranthrenedione	DUP, ICI.		Dibromoviolanthrone	GAF.		p-Dibutoxybenzene	ALL.		1,4-Dibutoxy-2-chloro-5-nitrobenzene	ALL.			ALL.		2,5-Dibutoxy-4-morpholinobenzene sulfate			2,6-Di-tert-buty1-4-nonylphenyl)morpholine	ALL. GAF.	TABLE 7B.--Cyclic intermediates for which U.S. production or sales were reported, identified by manufacturer, 1966---Continued	Chemical	Manufacturers' identification codes (according to list in table 22)		---	--		Dibutyltin bis(cyclohexyl maleate)	х.		2,4-Dichloroaniline	EK.		3,4-Dichloroaniline	DUP, MON.		2,5-Dichloroaniline and hydrochloride [NH ₂ =1]	AAP, BUC, DUP, NAC, SDH.		3-(2,4-Dichloroanilino)-1-(2,4,6-trichlorophenol)	EK.		1,5-Dichloroanthraquinone	DUP, GAF, ICI, NAC, TRC.		1,5(and 1,8)-Dichloroanthraquinone	DUP, NAC.		1,8-Dichloroanthraquinone	DUP, GAF, ICI, TRC.		2,6-Dichlorobenzaldehyde	DUP.		3-(3,4-Dichlorobenzamido)-1-phenyl-2-pyrazolin-5-one	EK.		Dichlorobenzanthrone	ACY.		m-Dichlorobenzene	EK, GAF.		o-Dichlorobenzene	ACS, CPD, DOW, DUP, DVC, MON, OMC, PPG, SCC, SVT		o-pichioropenzene	WOI.		o(and p)-Dichlorobenzene	HKD, MTO.		p-Dichlorobenzene	ACS, CPD, DOW, DVC, HK, MON, PPG, SCC, SVT, WOI.		p-Dichioropenzeneido	ABB.		4,6-Dichloro-m-benzenedisulfonamide	ABB.		4,6-Dichloro-m-benzenedisulfonyl chloride3,3'-Dichlorobenzidine base and salts	ALL, CWN, LAK, NAC.		2,4-Dichlorobenzoic acid	HN.		2,4-Dichlorobenzoic acid2,6-Dichlorobenzonitrile	X.		2,4-Dichlorobenzonitrile2,4-Dichlorobenzoyl chloride	HN.		2,5-Dichlorobenzoyl chloride	GAF.		2,5-Dichiorobenzoyi chioride	EKT.		2,4-Dichloro-m-cresol	ICI.		7,16-Dichloro-6,15-dihydro-5,9,14,18-anthrazinetetrone			4,8(and 4,5)-Dichloro-9,10-dihydro-9,10-dioxo-1,5(and	GAF.		1,8)-anthracenedisulfonic acid.	ADA		4,5-Dichloro-3,6-dioxo-1,4-cyclohexadiene-1,2-di-	ARA.		carbonitrile.	700 1100		Dichlorodiphenylsilane	DCC, UCC.		2'.7'-Dichlorofluorescein	EK.		5.14-Dichloroisoviolanthrone	ICI.		2,5-Dichloro-4-(3-methyl-5-oxo-2-pyrazolin-1-yl)	ACY, CMG, DUP, SDH, TRC, VPC.		benzenesulfonic acid.			2,6-Dichloro-4-nitroaniline	AAP, CWN, DUP, GAF, HSH, MEE, PCW, SW, TRC.		1.2-Dichloro-4-nitrobenzene	DUP, MON.		1.4-Dichloro-2-nitrobenzene (Nitro-p-dichlorobenzene)	AAP, DUP, NAC, PCW, SDC, VPC.		2.5-Dichloro-3-nitrobenzoic acid	GAF.		2.5-Dichloro-3-nitrobenzoic acid, ammonium salt	GAF.		2.4-Dichlorophenol	DOW, MON.		2_(2_4_Dichlorophenoxy)ethanol	GAF.		N-[(2,5-Dichlorophenyl)azo]-N-ethyl-5-sulfoanthranilic	GAF.		acid.			3-(2',6'-Dichlorophenyl)-5-methyl-4-isoxazolecarbonyl	ICO, OTC.		chloride.			3-(2',6'-Dichlorophenyl)-5-methyl-4-isoxazolecarboxylic	ICO.		acid.			2,6-Dichloropyrazine	ACY.		3,6-Dichloropyridazine	ACY.		4,7-Dichloroquinoline	PD, SDW.		3,5-Dichlorosalicylic acid	100.		2,5-Dichlorosulfanilic acid [SO ₃ H=1]	CMG, DUP, VPC.		2,5-Dichloro-4-sulfobenzenediazonium sulfate	TRC.		p,α-Dichlorotoluene	HN.		α,α-Dichlorotoluene (Benzal chloride)	HK, NAC.		2,6-Dichlorotoluene	DUP, GAF.		2,4-Dichloro-3,5-xylenol	OTA.		Dicyclohexylamine	ABB, MON, VGC.		Dicyclonexylamine Dicyclopentadiene (includes cyclopentadiene)	ENJ, GOC, UCC, VEL.		Dievelopentadiene diovide	VEL.		Dicyclopentadiene dioxide2,5-Diethoxyaniline	GAF.		2/5/ District or and lide	GAF.		2',5'-Diethoxybenzanilide	GAF.		p-Diethoxybenzene	100		3,4-Diethoxybenzoic acid	ICO.																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																													
2,5-Diethoxy-morpholinobenzenediazonium chloride, zinc	ALL.		chloride.	ATT.		4-(2,5-Diethoxy-4-nitrophenyl)morpholine	AIL.		p-(Diethylamino) benzaldehyde	DUP, GAF, NAC.		2-Diethylaminoethyl-4-acetylaminophenol	PD.		2-Die dity laminoe dity 1-4-ace by laminopheno 1-			p-(Diethylamino) benzenediazonium chlorozincate α -[(2-Diethylamino) ethyl] - α -phenylcyclohexanemethanol,	ESA.	TABLE 7B.--Cyclic intermediates for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	manujaciarer, 1906Continued				--	--	--		Chemical	Manufacturers' identification codes (according to list in table 22)			m-(Diethylamino)phenol (N,N-Diethyl-3-aminophenol)	ACY, DUP.			3-[(p-Diethylamino)phenylazo]-1H-1,2,4-triazole	TRC.			3-(Diethylamino)propiophenone	ACY.			4-(Diethylamino)-o-tolualdehyde	DUP.			*N, N-Diethylaniline	ACY, DSC, DUP, NAC, SDH.			N, N-Diethyl-m-anisidine	DUP.			Diethylbenzene	CSD, DOW, KPP.			Diethyl-[3,3'-bianthra[1,9-cd]pyrazole] -6,6'-dione 1,1'-Diethyl-4,4'-carbocyanine iodide (Cryptocyanine)	GAF.			N,N-Diethylcyclohexylamine	EK. DUP.			α, α'-Diethyl-4,4'-dimethoxystilbene	LIL.			N'N-Diethylmetanilic acid	DUP.			N ¹ ,N ¹ -Diethyl-4-methoxymetanilamide	PCW.			N, N-Diethyl-1-naphthylamine	DUP.			N, N-Diethyl-p-nitrosoaniline	ESA, GAF.			N,N-Diethyl-4-nitroso-m-anisidine hydrochloride	DUP.			N,N-Diethyl-4-nitroso-m-phenetidineN,N-Diethyl-m-phenetidine	GAF.			N,N-Diethyl-m-toluidine	GAF.			6,15-Dihydro-5,9,14,18-anthrazinetetrone	TRC.			10,11-Dihydro-5H-dibenzo[a,d]cyclohepten-5-one	LIL.			*9,10-Dihydro-1,4-dihydroxy-9,10-dioxo-2-anthracene-	AAP, HSH, PAT.			sulfonic acid (2-Quinizarinsulfonic acid).				$N-(5,13-Dihydro-5,13-dioxoaceanthryleno[2,1-\alpha]$	ICI, NAC.			aceanthrylen-7-y1)-9,10-dihydro-1-nitro-9,10-dioxo-2- anthramide.				*9,10-Dihydro-9,10-dioxo-1,5-anthracenedisulfonic acid	ACY, DUP, TRC.			*9,10-Dihydro-9,10-dioxo-1,5-anthracenedisulfonic acid.	DUP, GAF, ICI, TRC.			disodium salt.	bor, dai, 101, 1110.			9,10-Dihydro-9,10-dioxo-1,5(and 1,8)-anthracenedisulfonic	DUP, TRC.			acid and salt.				9,10-Dihydro-9,10-dioxo-1,8-anthracenedisulfonic acid	DUP.			*9,10-Dihydro-9,10-dioxo-1,8-anthracenedisulfonic acid,	GAF, ICI, TRC.			potassium salt.				*9,10-Dihydro-9,10-dioxo-2,6-anthracenedisulfonic acid and salt.	AAP, ACY, GAF, ICI, NAC, TRC, VPC.			*9,10-Dihydro-9,10-dioxo-1-anthracenesulfonic acid and salt	AAD ACV DUD CAE TOT WAY MAG TOO			(Gold salt).	AAP, ACY, DUP, GAF, ICI, MAY, NAC, TRC.			9,10-Dihydro-9,10-dioxo-2-anthracenesulfonic acid and salt	DUP, NAC.			(Silver salt).				9,10-Dihydro-9,10-dioxo-2-anthroic acid	NAC.			3,4-Dihydro-3,4-dioxo-1-naphthalenesulfonic acid, sodium	EK.			salt.				[Dihydrogen 3,3''-phthalocyaninedisulfonato-(2-)]copper	ICI.			10,11-Dihydro-5-[3-(methylaminopropyl)] -5H-dibenzo- [a,d]cyclohepten-5-ol.	LIL.			*9,10-Dihydro-5-nitro-9,10-dioxo-1-anthracenesulfonic acid-	DITO MAY NAC TOC			9,10-Dihydro-5(and 8)-nitro-9,10-dioxo-1-anthracene-	DUP, MAY, NAC, TRC. ICI, TRC.			sulfonic acid.	101, 1110.			9,10-Dihydro-8-nitro-9,10-dioxo-1-anthracenesulfonic acid	MAY, NAC.			9,10-Dihydro-8-nitro-9,10-dioxo-1-anthracenesulfonic acid,	DUP.			sodium salt.				9,10-Dihydro-1-nitro-9,10-dioxo-2-anthroic acid	DUP, GAF, NAC, TRC.			*1,4-Dihydroxyanthraquinone (Quinizarin)	SDW.			-, ·,, · · · · · · · · ·	AAP, ACY, CMG, DUP, EKT, GAF, HSH, ICC, ICI, JTC, MAY, NAC, TRC.			*1,5-Dihydroxyanthraquinone (Anthrarufin)	ACY, DUP, GAF, NAC.			1,5(and 1,8)-Dihydroxyanthraquinone	CMG, TRC.			*1,8-Dihydroxyanthraquinone (Chrysazin)	DUP, GAF, ICI.			2,6-Dihydroxyanthraquinone (Anthraflavic acid)	GAF, TRC.			4,5-Dihydroxy-m-benzenedisulfonic acid, disodium salt	SDW.			2,4-Dihydroxybenzophenone* *1,5-Dihydroxy-4,8-dinitroanthraquinone	DUP, GAF.			1,5(and 1,8)-Dihydroxy-4,8(and 4,5)-dinitroanthraquinone	TRC.			*1,8-Dihydroxy-4,5-dinitroanthraquinone (4,5-Di-	DUP, GAF, ICC, ICI.			nitrochrysazin).	,,,,,			1,5-Dihydroxy-4,8-dinitro-2,6-anthraquinonedisulfonic	DUP.			acid.				17α,21-Dihydroxy-9 β,11β-epoxy-16β-methylpregna-1,4-diene-3,	SCH.			20-dione.			TABLE 7B.--Cyclic intermediates for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	Chemical	Manufacturers' identification codes		--	---		Chemical	(according to list in table 22)		\\.	TOT		0,10'-(Dihydroxyethanediylidene)dianthrone	ICI. HSH, NAC.		,5-Dihydroxy-2,7-naphthalenedisulfonic acid			(Chromotropic acid).	FMT, GAF, IDC.		5 Dibrid novar_2_naphthoic acid	GAF.		10 21 Dibydnovymregna_4 17(20) -c1s-d1en-3-one	UPJ.		16 21_Dihydroxypregna=1.4.17(20)-c1s-trien-3-one	UPJ.		5-Dihydroxy-3-(p-sulfophenylazo)-2,7-naphthalene-	EK.		dimultonia acid trisodium salt.	ACT DID CAR TOT MAY NAC		6.17-Dihydroxyviolanthrone (Dihydroxydibenzanthrone)	ACY, DUP, GAF, ICI, MAY, NAC.		Diiodobongono	EK.		2,5-Diiodobenzoic acid, 2-(2-methoxyethoxy)ethyl ester	SDW.		3,5-Diiodo-4-oxo-1(4H)pyridineacetic acid	EK.		J.5-Diiodo-L-tyrosine	DOW.		Disopropylbenzene	DUP, USR.		1 5 Dimothovycniline	ALL, EKT.		E/and 1 0) Dimothovyonthradulinone	TRC.		o E Dimothographongaldehyde	CWN.		- Dimothovahongono	ACY, ICO.		2 2 Dimothovybenzidine (O-Dianisidine)	ALL, CWN, DUP, LAK, SDH.		2 2/ Dimethovybenzidine hydrochloride	CWN.		0 / Dithoughoughin gold	ACY.		3,4-Dimethoxybenzoic acid	ICO.		N,N'-[(3,3'-Dimethoxy-4,4'-biphenylylene)bis-(azo)]bis-	Ann, GAT		(N-methyltaurine).	x.		2,5-Dimethoxy-β-methyl-β-nitrostyrene	LIL.		N-(3,4-Dimethoxy-a-methylphenethyl)-2-(4-ethoxy-3			methoxyphenyl)acetamide. 2,5-Dimethoxy-4'-nitrostilbene	χ.		3,4-Dimethoxyphenethylamine (Homoveratrylamine)	LIL.		4-(2',5'-Dimethoxyphenethyl) aniline hydrochloride	x.		N-(3,4-Dimethoxyphenethyl) -2-(3,4-dimethoxyphenyl)	LIL.		a a stand do			(2 / Dimethoxymhenyl) acetic acid	LIL.		(2 / Dimethoryphenyl)acetonitrile	LIL.		1 (2 /_Dimethoryphenyl)=2=aminopropane	LIL.		1 /2 / Dimothoryphenyl)-2-nitro-1-propene	LIL.		2 5 Dimothovytetrahydrofuran	HEX. DUP, GAF, ICI, MAY.		16,17-Dimethoxyviolanthrone	DUP.		3'-Dimethylaminobenzanilide	ESA.		p-(Dimethylamino) benzenediazonium chiolozincate	SDH.		m-(Dimethylamino) benzoic actuα-(Dimethylamino) -p-cresol	TKL.		6-Dimethylamino-2-[2-(2,5-dimethyl-1-phenyl-3-	x.					2_I(2_Dimethylamino)ethyl aminopyridine	SDW.		2-[[2-(Dimethylamino)ethyl]-2-thenylamino]pyridine	ABB.		(nonmedicinal grade).			o [[o (bimo+br]emino)ethy][-3-theny]amino[pyridine	SDW.		(Direthylemine) phenel	ACY.		W (= Dimothyleminophenyl)=1.4=naphthodulhonelilline=======	NAC. ACY, DSC, DUP, NAC, SDH.		*N,N-Dimethylaniline	EK.		7,12-Dimethylbenz[a] anthracene	CWN, DUP.		3,3'-Dimethylbenzidine (o-Tolidine)	AAP, DUP, EK.		*N, N-Dimethylbenzylamine	ICO, MIS, RH.		*N,N-Dimethylbenzylamine	TRC.		*2 2'.Dimethyl_1.1'_hianthraguinone	AAP, ACY, CMG, DUP, GAF, ICI, NAC, TRC.		Nesthyl 6 12 gerovenol acetate	WIM.		E E Dimothyl 1 3_cyclohevanedione	EKT.		N. N. Dimethyloycloheyylamine	DUP, EKT.		2/7/_Dimethylfluoran	WIM.		5 5 Dimothylhydentoin	GLY.		2 3_Dimethylindole	DUP.		2.5 Dimothy: 1/(2)_morpholinylmethylphenol hydrochloride	IDC.		N, N-Dimethyl-m-nitroaniline	DUP. ACY, DUP, ESA, NAC.		*N,N-Dimethyl-p-nitrosoaniline	EK.		N,N-Dimethyl-p-phenylazoaniline N,N-Dimethyl-p-phenylazoaniline	EK, NAC.		N,N-Dimethyl-p-phenylenediamine hydrochloride	EK.		n, N-Dimethyl-p-phenylenediamine hydrochiolide	COK, JCC, SEL.	${\it TABLE~7B.--Cyclic~intermediates~for~which~U.S.~production~or~sales~were~reported,~identified~by~manufacturer,~1966--Continued}$	Chemical	Manufacturers' identification codes			--	-------------------------------------	--		VIII.	(according to list in table 22)			V V D 1 1 2 20 121				N,N-Dimethylsulfanilic acid	GAF.			N,N-Dimethyl-p-toluidine2,4-Dinitroaniline	EK, SEL.			p-(2,4-Dinitroanilino)phenol	AAP, ACY, SDC.			1,5(and 1,8)-Dinitroanthraquinone	GAF, NAC, SDC.			N, N'-(2,4-Dinitro-1,5-anthraquinonylene)dioxamic acid	AAP, ICC, ICI, TRC. TRC.			3,4-Dinitrobenzanilide	DUP.			m-Dinitrobenzene	DUP, NAC.			2,4-Dinitrobenzenesulfonic acid	EK, TRC.			3,5-Dinitrobenzoic acid	GAM, SAL, SDH.			3,5-Dinitrobenzoyl chloride	EK.			10,10'-Dinitro[3,3'-bi-7H-benz[de]anthracene]-7,7'-dione	DUP, MAY.			3,3'-Dinitro-4,4'-biacetanilide	AAP.			Dinitrocaprylphenol	RH.			2,6-Dinitro-p-cresol	DUP.			2,4-Dinitrocumene	DUP.			3',5'-Dinitro-2'-hydroxyacetanilide	TRC.			1-(3,5-Dinitro-2-hydroxyphenylazo)-2-naphthol	TRC.			2,4-Dinitrophenol, tech	AAP, NAC, SDC, x.			(2,4-Dinitrophenyl) hydrazine	EK.			3,5-Dinitrosalicylic acid	EX.			2,4-Dinitrotoluene	ACY, DUP, GAF, GGY, NAC, SDH, TRC.			2,4(and 2,6)-Dinitrotoluene	DUP, NAC, RUC. DUP, MOB.			3,5-Dinitro-p-toluenesulfonic acid	GAF.			Dinonylphenol	GAF.			2,4-Di-tert-pentylphenol	PAS.			2,4-Di-tert-pentylphenoxyacetyl chloride	χ.			L,5-Diphenoxyanthraquinone	DUP,																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																		
GAF, ICI, VPC.			1,5(and 1,8)-Diphenoxyanthraquinone	AAP, DUP, ICC.			L,8-Diphenoxyanthraquinone	EKT.			iphenylacetic acid	ARA, BPC.			Diphenylamine	ACY, DOW, DUP, ORO, RUC.			2,8-Diphenylanthra[1,2-d:6,5-d']bisthiazole-6,12-dione	ICI.			-d-1,2-Diphenyl-4-dimethylamino-2-hydroxy-3-methylbutane,	LIL.			camphor sulfonate.				N, N'-Diphenylethylenediamine	DOW, RPC.			Oiphenylmethane	ARA.			2,5-Diphenyloxazole	ARA.			,3-Diphenyltriazene	K. NAC.			.,3-Di-4-piperidylpropane	RIL.			2,2'-Dithiodibenzoic acid	LIL, MEE.			,4-Di-p-toluidinoanthraquinone	ATL, GAF, ICI, NAC, TRC, VPC.			,5-Di-p-toluidinoanthraquinone	ICI.			,8-Di-p-toluidinoanthraquinone	ICI.			,4-Di(p-toluidino)-5,8-dihydroxyanthraquinone	ICI.			vinylbenzene	DOW, FG, KPP.			rixylylguanidines, mixed	ACY.			odecylbenzene. (See Alkylbenzenes.)				Odecylbenzyl chloride	co.			Odecylmethylbenzyl chloride	χ.			-Dodecylphenol	GAF, MON, UCC, x.			osin (2',4',5',7'-Tetrabromofluorescein)	ICC.			poxycyclohexyladipate (Epoxide 289)	UCC.			-(Epoxyethyl) -7-oxabicyclo [4.1.0] heptane (Epoxide 206)	UCC.			-Ethoxybenzoic acid	ACY.			-Ethoxy-2-benzothiazolethiol	ARA, DUP.			-Ethoxy-3-methoxybenzaldehyde	LIL.			-(4-Ethoxy-3-methoxybenzyl)-6,7-dimethoxy-3-	LIL.			methylisoquinoline. 4-Ethoxy-3-methoxyphenyl)acetic acid	TTT			-Ethoxy-1-naphthaldehyde	LIL.			-Ethoxynaphthalene	ICO.			-Ethoxy-1-naphthoic acid	ICO.			-Ethoxy-1-naphthoyl chloride				-Ethoxy-o-phenylenediamine	TRC.			p-Ethoxyphenyl)urea (Dulcin)	RSA.			-(Ethylamino)-p-cresol	DUP.			-(Ethylamino)-p-toluenesulfonic acid [SO ₃ H=1]	DUP.				1		TABLE 7B.--Cyclic intermediates for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	Chemical	Manufacturers' identification codes		--	--		CHEMICAL	(according to list in table 22)					2-(N-Ethylanilino)ethanol	DUP, EKT.		[2-(N-Ethylanilino)ethyl]trimethylammonium chloride	EKT.		3-(N-Ethylanilino)propionitrileα-(N-Ethylanilino)-m-toluenesulfonic acid	GAF, SDH.		α_(N-Ethylanilino)-p-toluenesulfonic acid	NAC, TRC, WJ.		N-Ethyl-p-anisidine	EKT.		N-Ethylanthranilic acid	SDH.		2-Ethylanthraquinone	NAC.		Ethylbenzene	CSD, DOW, ENJ, FG, KPP, KPT, MON, SHC, SIN, SKC, SNT			TOC, UCC.		o-(p-Ethylbenzoyl)benzoic acid	NAC.		Ethylbenzyl chloride	BPC.		9-Ethylcarbazole	ICC.		N-Ethyl-1-cyclohexen-1-ylamine	UCC, x.		N-Ethylcyclohexylamine	ABB.		3,3'-Ethylenedioxydiphenol	IDC.		Ethylenimine	DOW.		3-Ethyl-2-[3-(3-ethyl-2-benzothiazolinylidene)-	GAF.		pentadienyl benzothiazolium iodide.			1,1'-Ethylidine-di-2-pyrrolidinone	GAF.		2-[N-Ethyl-p-[(6-methoxy-2-benzo-thiazolyl)azo]-	TRC.		anilinolethanol.			N-Ethyl-1-naphthylamine	DUP.		9-Ethyl-3-nitrocarbazole	ICC.		α-Ethyl-3-nitrocinnamic acid	SDW.		p-Ethylphenol	ACY.		N-Ethyl-N-phenylbenzylamine	DUP, NAC, SDH.		Ethylphenylmalonic acid, diethyl ester	BPC, MAL.		1-(o-Ethylphenyl)-3-methyl-2-pyrazolin-5-one	TRC.		5-Ethyl-2-picoline (2-Methyl-5-ethylpyridine) (MEP)	ucc.		1-Ethylpiperidine	RIL.		2-Ethylpyridine	RIL.		N-Ethyl-5-sulfoanthranilic acid	SDH.		6-Ethyl-1,2,3,4-tetrahydro-1,1,4,4-tetramethylnaphthalene-	GIV.		N-Ethyl-m-toluidineN-Ethyl-o-toluidine	DUP, NAC.		N-Ethyl-o-toluidine	DUP. DUP, GAF.		1-Ethýnyl-1-cyclohexanol	CUC, NAC.		Fluoren-9-one	EK.		Fluorescein (3',6'-Dihydroxyfluoran)	ICC.		1-Fluoro-2,4-dinitrobenzene	EK, PIC.		o-Fluorotoluene	EK.		4-Formyl-m-benzenedisulfonic acid	GAF, SDH.		o-Formylbenzenesulfonic acid (o-Sulfobenzaldehyde)	GAF, SDH, VPC.		Furan	DUP, OKO.		Furfuryl alcohol	QKO.		Furfurylamine	MLS.		N-Glycoloylarsanilic acid, sodium salt	SDW.		Hexachlorobenzene	DVC.		Hexachlorocyclopentadiene	HK, VEL.		1,4,5,6,7,7-Hexachloro-5-norbornene-2,3-dicarboxylic acid	HK, VEL.		Hexadecachlorophthalocyanine	ICC.		Hexafluorobenzene	WHC.		Hexa(2-methyl-1-aziridinyl)-1,3,5-phosphotriazine	ICO.		Hippuric acid	BPC.		p-Hydrazinobenzenesulfonic acid	GAF, WJ.		3-Hydrazino-5-nitro-p-toluenesulfonic acid [SO ₂ H=1]	STG.		Hydrindantin	HEX.		Hydroquinone, tech	CRS, EKT, MAN.		4'-Hydroxyacetanilide	TRC.		3'-Hvdroxyacetophenone	SDH.		3'-Hydroxyacetophenone benzoate	SDH.		p_Hvdroxybenzaldehvde	DOW.		p-Hydroxybenzenesulfonic acid	DOW, MON, UPF.			GAF.		2-Hydroxy-11H-benzo[a]carbazole-3-carboxylic acid	1		p-Hydroxybenzoic acid	HN, WSN.		2-Hydroxy-llH-benzo[a]carbazole-3-carboxylic acid p-Hydroxybenzoic acid	HN, WSN. HN, WSN. HN, WSN.	${\bf TABLE~7B.--} Cyclic~intermediates~for~which~U.S.~production~or~sales~were~reported,~identified~by~manufacturer,~1966--Continued$	Chemical	Manufacturers' identification codes (according to list in table 22)		---	--		*p-Hydroxybenzoic acid, methyl ester1	HN, ICO, LEM, SEL, WSN.		*p-Hydroxybenzoic acid, propyl ester1	HN, ICO, LEM, WSN.		6'-Hydroxy-m-benzotoluidide	TRC.		3'-Hydroxy-2(N-benzyl-N-methylamino)acetophenone	SDW.		4-Hydroxycoumarin	ABB.		13b-Hydroxy-2,8-dimethylnaphtho[3.2.1-kl] xanthen-	WIM.		9(13bH)one.	MD C		4'-(2-ilydroxyethoxy) acetanilide	TRC.		3-[N-(2-Hydroxyethyl)anilino] propionitrile	BJL. DUP, ICC.		3-[N-(2-Hydroxyethyl)anilino] propionitrile, benzoate	DUP.		ester.	201.		N-β-Hydroxyethyl-2,4-dihydroxybenzamide	IDC.		3-Hydroxy-N-(2-hydroxyethyl)-2-naphthamide	IDC.		N-[7-Hydroxy-8-[2-hydroxy-5-(methylsulfamoylphenyl)azo]-	TRC.		l-naphthyl] acetamide.			6'-Hydroxy-5'-[(2-hydroxy-5-nitrophenyl)azo]-	TRC.		m-acetotoluidide.			N-[7-Hydroxy-8-[(2-hydroxy-5-nitrophenyl)azo]-1-	TRC.		naphthyl] acetamide. 7-Hydroxy-8-[[4'-[(p-hydroxyphenyl) azo]-4-biphenylyl] azo]-	MTD C		1,3-naphthalenedisulfonic acid.	TRC.		7-Hydroxy-8-[[4'-[(p-hydroxyphenyl)azo]-3,3-dimethyl-4-	TRC.		biphenylyl azo -1,3-naphthalenedisulfonic acid.	110.		4-Hydroxy-N ¹ -isopropylmetanilamide	TRC.		2-Hydroxy- α^1 , α^3 -mesitylenediol	ACY.		*4-Hydroxymetanilamide	CMG, DUP, NAC, TRC, VPC.		4-Hydroxymetanilanilide	TRC.		*4-Hydroxymetanilic acid	CWN, DUP, NAC, TRC.		N-(4-Hydroxymetanilyl)anthranilic acid	TRC.		4-Hydroxy-1-methylcarbostyril	ICC.		3-Hydroxy-2-methylcinchoninic acid	DUP.		N-(Hydroxymethyl)phthalamide	TRC.		3-Hydroxy-N-(3-N-morpholinopropyl)-2-naphthamide	IDC.		2-Hydroxy-1-naphthaldehyde	ICO.		*3-Hydroxy-2,7-naphthalenedisulfonic acid, disodium salt	ACY, GAF, NAC, TRC, WJ.		7-Hydroxy-1,3-naphthalenedisulfonic acid	DUP, TRC.		7-Hydroxy-1,3-naphthalenedisulfonic acid, dipotassium	GAF.		salt.			7-Hydroxy-1,3-naphthalenedisulfonic acid, disodium salt	ACY, NAC.		4-Hydroxy-2-naphthalenesulfonamide	GAF.		1-Hydroxy-2-naphthalenesulfonic acid, potassium salt	DUP. NAC.		4-Hydroxy-l-naphthalenesulfonic acid	NAC, TRC.		*6-Hydroxy-2-naphthalenesulfonic acid	NAC, SNA, TMS.		*6-Hydroxy-2-naphthalenesulfonic acid, sodium salt	ACY, TRC, WJ.		7-Hydroxy-2-naphthalenesulfonic acid (Cassella's acid)	DUP.		8-Hydroxy-1-naphthalenesulfonic acid	GAF, VPC.		8-Hydroxy-1-naphthalenesulfonic acid, γ-sultone	ACY, TRC.		3-Hydroxy-2-naphthanilide (Naphthol AS)	ATL, BUC, PCW.		1-Hydroxy-2-naphthoic acid	NAC.		3-Hydroxy-2-naphthoic acid (B.O.N.)	AUG, DUP, HN, PCW.		3-Hydroxy-2-naphthoic acid, methyl ester	PCW.		*3-Hydroxy-2-naphtho-o-toluidide N-(2-Hydroxy-1-naphthyl)acetamide	ATL, BUC, PCW.		*N-(7-Hydroxy-1-naphthyl) acetamide	CMG, GAF, TRC.		1-(2-Hydroxy-1-naphthylazo)-6-nitro-2-naphthol-4-sulfonic	TRC.		acid.			N-(7-Hydroxy-1-naphthy1) benzamide	TRC.		3'-[(7-Hydroxy-1-naphthyl)carbsmoyl]acetanilide	TRC.		4-Hydroxy-7-[p-(p-nitrobenzamido)benzamido]-2-naphthalene-	DUP.		sulfonic acid.	NTD 447		4-Hydroxy-7-(p-nitrobenzamido)-2-naphthalenesulfonic acid	DUP, GAF.		2-Hydroxy-5-nitrometanilic acid	TRC.		3-Hydroxy-4-(phenylazo)-2-naphthoic acid	ICC.		4-Hydroxypropiophenone	UPJ. MLS.			I TILE •		α, α'-[(α-Hydroxy-p-sulfobenzylidene)bis[(3-methyl-	TRC.	TABLE 7B.--Cyclic intermediates for which U.S. production or sales were reported, identified by manufacturer, 1966-- Continued	Chemical	Manufacturers' identification codes			---	---	--			(according to list in table 22)			2-Hydroxy-4-sulfo-1-naphthalenediazonium hydroxide, inner	ACY.			salt.				5-Hydroxy-m-toluenesulfonic acid	LIL.			1-Hydroxy-4-p-toluidinoanthraquinone	ICI.			2-Imidazolidinone modifications* *1,1'-Iminobis[4-aminoanthraquinone]	RH. ACY, CMG, DUP, GAF, ICI, MAY, NAC, TRC.			1,1'-Iminobis [4-benzamidoanthraquinone]	ACY, MAY.			1,1'-Iminobis[5-benzamidoanthraquinone]	GAF, ICI, TRC.			*7,7'-Iminobis [4-hydroxy-2-naphthalenesulfonic acid]	CMG, DUP, NAC, TRC.			*1,1'-Iminobis[4-nitroanthraquinone]	ACY, DUP, ICI, MAY, TRC.			*1,1'-Iminodianthraquinone (1,1'-Dianthrimide)	ACY, DUP, GAF, ICI, MAY, NAC, TRC.			1,3-Indandione 1,2,3-Indantrione monohydrate (Ninhydrin)	PIC.			Indole-3-acetic acid	SDW.			Indole-2,3-dione	NAC.			5-Iodoanthranilic acid	SDW.			1-Iodonaphthalene																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																											
EK.			Isobutylbenzene	PLC.			*Isocyanic acid derivatives:	UPJ.			Bitolylene diisocyanate (TODI)	CWN, OTC.			Dianisidine diisocyanate (DADI)	CWN, UPJ.			3,4-Dichlorophenyl ester	DUP.			*Diphenylmethane 4,4'-diisocyanate (MDI)	DUP, MOB, NAC, UPJ.			p-Nitrophenyl ester	EK.			Phenylisocyanate	MOB.			Polyisocyanates (complex)	MOB.			Polymethylene polyphenylisocyanate	KAI, MOB, UPJ.			Toluene 2,4-diisocyanate Toluene 2,4- and 2,6-diisocyanate (65/35 mixture)	DUP, MOB.			*Toluene 2,4- and 2,6-diisocyanate (80/20 mixture)	DUP, MOB, NAC, OMC, RUC, UCC.			p-Tolyl ester	EK.			Isonicotinic acid, methyl ester	RIL.			Isonicotinonitrile	RIL.			Isooctylphenol	PRD.			Isophthalic acid (Benzene-1,3-dicarboxylic acid)	ACC, SOC.			Isophthalic acid, diallyl esterIsophthalic acid, dimethyl ester	FMP.			Isophthalic acid, diphenyl ester	BJL.			N-Isopropylaniline	ACY, EKT.			Isopropylbenzyl chloride	BPC.			4,4'-Isopropylidenebis[2,6-dibromophenol] (Tetrabromo-	DOW.			bisphenol A).	DITO			4,4'-Isopropylidenebis[2,6-dichlorophenol] (Tetra-	DVC.			chlorobisphenol A). 5,5'-Isopropylidenebis(2-hydroxy-m-xylene- α , α '-diol)	ARK.			*4,4'-Isopropylidenediphenol (Bisphenol A)	DOW, MON, SHC, UCP.			4,4'-Isopropylidenediphenol, ethoxylated	APD.			4,4'-Isopropylidenediphenol, propoxylated	APD.			o-Isopropylphenol	TNA.			4-Isopropyl-m-phenylenediamine	DUP.			Isothiocyanic acid, phenyl ester*Isoviolanthrone (Isodibenzanthrone)	TNC. ACY, DUP, GAF, ICI, MAY.			*Leuco quinizarin (1,4,9,10-Anthratetrol)	ACY, BL, EKT, HSH, ICC, NAC, TRC.			*2,4-Lutidine	ACP, CFC, KPT, RIL.			3,4-Lutidine	RIL.			D-Lysergic acid	LIL.			Malondianilide	KF.			Mandelonitrile	KF.			*Melamine*dl-p-Mentha-1,8-diene (Limonene)	ACP, ACY, FIS, RCI.			p-Mentha-1,4(8) diene	ARZ, GIV, HNW, HPC.			*o-Mercaptobenzoic acid (Thiosalicylic acid)	EVN, LIL, MED.			Metanilamide	CMG, VPC.			Metanilanilide	GAF.			Metanilic acid (m-Aminobenzenesulfonic acid)	DUP, TRC.			1-Methoxyanthraquinone	AAP, GAF.			4-Methoxymetanilic acid	CMG, GAF.			4'-Methoxy-2-(p-methoxyphenyl)acetophenone	TRC.				1 110/4			4-Methoxy-N-methylnaphthalimideN-(2-Methoxy-1-naphthyl)acetamide	TRC.		TABLE 7B.--Cyclic intermediates for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued		Manufacturers! identification codes			---	---	--		Chemical	Manufacturers' identification codes (according to list in table 22)			(p-Methoxyphenyl)acetic acid	CTN, TBK.			4'-Methoxypropiophenone	LIL.			6-Methoxytetralone	GAM.			*1-(Methylamino) anthraquinone	AAP, ACY, DUP, GAF, ICI, NAC, UCC.			1-(Methylamino)-4-p-toluidinoanthraquinone	GAF, ICI.			N-Methylaniline	ACY, DUP.			5-Methyl-o-anisidine [NH ₂ =1]	DUP, SDC.			m-Methylanisole	GIV.			N-Methylanthranilic acid	GIV, ICC.			2-Methylanthraquinone	ACY, NAC.			3-Methylbenzo[f]quinoline	ACY, DUP, GAF.			2-MethylbenzothiazoleN-Methylbenzylamine	FMT.			Methyl benzyl ether	ICO, MIS, SDW.			5-(1-Methylbutyl) barbituric acid	LIL.			3-Methylcholanthrene	EK.			Methylcyclohexane	DOW, PLC.			Methylcyclohexenecarboxaldehyde	UCC.			4-Methyl-α, α-diphenyl-l-piperazineethanol, dihydro-	ABB.			chloride.	מזות			N-Methyleneaniline	DUP.			4,4'-Methylenebis[N,N-diethylaniline]	ACY, GAF, SDH.			*4,4'-Methylenebis[N,N-dimethylaniline] (Methane base)	ACY, DSC, DUP, GAF, NAC, SDH, x.			4,4'-Methylenebis[N,N-dimethyl-3-nitroaniline]	GAF.			2,2'-Methylenebis(6-nonyl-p-cresol)	ACY.			5,5'-Methylenebis[toluene-2,4-diamine]	DUP.			*4,4'-Methylenedianiline	DOW, DUP, NAC.			5-Methylene-2-norbornene	HN.			N-Methylformanilide	MIS.			2-Methylfuran	QKO.			Methylhydroquinone	EKT.			2-Methylindole-3-carboxaldehyde	GAF.			6-Methyl-2-(2-methyl-6-quinolyl)-7-benzothiazolesulfonic acid.	DUP.			Methylnaphthalene, crude	KPT.			1-Methylnaphthalene	HMY.			N-Methyl-4'-nitroacetanilide	GAF, NAC.			N-Methyl-p-nitroaniline	GAF.			4-Methyl-2-nitroanisole	DUP.			2-Methyl-1-nitroanthraquinone	DUP, GAF, ICI, NAC.			N-Methyl-N-nitroso-p-toluenesulfonamide	RDA.			2-Methyl-5-norbornene-2,3-dicarboxylic anhydride	VEL.			Methylnorbornene-2,3-dicarboxylic anhydride, isomers	NAC.			4-Methyl-7-oxabicyclo[4.1.0]heptane-3-carboxylic acid,	UCC.			(4-methyl-7-oxabicyclo[4.1.0] hept-3-yl)-methyl ester				(Epoxide 201).				3'-Methyl-5-[(7-oxo-7H-benz[de]anthracen-3-yl)-amino]-	DUP.			1,2'-iminodianthraquinone. *m-(3-Methy1-5-oxo-2-pyrazolin-1-y1)benzenesulfonamide	CMG, TRC, VPC.			m-(3-Methyl-5-oxo-2-pyrazolin-1-yl) benzenesulfonic acid	GAF, TRC, VPC.			*p-(3-Methyl-5-oxo-2-pyrazolin-l-yl)benzenesulfonic acid	AAP, ACY, CMG, DUP, GAF, TRC, VPC.			3-(3-Methyl-5-oxo-2-pyrazolin-1-yl)-1,5-naphthalene-	TRC.			disulfonic acid.				6-(3-Methyl-5-oxo-2-pyrazolin-1-yl)-1,3-naphthalene-	TRC.			disulfonic acid. *4-(3-Methyl-5-oxo-2-pyrazolin-1-yl)-m-toluenesulfonic	CHE TEC ITEC			acid [SO ₃ H=1].	CMG, TRC, VPC.			2-Methyl-5-phenylbenzoxazole	EK.			- A - V	GAF.			1-Methyl-2-phenylindole				1-Methyl-2-phenylindole-3-carboxaldehyde	GAF.			1-Methyl-2-phenylindole-3-carboxaldehyde	GAF. SDW.			1-Methyl-2-phenylindole-3-carboxaldehyde	SDW.			1-Methyl-2-phenylindole-3-carboxaldehyde	SDW.			1-Methyl-2-phenylindole-3-carboxaldehyde	SDW. ICO. ICO.			1-Methyl-2-phenylindole-3-carboxaldehyde	SDW. ICO. ICO. ACY, DOW, DUP, NAC, SDC, SDH, SDW, VPC.			1-Methyl-2-phenylindole-3-carboxaldehyde	SDW. ICO. ICO.		TABLE 7B. --Cyclic intermediates for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	Chemical	Manufacturers' identification codes (according to list in table 22)		--	--		2-Methyl-1-piperidinepropanol	LIL.		2 Mothyrl 2 nymagolin_5_one	DUP.		1 Mo+bril prepro 10	DUP.		V Nothrightmane	ACP, CLK, DOW, HPC, SKO.		(Mothyleylfonyl)_4_nitrogniline	EKT, TRC.		Sothwil 2 thianvi ketone	SDW.		(_(Methylthio)_m_cresol	CRZ.		Wothwithionhene	SDW.		(Nothylthia) phenol	CRZ.		6'_Methyl_4'_p-toluenesulfonamido-m-benzanisidide	GAF, NAC.		3-Methyl-6-p-toluidino-7H-dibenz[f,ij]isoquinoline-	GAF, ICI.		2 7/3H)_dione.			3_Methyl_l_m_tolyl-2-pyrazolin-5-one	DUP.		3_Methyl-1-n-tolyl-2-nyrazolin-5-one	VPC.		1 -Nanhthaldehvde	COK.		Naphthalene, solidifying at 79° C. or above (refined	KPT, NAC, RIL.		flake) (from domestic crude).			1 5_Nephthelenedicl (1.5-Dihydroxynaphthalene)	NAC.		1 5_NanhthalenedisulfOnic 8Cid	GAF, NAC.		2 7_Nanhthalenedisulfonic acid	DUP, NAC, SDH.		l-Naphthalenesulfonic acid	TRC.		1-Naphthalenesulfonic acid, sodium salt	TRC.		2-Naphthalenesulfonic acid	ACY, NAC.		2-Naphthalenesulfonic acid, sodium salt	ACY.		2-Naphthalenesulfonyl chloride	DUP, GAF.		2-Naphthalenesulfonyl chioride	GAF, HST, TRC.		1,4,5,8-Naphthalene te tracarboxylic acid	GAF.		1,3,6-Naphthalenetrisulfonic acid	DUP.		Naphthalic anhydride			Naphthalimide	DUP, GAF, NAC.		2H-Naphth[1,8-cd]isothiazole-3,5-disulfonic acid,	DUP.		1,1-dioxide, trisodium salt.	CON		1-Naphthoic acid	COK.		1-Naphthol (\alpha-Naphthol)	DUP, NAC, UCC.		2-Naphthol, tech. $(\beta-Naphthol)^1$	ACY, NAC, SW, x.		p-Naphtholbenzein	EK.		1,4-Naphthoquinone	EKT.		Nephthostvr1]	DUP, GAF, NAC.		Napth[1,2-d][1,2,3]oxadiazole-5-sulfonic acid	CMG, GAF, NAC, TRC, VPC.		1-Naphthylamine (q-Naphthylamine)	DUP, NAC.		2-Naphthylamine (8-Naphthylamine)	X.		p-(2-Naphthylamino)phenol (N-(p-Hydroxyphenol)-2-	NAC.		nanhthvlamine).	1		2-(Naphthylthio) acetic acid	ACY, GAF, VPC.		Nicotinonitrile (3-Cvanopyridine)	NEP, RIL.		Nitro-accepture [2.1-a] accepturylene-5.13-dione	101.		3'_Nitroecetenilide	GAF, TRC.		//_Nitrogretanilide	GAF, TRC.		2' Withou a contamigidide	I DUP. SDH.		2' Nitro-n-ecetericidide	I GAF.		4'-Nitro-o-acetanisidide	DUP.		2'_Nitro_n_ecatonhanetidide	AAP.		3'_Nitroacetonhenone	SDH.		5'_Nitro_o_scatotoluidide	DUP.		m_Nitroaniline	ACY, x.		o-Nitroaniline	AAP, MON.		p-Nitroaniline	AAP, MON, SDC, UPM.		2-(o-Nitroanilino)ethanol	AAP, MED.		2-Nitro-p-anisidine [NH ₂ =1]	DUP, SDH.		4-Nitro-o-anisidine [NH ₂ =1]	AAP, DUP, SDH.		4-Nitro-o-anisidine [NH ₂ =1]	ACY, ALL, BUC, DUP.		o-Nitroanisole	DUP, MON.		p-Nitroanisole	DUP.		p-Nitroanisole	DUP.		4-Nitroanthranille acid	MDC.		5-Nitroanthranilic acid	TRC.		1-Nitroanthraquinone	ACY, MAY.		2-(4-Nitro-2-anthraquinonyl) anthra[2,3-d] -oxazole-	GAF, NAC.		5,10-dione. m-Nitrobenzaldehyde	NAC CDU			NAC, SDH.		m-Nitrobenzanilide	DUP.	${\it TABLE~7B.--Cyclic~intermediates~for~which~U.S.~production~or~sales~were~reported,~identified~by~manufacturer,~1966--Continued}$	Chemical	Manufacturers' identification codes (according to list in table 22)																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																			
--	---			(40001411) 00 220 227		*Nitrobenzene	ACY, DUP, GAF, MON, NAC, RUC.		3 '-Nitrobenzenesulfonanilide	GAF.		m-Nitrobenzenesulfonic acid	ACY, DUP, NAC.		m-Nitrobenzenesulfonic acid, sodium salt	GAF, MON, MRA, RBC.		m-Nitrobenzenesulfonyl chloride	GAF.		p-Nitrobenzenesulfonyl chloride5-Nitro-2-benzimidazolinone	EK, SDW.		m-Nitrobenzoic acid	HK, SDH, WAY.		m-Nitrobenzoic acid, sodium salt	WAY.		p-Nitrobenzoic acid	DUP.		6-Nitro-2-benzoxazolinone	GAF.		2-(m-Nitrobenzoyl)-o-acetanisidide	GAF.		m-Nitrobenzoyl chloride	HK, ICO.		p-Nitrobenzoyl chloride	HK.		p-Nitrobenzyl alcohol	EK.		4'-Nitro-4-biphenylcarboxylic acid	DUP.		2-Nitro-p-cresol	SW.		Nitrocyclohexane	x.		Nitrodiphenylamine	ACY, MON.		5-Nitro-2-furaldehydesemioxamazone	NOR.		5-Nitro-2-furanmethanediol, diacetate	NOR.		5-Nitroisophthalic acid	GAF, GAM.		1-Nitronaphthalene3-Nitro-1,5-naphthalenedisulfonic acid	DUP, NAC.		4-Nitronaphthalic anhydride	GAF, NAC. TRC.		7(and 8)-Nitronaphth[1,2-d][1,2,3]oxadiazole-5-sulfonic	GAF, NAC, TRC, VPC.		acid.	dia, mo, mo, vio.		4'-Nitrooxanilic acid	DUP.		o-Nitrophenol	DUP.		p-Nitrophenol	DUP, MON, SDC, UPM.		p-Nitrophenol, sodium salt	MON, UPM.		4'-(p-Nitrophenyl)acetophenone	DUP, GAF.		4-[(p-Nitrophenyl)azo]-o-anisidine	AAP.		2-Nitro-p-phenylenediamine	WAY.		4-Nitro-o-phenylenediamine	DUP, FMT.		(p-Nitrophenyl)hydrazine	EK.		2,2'-(m-Nitrophenylimino)diethanol	DUP.		2,2'-(m-Nitrophenylimino)diethanol, diacetate ester	DUP.		<pre>2-(p-Nitrophenyl) -2H-naphtho[1,2-d] triazole-6,8-disulfonic acid.</pre>	Inc.		2-(p-Nitrophenyl)-1-octadecyl-5-benzimidazolesulfonic	GAF.		acid.	Will I		1-(m-Nitrophenyl)-5-oxo-2-pyrazoline-3-carboxylic acid	DUP, VPC.		3-Nitrophthalic acid	EK.		3-Nitrophthalic anhydride	EK.		4-Nitrophthalimide	DUP.		5-Nitrosalicylaldehyde	EK.		3(and 5)-Nitrosalicylic acid	EK.		p-Nitrosophenol	ACY, DUP, NAC.		3-Nitrostyrene	CWN.		4-Nitro-4'-(5-sulfo-2H-naphthol[1,2-d] triazol-2-yl)-2,2'-	TRC.		stilbenedisulfonic acid.			m-Nitrotoluene	DUP, NAC.		o-Nitrotoluene	DUP, NAC.		p-Nitrotoluene	DUP, NAC.		Nitrotoluene mixtures5-Nitro-o-toluenesulfonanilide	DUP, NAC.		p-Nitrotoluenesulfonic acid	GAF.		3-Nitro-p-toluenesulfonic acid [SO ₃ H=1]	GGY.		5-Nitro-o-toluenesulfonic acid [SO ₃ H=1]	AAP, CMG, TRC. ACY, DUP, GAF, NAC, SDH, TRC.		5-Nitro-o-toluenesulfonyl chloride	GAF.		3-Nitro-p-toluic acid, methyl ester	SDH.		2-Nitro-p-toluidine [NH ₂ =1]	ACY, DUP, SW.		4-Nitro-o-toluidine [NH ₂ =1]	GAF.		5-Nitro-o-toluidine [NH ₂ =1]	BUC, DUP, PCW, SDH.		5-Nitro-2-p-toluidinobenzenesulfonic acid	TRC.		3-Nitrotoluoyl chloride	x.		16-Nitroviolanthrone	ACY, ATL, GAF, ICI, MAY, TRC.		4-Nitro-m-xylene	DUP.		Witroxylenes, mixed	NAC.		Name of the control o	JCC.		Nonyl-dinonylphenol, mixtureNonylphenolNonylphenol	1000.	TABLE 7B.--Cyclic intermediates for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	Chemical	Manufacturers' identification codes (according to list in table 22)		---	--		5-Norbornene-2,3-dicarboxylic anhydride	VEL.		Octylphenol	RH.		Octyphenor	ARA. TRC.		Oxani lide	WSN.		Oxam 102	ACY, DUP, GAF, ICI, MAY, TRC. ACY, DUP, GAF, ICI, MAY, TRC.		diminoldianthraguinone.	ATIA		2_Ovocyclohexanecarboxylic acid, ethyl ester	ARA.		*5-0xo-l-phenyl-2-pyrazoline-3-carboxylic acid, ethyl	GAF, SDW, VPC.		ester. 5-0xo-1-(p-sulfophenyl)-2-pyrazoline-3-carboxylic acid	AAP, GAF, ICI, VPC.		(Pyrazolone T). 5-0xo-1-(p-sulfotolyl)-2-pyrazoline-3-carboxylic acid	VPC.		4,4'-Oxydianiline	x, x. MRK.		Penicillin, N-ethylpiperidine salt	OTC.		Pentachloronitrobenzene	PAS.		Pentylnaphthalenes (Amylnaphthalenes)	PAS.		o-Pentylphenol (o-Amylphenol)	PAS.		p-tert-Pentylphenol			3,4,9,10-Perylenetetracarboxylic acid	GAF, NAC.		3,4,9,10-Perylenetetracarboxylic 3,4:9,10-diimide	DUP, GAF, NAC.		Phenethylamine	MIS.		Phenethylamine sulfate			o-Phenethylbenzoic acid	LIL.		o-Phenetidine	DOW, MON.		p-Phenetidine	RSA.		Phenetole	IDA:		*Phenol:			*Natural:			*From coal tar: 2 39° C., m.p	KPT, PRD.		82%-84%	ACP, KPT.		82%-84%All other	ACP, KPT.		*From petroleum	MER, NPC, PIT, PRD, SW.					*Synthetic: By caustic fusion: U.S.P	MAL, MON, RCI.		From chlorobenzene by liquid-phase hydrolysis: U.S.P	DOW.		From chlorobenzene by vapor-phase hydrolysis: U.S.P	HKD, UCC.		*From cumene by oxidation: U.S.P	ACP, CLK, MPC, MON, DHO, DKO, DOC.		Phenoleulfonanhthalein	L.K.		Phonoleulfonenhthalein, sodium salt	LEV.		Phonothiczin_2_vl_l_nropanone	/ ATT •		Phenovyscetic scid. sodium salt	BPC.		2 Phanovimronanol	100.		O Phonogrammoni oni a gaid	. 100.		2 Phonogrammonionyl chloride	1100, OPC.		*Phonylecetic acid (a Toluic acid)	DPC, GIV, MAIL , IDIN.		Phonylagetic acid ethyl ester. tech	Dru.		Phenylacetic acid. methyl ester	DPC.		*Phonylecetic acid notessium salt	· BPG, UPG, IBA.		*Dhonylogotic gold godium salt	BPC, OPC.		*Phonylegetonitrile (α -Tolunitrile)	DPC, OPC, DDW, IDA.		//_Phenylacetophenone	UUP GAR •		Phenylacetyl chloride	1100.		2_Phenylanthra[2.3-d] oxazole-5,10-dione	· CiAF •		*p-Phenylazoaniline (C.I. Solvent Yellow 1) and hydro-	ACI, GAF, NAC.		4-(Phenylazo)diphenylamine	- EK.		4-(Phenylazo) -1-naphthylamine	- DUP.		4_(Phenylazo)_m_phenylenediamine (C.1. Basic Urange 2)	- DUP.		5-(Phenylazo) salicylic acid	- TRC.		1_Phenv1_1 3_butanedione	- EK.		2-Phenylbutyric acid	- BPC. - RBC.			. 100.		a -Dhenyl -o-cresol	I CV		α-Phenyl-o-cresol	- SK.		α-Phenyl-o-cresol	- NAC.		α-Phenyl-o-cresol	- SK. - NAC. - ACT, GAF.	${\it TABLE~7B.--Cyclic~intermediates~for~which~U.S.~production~or~sales~were~reported,~identified~by~manufacturer,~1966--Continued}$	Chemical	Manufacturers' identification codes (according to list in table 22)		---	---		*p-Phenylenediamine	ACY, BFG, SDC.		d-Phenylephrine base	SDW.		dl-Phenylephrine base	SDW.		2-Phenylethenesulfonic acid, sodium salt (β-Styrene-	SHL.		sulfonic acid, sodium salt).			Phenyl ether (Diphenyl oxide)	DOW.		d-(-)-2-Phenylglycine and derivatives	KF.		d-(-)Phenylglycine, N-carboxy anhydride	OTC.		d1-2-Phenylglycine (racemic)	KF.		Phenylglycine. sodium salt	NAC, OTC.		d-(-)Phenylglycyl hydrochloride	OTC.		5-Phenylhydantoin	ABB, x.		Phenylhydrazine	DOW.		Phenylhydrazine hydrochloride	EK, VPC.		2,2'-[(Phenyl)imino]diethanol (N-Phenyldiethanolamine)	EKT, GAF.		3,3'-[(Phenyl)imino]dipropionitrile	DUP.		Phenylmagnesium bromide	ARA.		Phenylmalonic acid, diethyl ester	BPC.		o-Phenylphenol	DOW, RCI.		o-Phenylphenol, chlorinated	DOW.		o-Phenylphenol, sodium salt	DOW.		p-Phenylphenol	DOW.		N-Phenyl-p-phenylenediamine	DUP, USR.		Phenylphosphinic acid	SF.		Phenylphosphonic dichloride	SF.																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																						
Phenylphosphonothioic dichloride	SF.		Phenylphosphonous acid	SF.		Phenylphosphonous acid, sodium salt	SF.		Phenylphosphorous dichloride	SF.		1-Phenyl-1,2-propanedione, 2-oxime	NEP, ORT, x.		Pheny1-2-propanone	ORT, SK.		N-3-Phenylpropyl-p-toluidine	EK.		Phenyl sulfone	NES.		Phenylundecanoic acid	EK.		Phloroglucinol	MRT.		1(2H)-Phthalazinone	KPT, NAC, x.		Phthalic acid	EK, KF, MEE.		Phthalic acid, diallyl ester	FMP.		Phthalic acid, disodium salt	TNC.		Phthalic anhydride	ACP, GRH, HN, KPS, MON, PCC, PTO, RCI, SOC, STP, S			THC, UCC, WTC.		Phthalide	FMT, NAC.		Phthalimide	DUP, MEE, NAC.		Phthalimide, potassium salt	EK, SDW.		[Phthalocyaninato(2-)] copper	ICC, ICI.		[Phthalocyaninato(2-)] iron	DUP.		Phthalocyaninetetrasulfonyl chloride, copper derivative	DUP, TRC.		Phthaloyl chloride (Phthalyl chloride)	MON.		Picolines:2	AGD VEDM DET VIGO		*2-Picoline (\alpha -Picoline)	ACP, KPT, RIL, UCC.		3-Picoline (β-Picoline)	NEP, RIL.		3-ricotine (p-ricotine)	RIL, UCC.		4-Picoline (Y-Picoline)			4-Picoline (γ-Picoline) Picoline (3.4-mixture)	ACP, KPT.		4-Picoline (γ-Picoline) Picoline (3,4-mixture) Picolinic acid	NEP.		4-Picoline (Y-Picoline)	NEP.		4-Picoline (Y-Picoline)	NEP. NEP. RIL.		4-Picoline (Y-Picoline)	NEP. NEP. RIL. NAC, SDC, x.		4-Picoline (γ-Picoline)	NEP. NEP. RIL. NAC, SDC, x. LIL.		4-Picoline (Y-Picoline)	NEP. NEP. RIL. NAC, SDC, x. LIL. RIL.		4-Picoline (Y-Picoline) Picolinic (3,4-mixture) Picolinic acid Picolinic acid Picolinonitrile (2-Cyanopyridine) 3-Picolylamine Picric acid (Trinitrophenol) 4-Pipecoline	NEP. NEP. RIL. NAC, SDC, x. LIL. RIL. JCC, x.		4-Picoline (Y-Picoline)	NEP. NEP. RIL. NAC, SDC, x. LIL. RIL. JCC, x. ABB, DUP, HK, MRK, RIL.		4-Picoline (Y-Picoline) Picolinic acid	NEP. NEP. RIL. NAC, SDC, x. LIL. RIL. JCC, x. ABB, DUP, HK, MRK, RIL. ACY.		4-Picoline (γ-Picoline)	NEP. NEP. NEP. RIL. NAC, SDC, x. LIL. RIL. JCC, x. ABB, DUP, HK, MRK, RIL. ACY. MON.		4-Picoline (γ-Picoline) Picolinic (3,4-mixture) Picolinic acid Picolinonitrile (2-Cyanopyridine) 3-Picolylamine Picric acid (Trinitrophenol) 2-Pipecoline 4-Pipecoline 1-Piperoline Piperazine mixture, crude ¹ Piperidine 3-Piperidine Polychlorobiphenyl Poly (Methylenephenylene) polyamine	NEP. NEP. RIL. NAC, SDC, x. LIL. RIL. JCC, x. ABB, DUP, HK, MRK, RIL. ACY.		## A-Picoline (Y-Picoline) Picolinic (3,4-mixture) Picolinic acid	NEP. NEP. NEP. RIL. NAC, SDC, x. LIL. RIL. JCC, x. ABB, DUP, HK, MRK, RIL. ACY. MON. KAI. DUP, NAC.		4-Picoline (γ-Picoline)————————————————————————————————————	NEP. NEP. NEP. RIL. NAC, SDC, x. LIL. RIL. JCC, x. ABB, DUP, HK, MRK, RIL. ACY. MON. KAI.		4-Picoline (γ-Picoline) Picolinic acid	NEP. NEP. NEP. RIL. NAC, SDC, x. LIL. RIL. JCC, x. ABB, DUP, HK, MRK, RIL. ACY. MON. KAI. DUP, NAC. ATL. ABB.		4-Picoline (γ-Picoline)————————————————————————————————————	NEP. NEP. NEP. RIL. NAC, SDC, x. LIL. RIL. JCC, x. ABB, DUP, HK, MRK, RIL. ACY. MON. KAI. DUP, NAC. ATL.	TABLE 7B.--Cyclic intermediates for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	Chemical	Manufacturers' identification codes (according to list in table 22)		--	--		*8,16-Pyranthrenedione	CMG, ICI, TRC.		Pyridine, refined: ²			*2° Pyridine			Other grades	KPT.		2-Pyridineethanol	RIL.		3-Pyridinemethanol	EK, RIL.		Pyridine-n-oxide	RIL.		Pyridinium bromide perbromide			3-Pyridinol			2(1H)-Pyridone	FMT.		2-Pyrrolidinone			3-(1-Pyrrolidinyl) propiophenone hydrochloride	GAF.		lH-Pyrrolo[2,3-6] pyridine	SDW.		*Quinaldine	ACY, DUP, NAC.		Quinoline:	102, 201, 1220		1° and 2° Quinoline	ACP, KPT.		Other grades			2,4-Quinolinediol	DUP.		8-Quinolinol (8-Hydroxyquinoline, tech.)	GAM.		Quinophthalone (Quinoline yellow, base)	NAC.		Resorcinol, monoacetate (nonmedicinal grade) 1	AAP.		Resorcinol, tech1	KPT, UPF.		β-Resorcylaldehyde	GAF.		β-Resorcylic acid	ACY, KPT.		β-Resorcylic acid, lead salt	ACY.		*Salicylaldehyde	DOW, HN, MIR, RDA.		*Salicylic acid, tech	CFC, DOW, HN, MON, SDH.		Salicylic acid, ammonium chromium complex	TRC.		Salicylic acid, sodium chromium complex	TRC.		Salicylic acid, strontium salt, tech	DOW.		Salicylideneaminoguanidine oleate	TNC.		Sodium phenoxide	DUP.		*Styrene, all grades	ACC, CSD, DOW, ELP, FG, KPP, MCB, MON, SHC, SKC, SNT,			UCC.		5-Sulfamoylanthranilic acid	TRC.		Sulfanilic acid (p-Aminobenzenesulfonic acid) and salt	ACY, CTN, DUP.		4-Sulfoanthranilic acid	GAF, TRC.		o-Sulfobenzoic acid, cyclic anhydride	EK.		α,α-[(p-Sulfobenzylidene) bis[(3-methyl-p-phenylene) (ethylimino)]] di-m-toluenesulfonic acid.	TRC.		5-Sulfoisophthalic acid, 1,3-dimethyl ester			N,5'-Sulfonyldianthranilic acid	TRC.		4,4'-Sulfonyldiphenol (4,4'-Dihydroxydiphenylsulfone)	GAF, MON, UPF.		*Terephthalic acid	ACC, DUP, EKT.		Terephthalic acid, dihydrazide	DUP.		*Terephthalic acid, dimethyl ester	ACC, DUP, EKT, HPC.		Terphenyl (Phenylbiphenyl)	MON.		1,2,4,5-Tetraaminobenzene tetrahydrochloride	BJL.		[4,4',4'',4'''-Tetraaminophthalocyaninato(2-)]copper	DUP.		3',3'',5',5''-Tetrabromophenolphthalein, ethyl ester	EK.		Tetrabromophthalic anhydride	MCH.		Tetrabromo-8,16-pyranthrenedione	GAF, NAC, TRC.		1,3,6,8-Tetrabromopyrene	GAF.		*1,4,5,8-Tetrachloroanthraquinone	DUP, GAF, ICI, NAC.		1,2,4,5-Tetrachlorobenzene	DOW, DVC, HK.		1,2,4,5-Tetrachloro-3-nitrobenzene	SDH.		α, α, 2, 6-Tetrachlorotoluene	DUP.		Tetrahydrofuran	GAF, ICI.		Tetrahydro-2-methylfuran	DUP, QKO.		*1,4,5,8-Tetrahydroxyanthraquinone, leuco derivative	DUP, QKO.		*1,4,5,8-Tetrakis(1-anthraquinonylamino)anthraquinone	GAF, ICC, NAC, TRC.		(Pentanthrimide),	GAF, ICI, NAC.		2-(1,1,3,3-Tetramethylbutyl)-p-cresol	ACY.		p-(1,1,3,3-Tetramethylbutyl)phenol	GAF.		N, N, N', N'-Tetramethyl-p-phenylenediamine	EK.		[4,4',4'',4'''-Tetranitrophthalocyaninato(2-)]copper	DUP.		2-(2-Thenylamino)pyridine	ABB.	TABLE 7B.--Cyclic intermediates for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	Chemical	Manufacturers' identification codes (according to list in table 22)		--	---		3,3'-Thiobis[7H-benz[de]anthracen-7-one]	ACY, DUP, GAF, ICI.		1 1/ Thiobis(2-nephthol)	ACY.		U // Thiodismiling	ACY, DUP, NAC.		6 6/ Thiodimeterilic acid	NAC.		This phonographic soid	BPC.		O Thiophopocotyrl chloride	LIL.		O Which has comboys I debude	ABB.			GIV.		*Toluono 2 / dismine (/-m-Tolylenediamine)	ACY, DUP, GAF, NAC, OMC, RUC, TRC, UCC.		M-1 0 5 diamino	WAY.		Toluono 2 5 diemine culfate	EK.		mal 0 / digulfonia sold	GAF, SDH.		- M-1	MON.		p-Toluenesulfonamide	MON.		p-Toluenesulfonic acid	MON, NAC, NES, SW, UPF.		m Toluopeculfonic acid	ACY, TEN, UPF.		Toluenesulfonic acid, aniline salt	NES.		p-Toluenesulfonic acid, 2-chloroethyl ester	NAC.		p-Toluenesulfonic acid, ethyl ester	ICI.		p-Toluenesulfonic acid, methyl ester	NES.		p-Toluenesulfonic acid monohydratep-Toluenesulfonyl chloride	MON.		m-Toluic acid	CWL.		o-Toluic acid	CWL.		p-Toluic acid	CWL.		m-Toluidine	DUP, NAC.		o-Toluidine	DUP, NAC.		- Tolyidine hydrochloride	ACY.		- Tolyidino	DUP, NAC.		n Toluidine hydrochloride	EK.		Toluidines mived	DUP.		m Toluidinomethenesulfonic Acid	VPC.		o_Toluidinomethanesulfonic acid	TRC, VPC.		<pre>g_p_Toluidino_l_naphthalenesulfon/s acid</pre>	NAC.		*o_(n_Toluov1)henzoic acid	ACY, DUP, NAC.		N_(n_Tolylazo)sarcosine	BUC, GAF.		*/-(o-Tolylago)-o-toluidine (C.I. Solvent Yellow 3)	ACY, BUC, DUP, GAF, NAC, SDH.		/_(o_Tolvlezo)_o_toluidine hydrochloride	GAF.		1 m Tolyldodegene	x.		2 2/ (m_Tolylimino)diethanol	EKT.		n Tolylmarouric chloride	EK.		N,N,N-Tribenzylamine	ICO, MIS.		1,2,3(and 1,2,4)-Trichlorobenzene	DVC, PPG.		1,2,4-Trichlorobenzene	DOW, DVC, HK.		N,2,6-Trichloro-p-benzoquinoneimine			1,2,4-Trichloro-5-nitrobenzene	DCC, UCC.		Trichlorothenylsilaneα,α,α-Trichlorotoluene (Benzotrichloride)	HK, VEL.		α,α,α-Trichlorotoluene (Benzotrichloride)	HN.		α ,2,4-Trichlorotoluene	BPC.		α,2,4(and α,2,6)-Trichlorotoluene	HN.		a,3,4-Trichlorotoluene	ACY, GGY, NIL.		1,3,5-Triethylbenzene	DUP.		2-(Trifluoromethyl) phenothiazine	SK.		α,α,α-Trifluoro-4-nitro-m-cresol	MEE.		ααα-Trifluoro-m-nitrotoluene	MEE.		α,α,α-Trifluoro-N-phenyl-m-toluidine (3-(Trifluoro-	SK.		mothyrl\dinhenylemine).			a a a midiuonotoluone	HK.		a a a Trifluoro-m-toluidine	MEE.		a a a Trifluoro-o-toluidine	MEC.		1 2 4_Tri bydrovyanthraguinone	· GAF •		3 / 5-Trimethorybenzoic scid	. 100.		2 / 5 Trimethylaniline (Pseudocumidine)	· I NAU •		1.2.4.Trimethylbenzene (Pseudocumene)	· PLC ·		2.3.3-Trimethy1-3H-indole	· GAF •		*1.3.3-Trimethyl- / a - indolineacetaldehyde	· DUP, GAF, VPC.		*1.3.3-Trimethyl-2-methyleneindoline (Trimethyl base)	· DUP, GAF, NAC, VPC.		Trimethylphenylammonium iodide	· EK.		α, α', 2-Trimethyl-1,4-piperazinediethanol	· WYN.	TABLE 7B.--Cyclic intermediates for which U.S. production or sales were reported, identified by manufacturer, 1966---Continued	Chemical	Manufacturers' identification codes (according to list in table 22)																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																							
--	---		2,4,6-Trimethylpyridine	KPT, RIL.		1.3.5-Trinitrobenzene	EK.		2,4,7-Trinitrofluoren-9-one	EK.		Triphenvlmethanol	EK.		Triphenylsulfonium chloride	GAM.		α, α', α''-Tris(dimethylamino)mesitol	RH, TKL.		Tris(2-methyl-1-aziridinyl)phosphine oxide	ICO.		m-Ureidoaniline	ICI.		*7,7'-Ureylenebis[4-hydroxy-2-naphthalenesulfonic acid] (Jacid urea)	ACY, ATL, BKS, BL, CMG, GAF, NAC, TRC, VPC.		Veratraldehyde (3,4-Dimethoxybenzaldehyde)	GIV, LIL, SLV.		Veratryl alcohol (3,4-Dimethoxybenzyl alcohol)	IIL.		p-Vinylbenzenesulfonic acid, sodium salt	DUP.		4-Vinylcyclohexene	PLC.		2,2'-Vinylenebis[benzimidazole]	TRC.		5-Vinyl-2-picoline (MVP)	PLC.		2-Vinylpyridine	NEP, RIL.		4-Vinylpyridine	RIL.		*Violanthrone (Dibenzanthrone)	ACY, ATL, DUP, GAF, ICI, MAY, SDC, TRC.		Xanthene-9-carboxylic acid	MAL.		Xanthic acid, 4-chloro-o-tolyl ester	GAF.		m-Xylene	SNT, SOC.		*o-Xylene	ASH, CCP, COR, CSD, CSO, DLH, SIN, SNT, SOC, TOC.		*p-Xylene*	CSD, ENJ, HCR, SIN, SNT, SOC, SOG.		2,5-Xylenesulfonic acid	EK.		2,4-Xylenol	EK.		2,6-Xylenol	x.		Xylenol crystals	ACP, KPT.			AOI, MII.		Xylenols: Low b.p	NPC, PIT.		Medium b.p	KPT, NPC, PIT.		Medium D.p	KPT, NPC, PRD.		Not classified as to b.p	Kri, Mro, rid.		Xylidines:	DITD MAC		2,4-Xylidine (m-4-Xylidine)	DUP, NAC.		2,5-Xylidine (p-Xylidine)	DUT.		2,6-XylidineOriginal mixture	DUP.		Uriginal mixture	DUP, NAC.		4-(2,4-Xylylazo)-o-toluidine	ACY.		4-(2,5-Xylylazo)-o-toluidine	AUI.		4-(Xylylazo)xylidine, mixed	GAF.		4-(2,4-Xylylazo)-2,5-xylidine	NAC.		All other cyclic intermediates	FG, GAF, GAM, ICC, ICO, LIL, MON, x, x, x.	¹ See table 13B for data on medicinal grade of this item. ² Does not include manufacturers' identification codes for producers that report to the Division of Bituminous Coal, U.S. Bureau of Mines. These producers are listed in the U.S. Bureau of Mines Mineral Industry Survey Coke Producers in the United States in 1966, Aug. 29, 1967. ## Dyes $\textbf{TABLE 8B. --} \textit{Benzenoid dyes for which U.S. production or sales were reported, identified by \textit{manufacturer}, 1966$ [Dyes for which separate statistics are given in table 8A are marked below with an asterisk (*); dyes not so marked do not appear in table 8A because the reported data are accepted in confidence and may not be published. Manufacturers' identification codes shown below are taken from table 22. An x signifies that the manufacturer did not consent to his identification with the designated product]		Dye		Ma	nufac (acco	turer rding									-------------------	-------------	-------------------	-------	----------------	----------------	-------	-------	-----------	--------	------	------	------			ACID DYES													*Acid yellow dyes	:													Acid Yellow 1-		ACY.												Acid Yellow 2-		DUP.	DIID	a.n	****									*Acid Yellow 3-		1	DUP,	GAF,	NAC.									Acid Yellow 4-		SDH.												Acid Yellow 7-		NAC.												Acid Yellow 9-		1	DUP,	VPC.										MACIG Tellow II		1	TMC.	1101										#Acid Yellow 17				,BDO,	BKS,	CMG,	DUP,	GAF,	NAC,	PDC,	SDH,	TRC,				VF	_	•	•	Ī	-	-		-				*Acid Yellow 23		AAP,	ACY,	GAF,	MRX,	NAC,	SDH,	TRC,	VPC.					Acid Vellow 25		GAF.												Acid Yellow 29			TRC.											Acid Yellow 34		NAC.												Acid Yellow 35		VPC.												*Acid Yellow 36			GAF,	NAC,	TRC.									Acid Yellow 38		NAC.	CAR	MAG	mp.a	TTD(I								*Acid Yellow 40				NAC,		VPC.								*Acid Yellow 42				GAF, NAC,										*Acid Yellow 44		VPC.		MAO,	VI 0.									ACIG Tellow 49				CMG,	GAF.	NAC.	TRC.	VPC.						*Acid Tellow 54)	VPC.		رماس	u,	,								Acid Vellow 50)	NAC.												Acid Vellow 63		1	NAC.											Acid Yellow 65	,	TRC.												MANIA Vallow 73		1		NYC,	SDH.									Anid Vallow 76		TRC.												Acid Yellow 79		VPC.												OP wolley blok		NAC.	•											Acid Yellow 95		CMG.												*Acid Yellow 99)			, NAC,	TRC,	VPC.								Acid Yellow 11	4		TRC.	•				,						Acid Yellow 12	21	GAF		MAC										*Acid Yellow La	27	TRC		NAC.										Acid Vellow 12	28	TRC												Acid Vellow 12	29	TRC												*Anid Wellow 1	5]			, TRC,	VPC.									Acid Vellow 1	52	ACY												Acid Yellow 15	59	TRC	•											Other acid yel	llow dyes	ACY	, ALT	, CMG,	DUP,	GAF,	TRC	, VPC	•					#Acid orange dyes	? !													*Acid Orange 1-				, GAF,	NAC.									Acid Orange 2		·	, TRC	•										Acid Orange 5		NACY												Acid Urange 6				, ATL,	BKS.	CPC	CAF	. NAC	. PDC.	TRC.	YAW.	_		*Acid Orange 7				, BKS,								-		*Acid Orange of)			, DUP						•				And Omence 10	2	NAC		,				, , , , ,						Acid Orange 19	9	GAF												*Acid Orange 24	4			, GAF	, NAC	TRC	, YAW	•						Acid Orange 28		NAC												Acid Orange 3		AAP	•											Acid Orange 34	<u></u>	ACY												Acid Orange 4	5	NAC		•											0	AAP	•											Acid Orange 50		I												Acid Orange 5				, TRC	•									Acid Orange 5	1	CMG NAC GAF	•	, TRC	•								TABLE 8B. -- Benzenoid dyes for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	Dye	Manufacturers' identification codes (according to list in table 22)		------------------------------	--		ACID DYESContinued			*Acid orange dyesContinued			*Acid Orange 60	BKS, CMG, DUP, GAF.		Acid Orange 62	TRC.		Acid Orange 63	GAF, TRC.		*Acid Orange 64	ACY, DUP, NAC.		Acid Orange 69	ACY.		Acid Orange 72Acid Orange 74	GAF.		Acid Orange 74Acid Orange 76	CMG, GAF, NAC, TRC.		Acid Orange 85	NAC.		Acid Orange 86	NAC, TRC.		Acid Orange 114	ACY.		Acid Orange 116	ATL, BKS, GAF, TRC.		Acid Orange 119	TRC.		Other acid orange dyes	ALT, DUP, VPC.		*Acid red dyes: *Acid Red 1	AAP, ACY, BDO, BKS, BL, DUP, GAF, NAC, SDH, TRC, VPC,			YAW.		*Acid Red 4	ATL, BDO, CMG, DUP, GAF, TRC, VPC, YAW.		*Acid Red 14Acid Red 17	DUP, GAF, NAC, PDC.		*Acid Red 18	NAC, TRC, YAW. ACY, DUP, GAF, NAC, TRC.		*Acid Red 26	ACY, ATL, CPC, GAF, NAC.		Acid Red 27	NAC.		Acid Red 32	GAF, NAC.		Acid Red 33	NAC, YAW.		Acid Red 34	NAC.		Acid Red 35	AAP, GAF.		*Acid Red 37	BKS, CMG, DUP, GAF, NAC, TRC.		Acid Red 42	GAF.		Acid Red 52Acid Red 57	GAF.		Acid Red 66	AAP.		*Acid Red 73	ACY, DUP, GAF, NAC, PSC, TRC.		Acid Red 76	NAC.		Acid Red 80	GAF, ICI.		*Acid Red 85	ACY, ALT, ATL, BKS, CMG, DUP, GAF, NAC, PDC, TRC,		*Acid Red 87	VPC, YAW.		*Acid Red 88	AMS, NYC, SDH. ACY, ATL, DUP, GAF, NAC, SDH, TRC, YAW.		*Acid Red 89	AAP, GAF, TRC, VPC.		Acid Red 94	NYC.		Acid Red 97	GAF.		Acid Red 99	BKS, CMG, TRC, VPC, YAW.		Acid Red 100	VPC.		Acid Red 106	YAW.		*Acid Red 114	DUP. ATL, DUP, GAF, NAC.		Acid Red 115	GAF, NAC.		Acid Red 119	NAC.		Acid Red 133	GAF.		Acid Red 134	- TRC.		*Acid Red 137	ATL, DUP, GAF, NAC, TRC.		*Acid Red 151	AAP, ACY, BKS, TRC, YAW.		Acid Red 167Acid Red 175	NAC, TRC.		Acid Red 175Acid Red 178	DUP.		Acid Red 179	CMG, TRC.		*Acid Red 182	ACY, BKS, CMG, DUP, GAF, NAC.		Acid Red 183	CMG, TRC.		*Acid Red 186	BKS, CMG, GAF, TRC, VPC.		Acid Red 190	ACY.		Acid Red 191	TRC.		Acid Red 194	TRC.		Acid Red 201	TRC.		Acid Red 212	TRC.		Acid Red 213	TRC.		Acid Red 273	GAF.		Acid Red 292	ACY.			•	TABLE 8B. -- Benzenoid dyes for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	Dye		M	,				ficati in tab	on cod le 22)	es			--------------------------------------	----------------	---------------	------	--------------	-----------	--------	------------------	------------------	----	--		ACID DYESContinued							***					*Acid red dyesContinued												Acid Red 299	ALT.	TRC.										Acid Red 309	TRC.											Other acid red dyes	1	ATL,	DUP,	GAF,	VPC.							Acid violet dyes:												*Acid Violet 1	BDO,	CIMG,	GAF,	NAC.								*Acid Violet 3	ACY,	DUP,	NAC,	TRC,	YAW.							Acid Violet 6	NAC.											*Acid Violet 7	AAP,	BDO,	CMG,	DUP,	GAF,	NAC,	TRC,	VPC.				Acid Violet 9Acid Violet 11	GAF.											*Acid Violet 12	GAF.	73.6 7	DIID									Acid Violet 13	BDO,		DUP,	GAF.								Acid Violet 17	DUP.	SDH.										Acid Violet 29	HSH.											Acid Violet 34	ICI.																																																																																																																																																																																																																																																																																																																																																																																
			Acid Violet 41	CMG.											Acid Violet 43		ICI,	NAC.									*Acid Violet 49		NAC,										Acid Violet 56	CIMG,	GAF.										Acid Violet 58	GAF.											Acid Violet 76	NAC.											Other acid violet dyes	ALT,	DUP.										Acid Blue dyes: Acid Blue l												*Acid Blue 7	1	NAC,		~~								*Acid Blue 9			NAC,									Acid Blue 10	NAC.	NAC	SDH,	VPC.								Acid Blue 15	GAF.											Acid Blue 20	NAC.											Acid Blue 22	1	NYC.										Acid Blue 23		TRC.										*Acid Blue 25	1		CMG,	DUP.	GAF.	NAC.	TRC.					Acid Blue 26	NAC.	,		,	 ,	11110,	11101					Acid Blue 27	1	GAF.										Acid Blue 29	PDC.											Acid Blue 34	NAC.											*Acid Blue 40	ATL,	GAF,	ICI,	NAC,	TRC.							*Acid Blue 41	BDO,	CMG,	GAF,	NAC.								*Acid Blue 43			NAC,				-					*Acid Blue 45		CIMG,	DUP,	GAF,	NAC,	TRC,	VPC.					Acid Blue 47	ICI.											Acid Blue 55	HSC.											Acid Blue 58	NAC.											Acid Blue 59	DUP.											*Acid Blue 62		GAT.	NAC,	1/DC								Acid Blue 63	l ¹	NAC.		V 10.								Acid Blue 67	CMG.											Acid Blue 69		GAF.										Acid Blue 74	DUP,	NAC.										*Acid Blue 78	DUP,	GAF,	ICI,	NAC,	TRC.							Acid Blue 80	NAC,	TRC.										Acid Blue 81	ICI.											Acid Blue 83	GAF.											Acid Blue 89*Acid Blue 90	NAC.											Acid Blue 92		NAC,										Acid Blue 93		YAW.										Acid Blue 102	HSC.											Acid Blue 104		TRC.										*Acid Blue 113			BKG	CNAC	מזות	C A E	NAC					Acid Blue 118		GAF,	BKS,	وفالالف	, פינוע	uAr,	NAU.					Acid Blue 120		NAC.	MMU.										DUP.	14170+										Acid Blue 122		N14.0										Acid Blue 122	DIID.	NA:										Acid Blue 145	DUP,		GAT.	NAC	ጥድር	TOPO							ACY,		GAF,	NAC,	TRC,	VPC.						Acid Blue 145*Acid Blue 158 and 158A			GAF,	NAC,	TRC,	VPC.					TABLE 8B.--Benzenoid dyes for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued				(ac	COLUI	ng to	list	in ta	DIE 2					--	-------	-------	--------	-------	--------	-------	--------	-------	------	------	---		ACID DYESContinued													cid blue dyesContinued													4-23 D1 202	VPC.	mn a											Acid Divo 230	DUP,	TRU.											Acid Blue 231 Other acid blue dyes		ALT.	CMG,	DUP,	TRC,	VPC.							and among direct		,											Acid Green l	ACY,												vald Choon 3	1	GAF,	NAC,	TRC.									And Cross 5	GAF.	CAE	MAC										#Acid Green 9			NAC.										*Acid Green 12*					TRC.													NAC,	PDC,	TRC.						Anid (many 2)		NAC.					*****						visid One on 25		GAF,	HSH,	ICI	NAC,	TRC,	VPC.						4-14 Omeon 25	TRC.	VPC.											Acid Green 41Acid Green 44	VPC.	VI 0.											4-4-3 (man 50		GAF.											Anid Comm 50	TRC.												4-4-3 One on 70	TRC.	~	******										Other acid green dyes	ALT	GAF,	VPC	•									Acid brown dyes: Acid Brown 1	GAF.												4.33 Pares 6	GAF.												Whold Prown 1/	AAP,	ACY,	DUP	, GAF	, NAC,	TRC,	YAW.						Add Decem 10	TRC.												4.44 P 00	DUP.												Acid Brown 28Acid Brown 29	DUP.												And A Deceme 27	GAF.												And A Property 15	TRC.												Acid Proper Of	ACY.												hold Drown 07	ACY.												Acid Brown 98Acid Brown 152	GAF		•										4-43 Decem 150	GAF												Acid Prown 223	GAF												Anid Property 2/3	GAF			_									Other acid brown dyes	ALT;	, DUP	, GAI	•									Acid black dyes: *Acid Black l	AAP	ACY	. AT1	. BDO	, BKS	. DUP	. FAB,	GAF,	HSH,	NAC,	F		*Acid Black 1		RC, Y		.,	, 5.2.	,	,,						Acid Black 2		, NAC											total Plank 12	NAC	•											Acid Plack 16	NAC												Acid Black 18	NAC			- NA	٦.								*Acid Black 24			, TR	r, NA	٠.								Acid Black 26, 26A, and 26BAcid Black 29			, YA										Acid Plack / 1	NAC												Maid Plack /8					F, ICI	, NAC	, TRC.						April 10 part 52			, NA	C, TR	C.								Acid Black 53	NAC		,										Acid Black 58 Acid Black 60		TRO											Acid Plack Q2	ACY												*Acid Plack 107	GAF	, NA	, TR	c.									Anid Plack 108	GAF												And Dlock 130	VPC		רומו כ	C.									Other acid black dyes	ALI	. טע	P, PD	٠.									AZOIC DYES AND COMPONENTS													Azoic Compositions													Azoic yellow dyes:	1												*Azoic Yellow 1 Azoic Yellow 2		-	L, BU	C.										I BUG	, x.										${\it TABLE~8B. --Benzenoid~dyes~for~which~U.S.~production~or~sales~were~reported,~identified~by~manufacturer,~1966--Continued}$	Dye	Manufacturers' identification codes (according to list in table 22)		--	--		AZOIC DYES AND COMPONENTSContinued			Azoic Compositions Continued			Azoic orange dyes:	ATT AND DIG GAR		*Azoic Orange 3	ALL, ATL, BUC, GAF, x.		Azoic Orange 4Other azoic orange dyes	GAF.		*Azoic red dves:			*Azoic Red]	ALL, ATL, BUC, GAF, HST, x.		Azoic Red 2	ATL, BUC, GAF, x.		*Azoic Red 6	ALL, ATL, BUC, GAF, HST, VPC, x.		Azoic Red 13	GAF.		Azoic Red 15	GAF.		Azoic Red 73	ATL, GAF.		Azoic Red 74	GAF.		Other azoic red dyes	VPC.		*Azoic violet dyes: Azoic Violet 1	ALL, ATL, BUC, GAF, x.		Azoic blue dves:			*Azoic Blue 2	ATL, BUC, GAF.		*Azoic Blue 3	ALL, ATL, BUC, GAF, HST, x.		Azoic Blue 6	GAF.		Azoic Blue 7	GAF.		Other azoic blue dyes	ALL.		Azoic green dyes:			Azoic Green 1	ATL, GAF.		Other azoic green dyes	VPC.		Azoic brown dyes: *Azoic Brown 9	BUC, GAF, HST, VPC, x.		Azoic Brown 10	GAF.		Azoic Brown 26	GAF.		Other azoic brown dyes	ATL, GAF, VPC.		*Azoic black dyes:			Azoic Black 1	HST.		Azoic Black 15	ATL, BUC, GAF.		Other azoic black dyes	ALL, ATL, GAF, VPC.		Other azoic compositions	x.		•			Azoic Diazo Components, Bases			(Fast Color Bases)			Azoic Diazo Component 2, base	ATL, BUC.		Azoic Diazo Component 3, base	BUC.		*Azoic Diazo Component 4, base	ALL, BUC, GAF, SDH.		Azoic Diazo Component 5, base	GAF, SDH.		Azoic Diazo Component 8, base	DUP, SDH.		*Azoic Diazo Component 9, base	AAP, DUP, VPC.		*Azoic Diazo Component 10, base	ALL, AUG, BUC, GAF.		*Azoic Diazo Component 12, base*Azoic Diazo Component 13, base	AUG, BUC, SDH.		Azoic Diazo Component 14, base	ALL, ATL, AUG, BUC, VPC.		Azoic Diazo Component 20, base	ALL, GAF.		Azoic Diazo Component 27, base	BUC.		Azoic Diazo Component 28, base	ALL, BUC, VPC.		*Azoic Diazo Component 32, base	AAP, ALL, ATL, BUC, DUP, SDH.		Azoic Diazo Component 34, base	GAF.		Azoic Diazo Component 41, base	ALL, GAF.		Azoic Diazo Component 42, baseAzoic Diazo Component 44, base	ALL. AAP, BUC.		*Azoic Diazo Component 48, base	ALL, CWN, DUP, GAF.		Other azoic diazo components, bases	GAF.					Azoic Diazo Components, Salts (Fast Color Salts)						*Azoic Diazo Component 1, salt	AAP, ALL, GAF, SDH.		*Azoic Diazo Component 2, salt	ALL, AUG, BUC, GAF.		*Azoic Diazo Component 3, salt Azoic Diazo Component 4, salt	AAP, ALL, AUG, BUC, GAF, NAC, SDH.		WROTE DISKS COMPONENT +, BST	ALL, AUG, DUP.	TABLE 8B. --Benzenoid dyes for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	Dye	Manufacturers' identification codes (according to list in table 22)			--	---	--		AZOIC DYES AND COMPONENTSContinued				Azoic Diazo Components, Salts (Fast Color Salts)Continued				*Azoic Diazo Component 5, salt	AAP, ALL, AUG, BUC, GAF, SDH.			*Agoic Diego Component 6. salt	AAP, BUC, GAF, SDH.			*Agoic Diego Commonent 8. Salt	AAP, ALL, AUG, BUC, GAF. AAP, ALL, AUG, BUC, GAF, SDH, VPC.			*Azoic Diazo Component 9, salt* *Azoic Diazo Component 10, salt	AAP, ALL, AUG, BUC, GAF, SDH.			Agoia Diago Component 11. Salt	AAP, ALL, GAF.			*Agoia Diago Component 12. Salt	AAP, ALL, AUG, BUC, GAF, SDH.			*Agoia Diego Component 13. Salt	AAP, ALL, AUG, BUC, GAF, NAC, SDH, VPC.			Azoic Diazo Component 14, saltAzoic Diazo Component 20, salt	AAP.			*Agoic Diego Component 28. salt	ALL, AUG, BUC, GAF, NAC, SDH, VPC.			Agoia Diego																																																																																																																						
Component 32. Salt	ALL, SDH.			Agoic Diego Component 34. Salt	GAF.			Agoic Diego Component 35. Salt	GAF.			*Azoic Diazo Component 36, salt Azoic Diazo Component 37, salt	AAP, ALL, GAF, NAC.			Agoic Diego Component 40. salt	BUC.			Agoic Diago Component 41. Salt	BUC, GAF.			Agoia Diago Component 42. 881t	ALL, GAF.			*Azoic Diazo Component 44, salt* *Azoic Diazo Component 48, salt	ALL, BUC, GAF, SDH. AAP, GAF, SDH.			*Azoic Diazo Component 49, salt	AAP, ALL, BUC, GAF, SDH.			Azoic Diazo Component 121, salt	GAF.			•				Azoic Coupling Components (Naphthol AS and Derivatives)				*Azoic Coupling Component 2	ACY, ATL, AUG, BUC, GAF, NAC, PCW.			Marcia Counting Component 3	AUG, BUC, GAF, PCW.			*Agoia Counling Component 4	AUG, BUC, GAF.			*Agoic Counling Component 5	AAP, GAF, SDH.			*Agoia Counling Commonent 7	AAP, AUG, BUC, GAF, PCW. BUC, GAF, PCW.			Azoic Coupling Component 8 Azoic Coupling Component 10	PCW.			*Agoic Counling Component 1]	BUC, GAF, PCW.			Agoic Counling Component 12	BUC, GAF, PCW.			Agoic Counling Commonent 13	GAF, PCW.			*Azoic Coupling Component 14 Azoic Coupling Component 15	ATL, BUC, GAF, NAC, PCW. BUC, GAF.			Agoic Counling Commonent 16	GAF.			*Agoic Counling Component 17	ACY, ATL, BUC, PCW.			*Agoic Counling Commonent 18	ACY, ATL, BUC, GAF, NAC, PCW.			*Azoic Coupling Component 19* *Azoic Coupling Component 20	BUC, GAF, PCW. ATL, BUC, DUP, GAF, PCW.			*Azoic Coupling Component 21	ATL, AUG, BUC, GAF, PCW.			Azoic Counling Component 23	GAF, PCW.			#Azoic Counling Component 24	BUC, GAF, PCW.			*Agoic Counling Component, 29	ATL, AUG, BUC, GAF, PCW.			Azoic Coupling Component 34Azoic Coupling Component 35	BUC, GAF, PCW.			Agoic Counling Component 36	GAF.			*Azoic Coupling Component 43	ATL, BUC, GAF.			Other azoic coupling components	ATL, GAF, VPC.			BASIC DYES				*Basic yellow dyes: Basic Yellow 1	DUP.			#Pegic Vellow 2	ACY, DUP, NAC.			Resic Yellow 5	NAC.			*Basic Yellow 11	DUP, GAF, NAC, VPC.			*Bosic Vellow 13	DUP, GAF, NAC, VPC.			Basic Yellow 15	DUP.			Deele Vellew 16				Basic Yellow 16	ACY.			Basic Yellow 16 Basic Yellow 26 Basic Yellow 27 Basic Yellow 28	ACY.		TABLE 8B.--Benzenoid dyes for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	Dye		M	,	cture: ordin							_		---	------------	--------	--------	-----------------	------	---	------	------	------	---	---		BASIC DYESContinued							÷				_		*Basic yellow dyesContinued													Basic Yellow 37	ACY.												Other basic yellow dyes	DUP,	GAF.											*Basic orange dyes: *Basic Orange 1	ACY.	DIIP.	GAF.	NAC,	TRC.								*Basic Orange 2				GAF,			PSC,	TRC,	VPC.				Basic Orange 14	GAF.												Basic Orange 17	NAC.		37.4.0	ITDO									*Basic Orange 21Basic Orange 22		GAF,	NAC,	VPC.									Basic Orange 24	DUP.												Basic Orange 25	DUP.												Basic Orange 26	DUP.					1							Basic Orange 27Basic Orange 31	VPC.												*Basic red dyes:	AUI.												Basic Red 1	DUP,	GAF.											Basic Red 2		NAC.											Basic Red 9Basic Red 12		DSC,	HSC.										Basic Red 13	DUP.	NAC.											*Basic Red 14			GAF,	NAC,	VPC.								Basic Red 15		GAF.		-									Basic Red 16	DUP.												Basic Red 17Basic Red 18	DUP.	VPC.											Basic Red 19	DUP.												Basic Red 20	DUP.												Basic Red 22	ACY,	TRC.											Basic Red 30	ACY.		TEDG										Other basic red dyes* *Basic violet dyes:	DOP,	GAF,	VPC.										*Basic Violet l	ACY.	DSC.	GAF.	HSC,	NAC.								Basic Violet 2		NYC.											Basic Violet 3				SDH.									*Basic Violet 4Basic Violet 7		DUP,		NAC.									Basic Violet 10		NAC.											Basic Violet 13	DSC.		GAT.										Basic Violet 14	1	DSC.											Basic Violet 15	DUP.												*Basic Violet 16Basic Violet 18		GAF,	VPC.										Other basic violet dyes	ACY.												*Basic blue dyes:	2011												*Basic Blue 1	DSC,	GAF,	NAC,	SDH,	VPC.	,				:			Basic Blue 2	DSC.												Basic Blue 3Basic Blue 4	GAF.												*Basic Blue 5		SDH,	VPC.										Basic Blue 6		NAC.											*Basic Blue 7		-	-	SDH.									*Basic Blue 9Basic Blue 11				SDH.	•								Basic Blue 21	DUP.	SDH.											Basic Blue 22		NAC.											*Basic Blue 26				SDH.									Basic Blue 27	GAF.												Basic Blue 35Basic Blue 38	DUP.												Basic Blue 39	DUP.	DUP.											Basic Blue 41	TRC.												Basic Blue 47	VPC.												Basic Blue 54	ACY.								. *				Other basic blue dyes	ACY,	DUP,	GAF.										Basic green dyes: *Basic Green 1	∆∵v	מפת	פוזת	NAC,	מחם								Basic Green 3	DUP.	ونادما	υUP	MAU	אועס								*Basic Green 4		DSC,	DUP,	NAC,	SDH.									1	Í	•	•								TABLE 8B. -- Benzenoid dyes for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	munujacturer, 1900-	-Continued		--	--		Dye	Manufacturers' identification codes (according to list in table 22)		BASIC DYESContinued			Basic brown dyes: *Basic Brown 1	ACY, DUP, GAF, NAC, TRC.		Decie Prome 2	GAF.		*Basic Brown 4	ACY, DSC, DUP, GAF, NAC, TRC.		Posto block dwag:	CAR		Basic Black 3Other basic black dyes	GAF. DSC, DUP.		Other basic black dyes DIRECT DYES			*Direct yellow dyes:	ACT DITD CAR NAC TRO		*Direct Yellow 5	ACY, DUP, GAF, NAC, TRC.		*Pinost Vollow 6	ACY, ATL, DUP, GAF, NAC, TRC.		Direct Vollow 7	ATL.		Nimest Vollow Communication	GAF, NAC.		Direct Yellow 9 *Direct Yellow 11	DUP. ACY, BKS, DUP, GAF, NAC, TRC.		Whitest Vollow 12	BKS, DUP, FAB, GAF, NAC, TRC.		Ninest Vollow 20	TRC.		Dimost Vollow 23	DUP.		*Direct Yellow 26	ALT, BKS, BL, DUP.		#Direct Yellow 27* *Direct Yellow 28	ATL, DUP, GAF, NAC, TRC.		WN most Vollow 20	ATL, DUP, GAF.		Direct Vollow 30	TRC.		*Direct Yellow 44* *Direct Yellow 50	ALT, ATL, BKS, BL, DUP, FAB, GAF, NAC, TRC, VPC. ATL, BKS, BL, DUP, FAB, GAF, NAC, TRC, VPC.		N V-11 50	ATL, DUP, NAC.		Mass Vallow 63	DUP.		*Minort Vollow 8/	BKS, GAF, NAC, TRC.		Direct Yellow 103 *Direct Yellow 105	NAC. ALT, BKS, GAF, TRC.		*Dinoct Vollow 106	ALT, BKS, FAB, GAF, TRC.		Nimest Vollow 107	GAF.		Direct Yellow 114	ACY. TRC.		Nimost Vellow 118	TRC.		Minest Vellow 120	BKS.		Direct Vellow 121	TRC.		Direct Yellow 125 Other direct yellow dyes	ACY. AAP, ALT, ATL, BL, DUP, TRC, VPC.		Ald ment orange dues:	111, 111, 111, 111, 111, 111,		#Direct (mange]	AAP, ATL, BDO, CMG, NAC, VPC.		Dinect Orange 6	NAC.		*Direct Orange 8 Direct Orange 10	ATL, DUP, GAF, NAC, TRC. AAP, NAC.		Minest Omenge 11	GAF.		*Direct Orange 15	ACY, DUP, GAF, NAC, TRC.		#Mirect Orange 26	ATL, DUP, GAF, NAC, TRC.		*Direct Orange 34	ATL, BKS, FAB, TRC. ACY, ATL, CMG, DUP, GAF, NAC.		*Direct Grange 37	ACY, CMG, DUP, GAF, TRC.		*Di rect. Orange 39	BKS, CMG, DUP, GAF.		Direct Orange 40	DUP.		Direct Orange 48 Direct Orange 55	DUP, NAC.		Mirect Orange 59	DUP, GAF.		Direct Orange 6]	1 TRC.		Direct Orange 67	NAC, VPC.		Direct Orange 70* *Direct Orange 72*	TRC. ATL, BKS, FAB, NAC, TRC, VPC.		#Direct Orange 73	DUP, GAF, TRC, VPC.		Direct Orange 74	· (BL, DUP.		Direct Orange 76	DUP.		Direct Grange 78 Direct Grange 79	DUP, VPC.		Nirect Orange 80	· DUP, VPC.		#Di rect. (mange 8]	· DUP, GAF, NAC, VPC.		Direct Orange 83	GAF, NAC.	TABLE 8B. --Benzenoid dyes for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	Dye	Manufacturers' identification codes (according to list in table 22)		---	--		DIRECT DYESContinued			Direct orange dyesContinued			Direct Orange 88	DUP.		*Direct Orange 102	ACY, DUP, GAF, NAC.		Direct Orange 110	TRC.		Other direct orange dyes	ALT, ATL, BL, DUP, VPC.		Direct red dyes: *Direct Red 1	AAP, ATL, DUP, GAF, NAC, TRC, YAW.		*Direct Red 2	ATL, BKS, DUP, NAC, TRC.		*Direct Red 4	ATL, NAC, TRC, VPC.		Direct Red 5	NAC.		Direct Red 7	ATL, YAW.		*Direct Red 10	AAP, ACY, NAC.		*Direct Red 13*	AAP, ATL, DUP, NAC, TRC, YAW.		Direct Red 20	ATL, GAF, NAC, TRC.		*Direct Red 23	GAF, NAC. ATL, BKS, CMG, DUP, FAB, GAF, NAC, TRC.		*Direct Red 24	AAP, ATL, BKS, BL, FAB, TRC, VPC.		*Direct Red 26	AAP, ATL,																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																												
DUP, FAB, GAF, NAC, TRC, VPC.		*Direct Red 28	ATL, BKS, DUP, NAC, TRC.		*Direct Red 31	ATL, DUP, GAF, NAC.		Direct Red 32	DUP, NAC.		*Direct Red 37* *Direct Red 39	ATL, GAF, NAC, TRC, YAW.		Direct Red 40	ATL, GAF, NAC, TRC, YAW.		Direct Red 53	VPC. NAC.		Direct Red 62	TRC.		*Direct Red 72	GAF, NAC, TRC.		Direct Red 73	DUP, NAC.		*Direct Red 75	ACY, CMG, DUP, GAF.		Direct Red 76	GAF, NAC.		*Direct Red 79* *Direct Red 80	ATL, BKS, CMG, TRC, VPC.		*DITEC New OO	AAP, ATL, BDO, BKS, BL, CMG, DUP, FAB, NAC, SDH, TR		*Direct Red 81	AAP, ACY, ALT, ATL, BKS, BL, CMG, DUP, GAF, NAC, TR		*Direct Red 83	VPC, YAW.		*Direct Red 84	ALT, ATL, BKS, BL, CMG, DUP, FAB, GAF, NAC, TRC. BKS, GAF, NAC.		Direct Red 94	NAC.		Direct Red 95	VPC.		Direct Red 100	NAC.		Direct Red 111 Direct Red 117	GAF.		Direct Red 120	VPC.		*Direct Red 122	CMG, TRC, VPC.		Direct Red 123	GAF.		Direct Red 139	VPC.		*Direct Red 149	ATL, CMG, DUP, GAF.		Direct Red 152	CMG, DUP.			AAP, ATL, CMG, NAC.		*Direct Red 153			Direct Red 155	GAF.		Direct Red 155Direct Red 209	TRC.		Direct Red 155 Direct Red 209 Other direct red dyes			Direct Red 155	TRC. ALT, BL, TRC, VPC.		Direct Red 155 Direct Red 209 Other direct red dyes Direct violet dyes: #Direct Violet 1 Direct Violet 7	TRC.		Direct Red 155	TRC. ALT, BL, TRC, VPC. AAP, ATL, DUP, NAC.		Direct Red 155 Direct Red 209 Other direct red dyes Direct violet dyes: *Direct Violet 1	TRC. ALT, BL, TRC, VPC. AAP, ATL, DUP, NAC. GAF, NAC. ATL, BKS, DUP, GAF, NAC, TRC. NAC.		Direct Red 155	TRC. ALT, BL, TRC, VPC. AAP, ATL, DUP, NAC. GAF, NAC. ATL, BKS, DUP, GAF, NAC, TRC. NAC. DUP.		Direct Red 155	TRC. ALT, BL, TRC, VPC. AAP, ATL, DUP, NAC. GAF, NAC. ATL, BKS, DUP, GAF, NAC, TRC. NAC. DUP. AAP.		Direct Red 155	TRC. ALT, BL, TRC, VPC. AAP, ATL, DUP, NAC. GAF, NAC. ATL, BKS, DUP, GAF, NAC, TRC. NAC. DUP. AAP. DUP, GAF.		Direct Red 155	TRC. ALT, BL, TRC, VPC. AAP, ATL, DUP, NAC. GAF, NAC. ATL, BKS, DUP, GAF, NAC, TRC. NAC. DUP. AAP.		Direct Red 155	TRC. ALT, BL, TRC, VPC. AAP, ATL, DUP, NAC. GAF, NAC. ATL, BKS, DUP, GAF, NAC, TRC. NAC. DUP. AAP. DUP, GAF. DUP, NAC.		Direct Red 155	TRC. ALT, BL, TRC, VPC. AAP, ATL, DUP, NAC. GAF, NAC. ATL, BKS, DUP, GAF, NAC, TRC. NAC. DUP. AAP. DUP, GAF. DUP, GAF. DUP, NAC. NAC.		Direct Red 155	TRC. ALT, BL, TRC, VPC. AAP, ATL, DUP, NAC. GAF, NAC. ATL, BKS, DUP, GAF, NAC, TRC. NAC. DUP. AAP. DUP, GAF. DUP, NAC. NAC. DUP, NAC. ACY. ATL, TRC.		Direct Red 155	TRC. ALT, BL, TRC, VPC. AAP, ATL, DUP, NAC. GAF, NAC. ATL, BKS, DUP, GAF, NAC, TRC. NAC. DUP. AAP. DUP, GAF. DUP, NAC. NAC. ACY. ACTL, TRC. DUP, NAC.		Direct Red 155	TRC. ALT, BL, TRC, VPC. AAP, ATL, DUP, NAC. GAF, NAC. ATL, BKS, DUP, GAF, NAC, TRC. NAC. DUP. AAP. DUP, GAF. DUP, NAC. NAC. DUP, NAC. NAC. DUP, NAC. ACT. DUP, NAC. ACT. DUP, NAC. ACT. DUP, NAC. DUP, NAC. DUP, NAC. DUP, NAC.		Direct Red 155	TRC. ALT, BL, TRC, VPC. AAP, ATL, DUP, NAC. GAF, NAC. ATL, BKS, DUP, GAF, NAC, TRC. NAC. DUP. AAP. DUP, GAF. DUP, NAC. NAC. ACY. ACTL, TRC. DUP, NAC.	TABLE 8B. --Benzenoid dyes for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	Dye	Manufacturers' identification codes (according to list in table 22)		---	--		DIRECT DYESContinued			*Direct blue dyesContinued *Direct Blue 2	AAP, ATL, BKS, BL, DUP, FAB, GAF, NAC, TRC, VPC, YAW.		Direct Blue 3	NAC.		*Primed Plue 6	AAP, ACY, ATL, BKS, BL, DUP, GAF, NAC, TRC, YAW.		Dinoct Plue 8	ATL, DUP, GAF, NAC, YAW.		MDI most Plus 14	ATL, BKS, NAC, TRC.		*Primont Plue 15	ATL, DUP, GAF, NAC, YAW.		Name Plus 21	TRC.		*Direct Blue 22	ATL, CMG, DUP, NAC.		*Direct Blue 24	ATL, BKS, NAC, TRC, YAW. ATL, DUP, GAF, NAC, TRC, YAW.		*Direct Blue 25 Direct Blue 26	ATL, NAC.		Direct Blue 27Direct Blue 27	DUP.		Direct Blue 55	NAC.		Direct Plus 61	YAW.		VN-00+ Dlug 67	DUP, NAC, TRC.		Dimost Plue 71	DUP, GAF, NAC, TRC.		Direct Blue 7/	DUP.		Dimost Plus 75	TRC.		*Ni noat 17119 76	ALT, ATL, BKS, BL, DUP, FAB, GAF, NAC, TRC, VPC.		Primary Plus 78	ATL, CMG, DUP, GAF, NAC, TRC.		And most Plus 80	ALT, ATL, BKS, BL, DUP, FAB, GAF, NAC, TRC.		*Direct Blue 86	AAP, ACY, ALT, ATL, BKS, DUP, FAB, GAF, ICC, ICI,			NAC, SDH, TMS, TRC, VPC.		Direct Blue 87	ICI.		Direct Blue 91 *Direct Blue 98	TRC. ALT, ATL, GAF, NAC, TRC, VPC.		*Direct Blue 98 Direct Blue 100	ALT, BKS.		Direct Blue 100 Direct Blue 104	DUP.		*Direct Blue 120 and 120A	BKS, CMG, DUP, GAF, TRC.		*Direct Blue 126	BL, DUP, GAF, NAC, TRC, VPC.		Direct Blue 130	NAC.		Dimost Plus 133	GAF.		Minort Plus 136	GAF.		Direct Plus 1/3	DUP.		March Blue 151	ATL, NAC, TRC.		N-04 Plus 160	TRC.		Direct Blue 189	BKS, TRC.		Direct Blue 191	AAP, GAF.		Direct Blue 199 Direct Blue 218	GAF. BKS, GAF, NAC.		Direct Blue 224	ATL.		Direct Blue 238	ACY.		Other direct blue dyes	ALT, BL, DUP, FAB, GAF.		videncet amoon direct			#Minest Green]	AAP, ACY, ATL, BKS, DUP, GAF, NAC, TRC, YAW.		ANIMANT CHARM 6	AAP, BKS, DUP, FAB, GAF, NAC, TRC, YAW.		*Direct Green 8	ATL, NAC, TRC, YAW.		#Dinact Gram 12	DUP, NAC, TRC.		Direct Green 15	DUP.		Direct Green 26	TRC.		Direct Green 27	NAC, TRC.		Direct Green 28	TRC.		Direct Green 38	DUP, GAF.		Direct Green 39 Direct Green 41	GAF.		Direct Green 41 Direct Green 45	VPC.		Direct Green 45 Direct Green 47	DUP, GAF.		Direct Green 47 Direct Green 51	TRC.		Direct Green 69	TRC.		Other direct green dyes	ACY, ALT, ATL, BL, DUP.		*Direct brown dves:			#Direct Brown]	ACY, ATL, BKS, BL, DUP, FAB, NAC.		#Minact Prown A	GAF, TRC, YAW.		Minort Drown 2	AAP, ACY, ATL, BKS, BL, DUP, GAF, NAC, TRC, YAW.		#Minast Brown 6	DUP, NAC, TRC.		Dinect Brown 11	NAC.		Direct Brown 25	DUP, NAC.		Dimost Prown 27-	· I GAF.		*Direct Brown 31	AAP, ATL, DUP, GAF, NAC, TRC, YAW.	TABLE 8B. --Benzenoid dyes for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	manujacturer, 1966-	· Conti	nued											---	---------	--------	------------------	----------	-------	----------------	--------	------------	--------	-------	-------		Dye		M	lanufa (acc			ident: list							DIRECT DYESContinued													*Direct brown dyesContinued	1												Direct Brown 32	GAF.												Direct Brown 33	DUP,	NAC.											Direct Brown 35	NAC.												Direct Brown 40	AAP.												Direct Brown 44 Direct Brown 45	'	YAW.											Direct Brown 48	VPC.												Direct Brown 59	ACY.												*Direct Brown 74	ł	DITP.	NAC.										*Direct Brown 95			ATL,		BL.	DUP.	FAR.	GAF.	NAC.	TRC.	YAW.		Direct Brown 101	GAF.		,	,	,	-01,	,	u ,	111109	1110)	22211		Direct Brown 105	DUP.												Direct Brown 106	GAF,	NAC.											*Direct Brown 111			TRC,	VPC.	;								Direct Brown 112 Direct Brown 125	NAC.												*Direct Brown 154	GAF.		3746	mna	75.4.								Other direct brown dyes			NAC,			•							*Direct black dyes:	ALI,	υц	DUP,	NAC,	VPC.								*Direct Black 4	Δ.Τ.Τ	BKS.	DUP,	GAR.	NAC	. TOC	. VAW						Direct Black 8		YAW.		um.	MAO	, 1100	, TVII	•					*Direct Black 9			GAF,	NAC,	TRC								Direct Black 17		TRC.											*Direct Black 19	BKS,	GAF,	NAC,	TRC,	VPC								*Direct Black 22	AAP,	ALT,	${ m ATL}_{m s}$	BKS,	CMG,	, DUP	GAF	, NAC	, TRC	, VPC	YAW.		Direct Black 36Direct Black 37	AAP.	D											*Direct Black 38	l `	DUP.		DVC		DID							Direct Black 44	TRC.	ACI,	ATL,	BKS	وبلظ	DUP,	FAB,	GAF,	NAC,	TRC,	YAW.		Direct Black 45	TRC.												*Direct Black 51	AAP,	DUP.	GAF,	NAC.	TRC	_							Direct Black 55	DUP.	,				•							Direct Black 56	NAC,	TRC.											Direct Black 61	TRC.												Direct Black 67Direct Black 71	DUP,	NAC.											Direct Black 74	VPC.												Direct Black 75	NAC.												Direct Black 78		NAC.											*Direct Black 80	AAP,		BKS,	BL.	FAB.	NAC.	TRC.	VPC.	YAW.				Direct Black 109	GAF.	,	,	,	,			,	******				Direct Black 123	NAC.												Direct Black 130	ACY.												Direct Black 190	BKS.					-							Other direct black dyes	ACY,	ALT,	ATL,	BL,	DUP,	VPC,	YAW.						DISPERSE DYES													DIGI MOR DIAS													*Disperse yellow dyes:													Disperse Yellow 1	DUP.	GAF.											Disperse Yellow 2	DUP.												*Disperse Yellow 3	AAP,	BKS,	BL,	DUP,	EKT,	GAF,	HSH,	ICC,	NAC,	SDH,	TRC.		*Disperse Yellow 5	BKS,	EKT,	ICC.				-	-		-			Disperse Yellow 8	DUP,	TRC.											Disperse Yellow 17	AAP.												*Disperse Yellow 23Disperse Yellow 31		EKT,	ICC.										Disperse Yellow 32	GAF.												*Disperse Yellow 33		RET	ICC,	ישיויי																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																												
*Disperse Yellow 34			GAF,										Disperse Yellow 37	EKT,												*Disperse Yellow 42			GAF,	TRC.									Disperse Yellow 50	TRC.	-,											Disperse Yellow 54		DUP,	ICC,	TRC.									Disperse Yellow 67	DUP.												Other disperse yellow dyes	DUP,	EKT,	GAF,	ICC,	VPC.	•							*Disperse orange dyes: *Disperse Orange 3	A A TO	Brc	מזות	Dela Lin	CATE	nca.	TOO	174.0	mne				*Disperse Orange 5		EKT,	DUP,	والمت	(TAP)	رااضم	T CC	, NAC	TRC	•				وعمد	121.19	GAF .									TABLE 8B. --Benzenoid dyes for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	Dye	Manufacturers' identification codes (according to list in table 22)									s								---	---	--------------	--------	--------	-------	-------	-------	------	------	------	--	--	--	--	--	--		DISPERSE DYESContinued																		*Disperse orange dyesContinued																		Name	AAP.	BKS,	mr.	HSH.	TCC.	NAC.												#Disperse Grange 17 Disperse Grange 21	TRC.) Julio	11117	11011,	100,	1,120												Name of the Paris	DUP,	TRC.																Di anoma o Omanga 26	DUP.																	Name	AAP.																	Disperse Grange 29 Disperse Grange 30	AAP.																	Namena Omena 38	TRC.																	Names Constant Advanced Lines	DUP.																	Other disperse orange dyes	EKT,	GAF,	100.															*Disperse red dyes: *Disperse Red 1	AAP.	BKS,	DUP,	EKT,	GAF,	HSH,	ICC,	NAC,	TRC,	YAW.								Namento Dod /		TRC.																VDI among Dod 5		BKS,	EKT,	GAF,	HSH,	ICC.												N Ded 7	AAP.																	Disperse Red 9 *Disperse Red 11		DUP,	GAF,	TRC.														vidences and 13	AAP,	BKS,	DUP,	GAF,														VT/ Pod 15	AAP,	GAF,	HSH,	ICC,	NAC.	псп	TCC	ጥውሶ										*Disperse Red 17 Disperse Red 20	NAC.	BKS,	DUP	EAI,	GAF,	non	100,	IRO.										Name and 21	EKT.																	Name and 20		TRC.																DJ Dod 21	ICC.																	Disperse Red 32Disperse Red 53	GAF.																	Name and 55	TRC.																	Name and 56	DUP.																	Name and 50	DUP.		TTDC															*Disperse Red 60 Disperse Red 61	DUP.	DUP,	VPO.															Managa Ped 65		TRC.																Disperse Dod 66	AAP.																	Name and 73	TRC.																	Disperse Red 78 Disperse Red 96	ACY.																	Other disperse red dyes	AAP,	BKS,	DUP,	EKT,	GAF,	ICC,	TRC,	VPC.	•									wild among a refolet diver:		0 A TO	TICIT	T.00	mp.a													*Disperse Violet 1 *Disperse Violet 4		GAF, GAF,			Inc	•												Name = 174 a 1 a 4 0	GAF		2000															Menongo Wolet 11		, NAC.	,															Ni Welst 1/	DUP																	Disperse Violet 18 Disperse Violet 22	GAF	, TRC.	•															Manage Violet 26	DUP																	uni Wiolat 27		, ACY,			GAF.													Other disperse violet dyes	EXT	, GAF	, 100.	•														*Disperse Blue 1	AAP	, GAF	TRC.															ADI CONTROL RIVE 3		, BKS							•									#Menance Rive 7		, BKS	EKT,	, GAF	, HSH	, 1CC	, TRU	•										Disperse Blue 8Disperse Blue 9	BKS	, icc																Disposed Plus 27	EKT																	Name of the 25	ICI																	Disperse Blue 55 Disperse Blue 59	TRO																	N	DUP																	Manager Plus 61	DUF	٠.																Managa Plus 62	DUF																	Disperse Blue 63	DUF	, GAF	, TRC	•														Name 10 70	AAF		, 1110	-														Dispense Plus 71	VPC).																Disperse flue 73 Disperse flue 79	TRO																	N	TRO	j.																Disperse Blue 116	ACY	<i>-</i>															TABLE 8B. --Benzenoid dyes for which U.S. production or sales were reported, identified by manufacturer, 1966-- Continued	Disperse green dyes	GAF, ICC. TRC. DUP, GAF. EKT, ICC. AAP, DUP, GAF, TRC. DUP, TRC. AAP. YAW. AAP, BL, DUP, EKT, GAF. DUP, EKT, GAF, ICC, VPC, YAW.		--	--		Disperse Brown dyes: Disperse Brown 1	TRC. DUP, GAF. EKT, ICC. AAP, DUP, GAF, TRC. DUP, TRC. AAP. YAW. AAP, BL, DUP, EKT, GAF.		Disperse Brown 2	DUP, GAF. EKT, ICC. AAP, DUP, GAF, TRC. DUP, TRC. AAP. YAW. AAP, BL, DUP, EKT, GAF.		Other disperse brown dyes	EKT, ICC. AAP, DUP, GAF, TRC. DUP, TRC. AAP. YAW. AAP, BL, DUP, EKT, GAF.		*Disperse Black 1	AAP, DUP, GAF, TRC. DUP, TRC. AAP. YAW. AAP, BL, DUP, EKT, GAF.		*Disperse Black 1	DUP, TRC. AAP. YAW. AAP, BL, DUP, EKT, GAF.		Disperse Black 2 Disperse Black 6 Disperse Black 7 *Disperse Black 9 Other disperse black dyes	DUP, TRC. AAP. YAW. AAP, BL, DUP, EKT, GAF.		Disperse Black 6 Disperse Black 7 *Disperse Black 9 Other disperse black dyes	AAP. YAW. AAP, BL, DUP, EKT, GAF.		Disperse Black 7 *Disperse Black 9 Other disperse black dyes	YAW. AAP, BL, DUP, EKT, GAF.		*Disperse Black 9Other disperse black dyes	AAP, BL, DUP, EXT, GAF.		Other disperse black dyes	I		FIBER-REACTIVE DYES						Reactive yellow dyes:			Reactive Yellow 1	ICI.		Reactive Yellow 2	TRC.		Reactive Yellow 3	TRC.		Reactive Yellow 4	ICI.		Reactive Yellow 6	TRC.		Reactive Yellow 11	ICI.		Reactive Yellow 13	TRC.		Reactive Yellow 14	HST.		Reactive Yellow 15	DUP, HST.		Reactive Yellow 16	HST.		Reactive Yellow 17	HST.		Reactive Yellow 18	ici.		Reactive Yellow 22	ICI.		Reactive Yellow 24	HST.		Other reactive yellow dyes	HST.		Reactive orange dyes:			Reactive Orange 1	ICI.		Reactive Orange 4	ICI.		Reactive Orange 5Reactive Orange 7	TRC.		Reactive Orange 12	ICI.		Reactive Orange 13	ICI.		Reactive Orange 14	ICI.		Reactive Orange 16	HST.		Other reactive orange dyes	HST.		Reactive red dyes:	l		Reactive Red 1 Reactive Red 2	ICI.		Reactive Red 3	ICI.		Reactive Red 4	TRC.		Reactive Red 5	ICI.		Reactive Red 8	ici.		Reactive Red 11	ICI.		Reactive Red 13	ICI.		Reactive Red 16	TRC.		Reactive Red 21	HST.		Reactive Red 29	ICI.		Reactive Red 31	HST, ICI.		Reactive Red 33	ICI.		Other reactive red dyes	DUP, GAF.		Reactive Violet 1	ICI.		Reactive Violet 2	TRC.		Reactive Violet 4	HST.		Reactive Violet 5	HST.		Other reactive violet dyes	HST.		Reactive blue dyes:			Reactive Blue 1	ICI.		Reactive Blue 2	TRC.		Reactive Blue 3	ICI.		Reactive Blue 4	ICI,																																																																																																																																																																																																																																																																																																																																																																																							
Reactive Blue 5	TRC. TRC.	TABLE 8B. -- Benzenoid dyes for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	Dye	Manufacturers' identification codes (according to list in table 22)		---	--		FIBER-REACTIVE DYESContinued			*Reactive blue dyesContinued			D	ICI.		n 1	TRC.		Reactive Blue 19	DUP, HST. DUP, HST.		D	ICI.		Penative Plue 27	HST.		Other menetive blue dweg	DUP, GAF, HST.		Reactive green dyes	HST, ICI.		No. address have an address of the state	TRC.		Reactive Brown 1	ICI.		m I to a la desent			Description Discher I and the second	TRC.		Description Dische 5	HST.		Reactive Black 9	ici.		FLUORESCENT BRIGHTENING AGENTS						Fluorescent Brightening Agent 1	GGY.		Element ont Drightening Agent be	ACY.		Fluorescent Brightening Agent 8 Fluorescent Brightening Agent 9	ACY, GAF, SDH.		TILLERS OF Price tening Agent 22	GGY.		Williamsgoont Phightening Agent 24	GGY.		William account Prightening Agent /)	GAF.		Deightoning Agent 2X	ACY, CCW, DUP.		Fluorescent Brightening Agent 30 Fluorescent Brightening Agent 33	GAF.		The second Principal Adent 14	DUP.		The amount Designation of Adent 1/	CIB.		Thursday Prightoning Agent 40	TRC.		Element Designation Agent 46	GGY.		Fluorescent Brightening Agent 49 Fluorescent Brightening Agent 52	S.		Williams on the Price tening Agent 14	GGY.		Tillian account Designation of Agent 39	GGY.		William occount Prightening Agent 6	ACY.		Fluorescent Brightening Agent bb	CCW, GAF.		Fluorescent Brightening Agent 71Fluorescent Brightening Agent 75	ACY, GAF.		Fluorescent Brightening Agent 102	DUP.		Plusmagaant Prightening Agent (18	GAF.		Williams a cont Prightening Agent	VPC.		Fluorescent Prightening Agent 4	VPC.		Plusmagaant Prightening Agent //>	ACY.		Fluorescent Brightening Agent 126 Fluorescent Brightening Agent 128	SDH.		Fluoregeent Brightening Agent Liu	SDH.		Eluanoscont Prightoning Agent like	CIB.		Fluorescent Prightening Agent 135	CIB.		Williamscant Brightening Agent 130	CIB.		Fluorescent Brightening Agent 139Fluorescent Brightening Agent 155	WIM.		Fluorescent Brightening Agent 158	ACY.		Fluoregeent Brightening Agent 159	ACI.		Fluorescent Brightening Agent 161	AUI.		Other fluorescent brightening agents	ACY, CCW, CIB, DUP, GGY, S. VPC.		FOOD, DRUG, AND COSMETIC COLORS			Food, Drug, and Cosmetic Dyes	·		*FD&C Blue No. 1	KON, NAC, SDH, WJ.		MEDIC Plus No. 2	· KON, NAC, SDH.		EDEC Charm No. 3	· 1 WJ•		WEDS A Red No. 2	. ALT, KON, NAC, SDH, SIG, WJ.		*FD&C Red No. 3* *FD&C Red No. 4	ALT, KON, NAC, SDH, STG- KON, NAC, SDH, WJ.		*FD&C Violet No. 1	- NAC.		LIMEO ATOTER MO. T		TABLE 8B. -- Benzenoid dyes for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued]	Manufa (acc	ecture cordin	ers' i	denti list	ficati in tab	on code	e s		--	--------------	--------------	----------------	------------------	--------	---------------	------------------	---------	------------		FOOD, DRUG, AND COSMETIC COLORSContinued											Food, Drug, and Comestic DyesContinued											*FD&C Yellow No. 5		KON	MAG	CDIT	oma						*FD&C Yellow No. 6		KON,	, NAC,	SDH,	STG.	WJ.					Other food, drug, and cosmetic dyes	STG	, WJ.	, 11210)	0011	, DIG,	WO.					Drug and Cosmetic Dyes											D&C Blue No. 6	KON	MAG									D&C Blue No. 9	NAC.	, NAC.	•								D&C Brown No. 1	NAC.										D&C Green No. 5	KON,	NAC.	,								D&C Green No. 6 D&C Green No. 8	NAC.										*D&C Orange No. 4		SDH.									D&C Orange No. 5		NAC,									D&C Orange No. 10	TMS.	TMS.									D&C Orange No. 17	KON,										D&C Red No. 3	KON.										D&C Red No. 6	KON,	SNA,	TMS.								D&C Red No. 8		SNA,									D&C Red No. 9		TMS. SNA,									D&C Red No. 10		SNA.	TMS.								D&C Red No. 11		SNA.									D&C Red No. 12 D&C Red No. 13		TMS.									D&C Red No. 17		TMS.									*D&C Red No. 19		NAC.	CNIA	m.c							*D&C Red No. 21	KON,		SNA, TMS.	TMS.							D&C Red No. 22	KON.										D&C Red No. 27	TMS.										D&C Red No. 30	NAC.										D&C Red No. 31	KON.										D&C Red No. 33	NAC.										D&C Red No. 34	KON.										D&C Red No. 37	KON,	SNA,	TMS.								D&C Red No. 39	NAC.										D&C Violet No. 2	NAC.										D&C Yellow No. 5	KON,	TMS.									D&C Yellow No. 6D&C Yellow No. 7	KON.										D&C Yellow No. 8	KON.										D&C Yellow No. 10	KON,	NAC,	TMS.								D&C Yellow No. 11	NAC.	MAO.									Drug and Cosmetic Dyes, External											Ext. D&C Green No. 1											Ext. D&C Orange No. 3	KON,										Ext. D&C Red No. 8	SNA.	NAU.									Ext. D&C Violet No. 2	KON.										Ext. D&C Yellow No. 1	KON,	NAC.									Ext. D&C Yellow No. 7	SNA.										INGRAIN DYES	KON.																					Ingrain blue dyes: Ingrain Blue 1	T.C=										Ingrain Blue 2	ICI. VPC.										Ingrain Blue 3	ICI.										Ingrain Blue 6	VPC.										MORDANT DYES											Majordant yellow dyes:											Mordant Yellow 1	CAP 1	י יאום	יים									GAF, 1	' ونالد:	IKU.							TABLE 8B. -- Benzenoid dyes for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	Dye	Manufacturers' identification codes (according to list in table 22)		--	--		MORDANT DYESContinued			*Mordant yellow dyesContinued Mordant Yellow 3	ATL, NAC.			TRC.			DUP, NAC, VPC.			DUP, NAC.			NAC, TRC.			ACY, DUP, NAC.			NAC.			VPC.			GAF.			TRC, VPC.		Mordant Yellow 30 Mordant Yellow 36	PDC.		• • · · · · · · · · · · · · · · · · ·			*Mordant orange dyes: *Mordant Orange 1	ACY, GAF, PDC, TRC.			GAF.			ATL, GAF, TRC.			TRC.		Mordant Orange 8 Mordant Orange 30	NAC.					*Mordant red dyes: Mordant Red 3	ACY, NAC.		Mordant Red 3 Mordant Red 5	PDC.		Mordant Red 5 Mordant Red 6	GAF.		Mordant Red 6 *Mordant Red 7	ACY, BDO, CMG, GAF, NAC, PDC, TRC, VPC.		*Mordant Red 7*	GAF, MRX, NAC.		*Mordant Red 9 Mordant Red 11	ACY, NAC.		Mordant Red 11 Mordant Red 19	PDC.		Mordant Red 19 Mordant Red 64	PDC.		Mordant Red 64			Mordant violet dyes: Mordant Violet ll	GAF.		Mordant Violet 11 Mordant Violet 20	GAF.					*Mordant blue dyes:	DUP, GAF, NAC, TRC.		*Mordant blue dyes: *Mordant Blue 1	GAF.		Mordant Blue 3 Mordant Blue 3 Mordant Blue 7	TRC.		Mordant Blue 7 Mordant Blue 9	GAF, NAC.		Mordant Blue 9 Mordant Blue 13	HSH, NAC.		Mordant Blue 13 Mordant Blue 19	CMG.		Mordant Blue 19			Mordant green dyes: Mordant Green 11	ACY.			PDC.		Mordant Green 36 Mordant Green 47	NAC.					*Mordant brown dyes: *Mordant Brown 1	CMG, DUP, GAF, NAC, TRC, YAW.			PDC.		Mordant Brown																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																								
12 Mordant Brown 13	NAC.		Mordant Brown 13 Mordant Brown 15	GAF.			CMG.		Mordant Brown 17 Mordant Brown 18	DUP, NAC.			GAF.		Mordant Brown 19 Mordant Brown 21	GAF, VPC.			DUP, GAF, NAC, TRC.		Mordant Brown 21**Mordant Brown 33	CMG, DUP, GAF, NAC, VPC, YAW.		*Mordant Brown 40	TRC.		Mordant Brown 40	TRC.		Mordant Brown 63	DUP, PDC.		Mordant Brown 70	DOI, 100.		*Mordant black dyes:	GAF, NAC.			CAE NAC TRO			uni) kiio) iiio		1 /	NAC, TRC.			GAF.														*Mordant Black 13			*Mordant Black 13			Mordant Black 16			Mordant Black 16	PDC.			PDC.	TABLE 8B. --Benzenoid dyes for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	Dye	Manufacturers' identification codes (according to list in table 22)		---------------------------	---		OXIDATION BASES			Oxidation Base 8 and 8A	ACY.		Oxidation Base 21	PDC.		Oxidation Base 22	ACY.		Oxidation Base 25	ACY.		Other oxidation bases	ACY.		SOLVENT DYES			Solvent yellow dyes:			Solvent Yellow 1	A COT		*Solvent Yellow 2	ACY.		*Solvent Yellow 3	AAP, DUP, FH, GAF, PAT, PSC.		Solvent Yellow 13	DUP, FH, GAF, NAC, PSC.		*Solvent Yellow 14	ACY, GAF, TRC.		Solvent Yellow 16	AAP, ACY, DUP, FH, GAF, NAC, PAT, PSC, SDH. PAT.		Solvent Yellow 19	GAF.		Solvent Yellow 29	GAF.		Solvent Yellow 30	NAC, PSC.		Solvent Yellow 33	ACY, NAC.		Solvent Yellow 34	DUP.		Solvent Yellow 40	NAC.		Solvent Yellow 42	NAC.		Solvent Yellow 43	GAF.		Solvent Yellow 44	GAF, NAC.		Solvent Yellow 45	DUP, NAC.		Solvent Yellow 47	ACY, DUP, GAF, NAC.		Solvent Yellow 56	ACY, FH, NAC.		Solvent Yellow 71	ACY.		Solvent Yellow 72	ACY.		Other solvent yellow dyes	AAP, ACY, DSC, PAT.		Solvent orange dyes:			Solvent Orange 1	PAT.		Solvent Orange 2	AAP.		*Solvent Orange 3	ACY, GAF, NAC, PSC.		Solvent Orange 5	GAF, TRC.		*Solvent Orange 7	ACY, GAF, NAC.		Solvent Orange 20	ACY, GAF.		Solvent Orange 23	NAC.		Solvent Orange 24	DUP.		Solvent Orange 25	ACY, DUP.		Solvent Orange 31	NAC.		Solvent Orange 47	FH.		Solvent Orange 48	ACY.		Solvent Orange 51	ACY.		Other solvent orange dyes	AAP, ACY, DSC, DUP, PAT.		Solvent red dyes:			Solvent Red 8	GAF.		Solvent Red 22	GAF.		*Solvent Red 26	ACY, DUP, GAF, PAT, SDH.		*Solvent Red 26	AAP, ACY, FH, NAC, PSC.		Solvent Red 27	NAC.		Solvent Red 34	DUP, GAF.		Solvent Red 35	DUP.		Solvent Red 36	GAF.		Solvent Red 40	NAC.		Solvent Red 41	GAF.		*Solvent Red 49	DSC.		Solvent Red 52	ACY, DSC, DUP, GAF.		Solvent Red 65	GAF, ICI.		Solvent Red 68	NAC.		Solvent Pod 60	NAC.		Solvent Red 7/	DUP.		Solvent Red 75	NAC.		Solvent Ped 76	NAC.			NAC.		W-10110 11CU OU	ACY, NAC.		Solvent Ped 105	ACY.		Solvent Red 109			Solvent Red 105	ACY.		Solvent Red 105	ACY.		Solvent Red 105		TABLE 8B. -- Benzenoid dyes for which U.S. production or sales were reported, identified by manufacturer, 1966-- Continued	Dye	Manufacturers' identification codes (according to list in table 22)								Manufacturers' identification codes (according to list in table 22)						--	--	--	--	--	--	--	--	--	---	--	--	--	--		SOLVENT DYESContinued															*Solvent violet dyes: *Solvent Violet 8	ACY, DSC, NAC.														*Solvent Violet 9	DSC.														Solvent Violet 13	AAP, HSH, ICI.														Columnt Wiolat 1/	ICI.														Columnt Wolet 17	NAC.														Other solvent violet dyes	DSC, PAT.														Colwant blue dros.															Solvent Blue 3	ACY, SW.														Colvert Plus A	DSC, DUP, SDH.														Solvent Blue 5	DSC.														Solvent Blue 6	DSC.														Solvent Blue 7	ACY, NAC.														Solvent Blue 9Solvent Blue 11	GAF. GAF, ICI.														Solvent Blue 11Solvent Blue 12	DUP, NAC.														Solvent Blue 16	NAC.														Columnt Plus 32	AAP.														C-1+ Plus 26	DUP, NAC.														Columnt Ding 37	DUP.														Calment Divo 30	ACY, DUP, NAC.														Columnt Plus 20	NAC.														Colyont Plus A3	NAC.														Columnt Divo 50	ACY.														C-1+ Plue 50	ACY.														Solvent Blue 60	ACY.														Solvent Blue 74	NAC. AAP, ACY, DSC, GAF, ICI, PAT, SDH.														Other solvent blue dyes	AAF, ACI, DOO, GAF, 101, TAI, DOM														*Solvent Green 1	ACY, DSC, SDH.														Columnt Chann 2	GAF.														#Colvent Green 3	AAP, ACY, ATL, GAF, HSH, NAC.														Solvent Green 10	DUP.														Columnt Coom 11	DUP.														Other solvent green dyes	DSC.														VC-1+ become direct															Solvent Brown 11	GAF.														*Solvent Brown 12	ACY, DSC, GAF.														Solvent Brown 17	DUP.														Solvent Brown 20	ACY, DUP.														Solvent Brown 22	FH.														Solvent Brown 38	ACY.														Other solvent brown dyes	DSC.														Columnt block dress															Colvent Black 3	NAC.														Galacent Disale 5	ACY, DSC, NAC.														Colvert Block 7	ACY, DSC, FH, NAC.														Columnt Plack 12	NAC.														Columnt Disak 13	NAC.														Colvent Black 17	DUP.														Solvent Black 26	ACY.														Other solvent black dyes	ACY, DSC.														SULFUR DYES															Sulfur yellow dyes:	SDC.														Sulfur Yellow 2 Leuco Sulfur Yellow 2	ACY, SDC.														Sulfur Yellow 4	AUG, DUP, SDC.														Sulfur Yellow 4	SDC.														Image Gulfun Vellow 15	ACY.														Other sulfur yellow dyes	ACY, SDC.														G.16:- oronge dwee:	I														Gilfum Omenge 1	SDC.														Leuco Sulfur Orange 1	SDC.														Gilfim med dwag:															Sulfur Red 1	ACY, NAC.														Impo Sulfur Red 5	SDC.														*Sulfur Red 6	ACY, DUP, NAC. SDC.													TABLE 8B.--Benzenoid dyes for which U.S. production or sales were reported, identified by manufacturer, 1966-- Continued	Dye								n cod e 22)			--	------	--------	--------	------	------	------	------	----------------	--		SULFUR DYESContinued											Sulfur red dyesContinued	1										Leuco Sulfur Red 6	SDC.	,									Sulfur Red 8	DUP.										Sulfur blue dyes:	1										*Sulfur Blue 7Leuco Sulfur Blue 7			, NAC,								Leuco Sulfur Blue 8			, SDC.	•							Sulfur Blue 9	SDC.	NAC.									Leuco Sulfur Blue 9	SDC.		•								*Sulfur Blue 11			SDC.	,							Leuco Sulfur Blue 13	ACY.										Sulfur Blue 15		DUP.									Other sulfur blue dyes	ACY,	SDC.	•								Sulfur green dyes: Sulfur Green 1	NIAC										Leuco Sulfur Green 1	NAC.										Sulfur Green 2		SDC.									Leuco Sulfur Green 2	SDC.										Sulfur Green 3	NAC.										Sulfur Green 14	DUP.										Sulfur Green 16	SDC.										Leuco Sulfur Green 16	SDC.										Sulfur Green 28	ACY.										Other sulfur green dyes	AUG,	SDC.	•								Sulfur brown dyes: Sulfur Brown 3											Leuco Sulfur Brown 3	SDC.										Sulfur Brown 10		SDH.									Leuco Sulfur Brown 10	SDC.	NAC.									Solubilized Sulfur Brown 10	AUG.										Leuco Sulfur Brown 12	SDC.										Sulfur Brown 14	ACY.										Leuco Sulfur Brown 14	ACY,	SDC.									Sulfur Brown 20	DUP.										Sulfur Brown 21Sulfur Brown 26	DUP.										Sulfur Brown 30		NAC.									Sulfur Brown 33	ACY.										Sulfur Brown 37	SDC.										Leuco Sulfur Brown 37	SDC.										Sulfur Brown 39	SDC.										Sulfur Brown 43	NAC.										Sulfur Brown 44	NAC										Leuco Sulfur Brown 44	NAC.							
					Leuco Sulfur Black 2	ACY,	NAC,	SDC.								Sulfur Black 6	GAF.										Leuco Sulfur Black 6Sulfur Black 10	NAC.										Leuco Sulfur Black 10	ACY.	NT 4 C									Sulfur Black 11	ACY,	NAC.									Leuco Sulfur Black 11	SDC.										Other sulfur black dyes	SDC.										▼											VAT DYES											VAT DYES												NAC.										at yellow dyes: Vat Yellow 1, 12-1/2%	NAC.	DUP,	GAF,	ICI.	NAC.	TRC.	VPC.				at yellow dyes: Vat Yellow 1, 12-1/2%			GAF,	ICI,	NAC,	TRC,	VPC.				at yellow dyes: Vat Yellow 1, 12-1/2%	AAP,	ICI.								TABLE 8B.--Benzenoid dyes for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	Dye							cation table	codes 22)			---	------------	-------	--------	--------	-------	-------	-----------------	---	-----		VAT DYESContinued																						*Vat yellow dyesContinued *Solubilized Vat Yellow 4, 37-1/24	GAF.	HST,	TCT.					4.1			Vot Vollow 10 104	GAF.	,									Vot Vellow 13. 6-1/29	ICI.										Vot Vellow 14. 12-1/26	TRC.								5		Vet Vellow 15. 11-1/24	ACY.										Vet Vellow 22. 104	DUP,	GAF.									Vot Vellow 27	VPC.										Vet Vellow 33, 154	TRC.										Vet Vellow 41. 99	ACY.										Other vat yellow dyes	MAY,	NAC,	VPC.								*Vat orange dyes:	an ra	O ATP	TICT	TOT	MAG	ምውር	TOC				*Vat Orange 1, 20%			HST,	101,	NAC	Inu	VPO.				*Solubilized Vat Orange 1, 26%		HST,	DUP,	ር A E	TCT	NAC.	TRC				*Vat Orange 2, 12%			GAF,			NAO,	1110.				*Vat Grange 3, 13-1/2% Vat Grange 4, 6%		CMG,		11019	MAO.						*Vat Grange 5, 10%		ACY,									*Solubilized Vat Orange 5, 30%		HST,									*Vot Omenge 7. 11%		HST,									*Vet. Orange 9. 12%			DUP,	GAF,	ICI,	NAC,	TRC.				Vet Omenge 11. 64	DUP,	NAC.									*Vet Omenge 15. 10%	AAP	GAF,	ICI,	MAY,	NAC,	TRC,	VPC.				Vet Omenge 23. 17-1/29		DUP,	GAF.								Vet. Orange 24	DUP.										Other vat orange dyes	SDC.										*Vat red dyes:	A ATO	A CTV	пст	TOT							*Vat Red 1, 13%			HST,	101.							Solubilized Vat Red 1, 37%			TRC.								Solubilized Vat Red 10, 31%	GAF.		1100								Vat Red 12, 8-1/2%	DUP.										*Vet Red 13. 119			TRC.								Vet Red 14. 109		HST.									*Vet Ped 15. 104	GAF,	HST,	TRC.								Vet Red 16. 11%	DUP.										Vat. Red 17. 10%	GAF.										Vat Red 23	DUP.							* *			Vat Red 29, 18%		NAC.									*Vat Red 32, 20%			, NAC	•				* 1 * * * * * * * * * * * * * * * * * *			Vat Red 35, 12-1/2%	HST.	TRC.	•								Vat Red 44, 17%	TRC.										Vat Red 52, 10%	DUP.										Vat Red 53, 12%	DUP.										Vet. Red 62	DUP.										Other vat red dyes	DUP,	GAF	, TRC	, VPC	,			144			*Vat violet dves:	ļ										*Vet Violet 1. 119	ACY,	DUP	, GAF	, ICI,	MAY	, NAC	, TRC.				Solubilized Vat Violet 1, 26%	GAF.										*Vet. Violet 2. 20%	1		, HST		• VPC	•					Vat Violet 3, 15%			, NAC			mo	1				*Vat Violet 9, 12%			, ICI				•				*Vat Violet 13, 6-1/4%	1		, ICI	, NAC	, THO	•			- 1		Vat Violet 14, 12-1/2%	NAC.		MAC								*Vat Violet 17, 12-1/2%	MAY		, NAC	•				•				MONT.	•									*Vat blue dyes: Vat Blue 1, 20%	NAC										Solubilized Vat Blue 1, 25%	GAF										Vat Blue 4, 10%	1		, DUP	, GAF							Vet Blue 5. 169			HST			}_					Solubilized Vat Blue 5. 38%		HST			•						*Vet. Blue 6. 8-1/39				, ICI	, MAY	, NAC	, TRC.							, ICI	-							Solubilized Vat Blue 6, 17-1/29											Solubilized Vat Blue 6, 17-1/2%	NAC										Solubilized Vat Blue 6, 17-1/24	GAF										Solubilized Vat Blue 6, 17-1/2%		•									Solubilized Vat Blue 6, 17-1/2%	GAF DUP	•	', NAC	, TRO						TABLE 8B.--Benzenoid dyes for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	VAT DYES-Continued	Manufacturers' identification codes (according to list in table 22)											--	--	------	-------	------	------	------	------	------	------	--		*Vat Blue 18, 13%												#Vat Blue 26, 24%————————————————————————————————————												Vat Blue 26, 24 GAF. Vat Blue 35, 20% GAF. Vat Blue 35, 20% HST. Vat Blue 42 GAF. Vat Blue 43 SDC. Vat Blue 53, 20-1/2% GAF. Vat Blue 60 DDP. Other vat blue dyes MAY. *Vat green dyes: **Vat Green 1, 6% *Vat Green 3, 10% AAP. *Solubilized Vat Green 1, 12-1/2% AAP. *Solubilized Vat Green 3, 26% GAF. *Vat Green 9, 12-1/2% ATI. *Vat Green 15, 17% NAC. Vat Green 18, 8% DUP. Vat Green 18, 8% DUP. Vat Brown 12, 11% ACY. *Vat Brown 20, 6% DUP. *Vat Brown 3, 11% ACY. *Vat Brown 3, 11% AAP. *Vat Brown 11, 12% AAP. *Vat Brown 12, 12-1/2% DUP. Vat Brown 29, 13% ACY. *Vat Brown 3, 11% AAP. *Vat Brown 25, 11-1/2% DUP. Vat Brown 26, 11-1/2% DUP. Vat Br												Vat Blue 29- CAF. Vat Blue 39, 124- CAF. Vat Blue 42- SDC. Vat Blue 43- SDC. Vat Blue 53, 20-1/24- GAF. Other vat blue dyes- DUP. Other vat blue dyes- MAY. *Vat Blue 60- DUP. Other vat blue dyes- MAY. *Vat Green 1, 64- AAP. Solubilized Vat Green 1, 12-1/24- AAP. *Solubilized Vat Green 3, 264- AAP. *Solubilized Vat Green 3, 264- ACY. *Vat Green 8, 8-1/24- ACY. *Vat Green 15, 174- ACY. Vat Green 18, 84- DUP. Vat Green 19, 174- MAY. *Vat Green 19, 174- MAY. *Vat Green 19, 174- MAY. *Vat Brown 1, 114- ACY. *Solubilized Vat Brown 1, 174- AAP. *Vat Brown 3, 114- AAP. *Vat Brown 13, 174- AAP. *Vat Brown 11, 124- DUP. *Vat Brown 29, 10-1/24- DUP. *Vat Brown 28, 224- ICI.	ACY,	ATL	DUP,	GAF.	101,	MAY,	NAC,	SDC,	TRC.			Vat Blue 39, 12% HST. Vat Blue 42 SDC. Vat Blue 43 SDC. Vat Blue 43 SDC. Vat Blue 43 SDC. Vat Blue 60 DUP. Vat row and blue dyes MAY. Wat green dyes: MAY. *Vat Green 1, 6% GAF. Solubilized Vat Green 1, 12-1/2% AAP. *Solubilized Vat Green 3, 26% GAF. *Vat Green 8, 8-1/2% ACY. *Vat Green 19, 17% NAC. Vat Green 18, 8% DUP. Vat Green 18, 8% DUP. Vat Green 19, 17% NAC. Vat Green 19, 11% ACY. Solubilized Vat Brown 1, 11% ACY. Solubilized Vat Brown 1, 17% AAP. *Vat Brown 3, 11% AAP. *Vat Brown 11, 12% AAP. Vat Brown 12, 12-1/2% DUP. Vat Brown 13, 17% MAY. Vat Brown 29, 13% ACY. Vat Brown 25, 11-1/2% DUP. Vat Brown 31, 28% AAP. Vat Brown 31, 28%												Vat Blue 42 GAF. Vat Blue 42 SDC. Vat Blue 53, 20-1/24 SDC. Vat Blue 60 DUP. Other vat blue dyes MAY. Wat green dyes: **Vat Green 1, 64 AAP. Solubilized Vat Green 1, 12-1/24 GAF. *Solubilized Vat Green 3, 264 GAF. *Vat Green 8, 8-1/24 ATI. *Vat Green 9, 12-1/24 ACY. Vat Green 15, 174 NAC. Vat Green 18, 84 DUP. Vat Green 19, 174 NAC. Vat Green 20, 64 DUP. Other vat green dyes MAY. *Vat Brown 40, 114 GAF. *Vat Brown 3, 114 ACY. *Vat Brown 3, 114 AAP. *Vat Brown 11, 125 MAY. *Vat Brown 12, 12-1/25 MAY. Vat Brown 13, 174 MAY. Vat Brown 12, 12-1/25 DUP. Vat Brown 20, 10-1/24 DUP. Vat Brown 21, 124 GAF. Vat Brown 29, 134 ACY. Vat Brown																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
31, 285 GAF. <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>												Vat Blue 43												Vat Blue 43. SDC. Vat Blue 53, 20-1/2%. GAF. Vat Blue 60. DUP. Other vat blue dyes. MAY, Vat green dyes: AAP, Solubilized Vat Green 1, 12-1/2%. AAP, Solubilized Vat Green 3, 26%. GAF, *Vat Green 8, 8-1/2%. ATI, *Vat Green 9, 12-1/2%. ACY, Vat Green 15, 17%. NAC. Vat Green 18, 8%. DUP. Other vat green dyes. MAY, Vat Green 18, 8%. DUP. Other vat green dyes. MAY, Solubilized Vat Brown 1, 17%. ACY, Solubilized Vat Brown 1, 17%. AAP, *Vat Brown 3, 11%. AAP, Vat Brown 12, 12-1/2%. AAP, Vat Brown 12, 12-1/2%. DUP, Vat Brown 13, 17%. AAP, Vat Brown 20, 10-1/2%. DUP, Vat Brown 29, 13%. AAP, Vat Brown 29, 13%. AAP, Vat Brown 31, 28%. AAP, Vat Brown 32, 22%. CI. Vat Brown 33, 20%. CI. Vat Brown 34, 20%. CI. Vat Brown 40, 14%. DUP, Vat Brown 51. Vat Black 11, 17-1/2%. GAF, Vat Black 11, 17-1/2%. CAF, Vat Black 11, 17-1/2%. CAF, Vat Black 11, 17-1/2%. CAF, Vat Black 12, 18-1/2%. CAF, Vat Black 13, 14%. DUP, Vat Black 14, 11-1/2%. CAF, Vat Black 15, 12-1/2%. CAF, Vat Black 21, 18-1/2%. CAF, Vat Black 21, 18-1/2%. CAF, Vat Black 22, 19%. Vat Black 27, 12-1/2%. CAF, 24, 18-1-1/2%. CAF,												Vat Blue 60												Vat Blue 60												#Vat green dyes: *Vat Green 1, 6%												*Vat Green 1, 6%— Solubilized Vat Green 1, 12-1/2%— *Vat Green 3, 10%— *Solubilized Vat Green 3, 26%— *Vat Green 8, 8-1/2%— *Vat Green 15, 17%— Vat Green 15, 17%— Vat Green 18, 8%— Vat Green 18, 8%— Vat Green 18, 8%— OUP. Other vat green dyes— Wat brown dyes: *Vat Brown 1, 11%— *Vat Brown 1, 11%— *Vat Brown 1, 12%— Vat Brown 12, 12-1/2%— Vat Brown 12, 12-1/2%— Vat Brown 29, 11-1/2%— Vat Brown 29, 11-1/2%— Vat Brown 28, 22%— Vat Brown 28, 22%— Vat Brown 31, 28%— Vat Brown 31, 28%— Vat Brown 32, 24%— Vat Brown 34, 24%— Vat Brown 35, 15%— Vat Brown 53— Vat Brown 53— Vat Brown 57, 15%— Other vat brown dyes— Vat Black 11, 17-1/2%— Vat Black 12, 14%— Vat Black 11, 17-1/2%— Vat Black 11, 17-1/2%— Vat Black 11, 17-1/2%— Vat Black 11, 17-1/2%— Vat Black 11, 11-1/2%— Vat Black 11, 11-1/2%— Vat Black 11, 11-1/2%— Vat Black 12, 18-1/2%— Vat Black 21, 18-1/2%— Vat Black 22, 19%— *Vat Black 27, 12-1/2%— Vat 34, 16%— ICI.	SDC,	VPC,	x.									Solubilized Vat Green 1, 12-1/24												*Vat Green 3, 10% *Solubilized Vat Green 3, 26% *Vat Green 8, 8-1/2% *Vat Green 15, 17% Vat Green 15, 17% Vat Green 18, 8% Vat Green 18, 8% Vat Green 19, 12-1/2% Vat Green 19, 11% Vat Green 19, 11% Other vat green dyes *Vat Brown 1, 11% Solubilized Vat Brown 1, 17% AAP, *Vat Brown 3, 11% *Vat Brown 3, 11% Vat Brown 12, 12-1/2% Vat Brown 13, 17% Vat Brown 13, 17% Vat Brown 20, 10-1/2% Vat Brown 28, 22% Vat Brown 28, 22% Vat Brown 38, 20% Vat Brown 38, 20% Vat Brown 39, 12% Vat Brown 38, 20% Vat Brown 40, 14% Vat Brown 53 CAF. Other vat brown dyes Vat Black 1- Solubilized Vat Black 1, 27-1/2% Vat Black 11, 17-1/2% 12, 18-1/2% Vat Black 21, 18-1/2% Vat Black 21, 18-1/2% Vat Black 22, 19% *Vat Black 27, 12-1/2% *Vat Black 27, 12-1/2% Vat Black 27, 12-1/2% *Vat 34, 16% 34			GAF,	ICI,	MAY.							*Solubilized Vat Green 3, 26% GAF, *Vat Green 8, 8-1/26 ATT, *Vat Green 9, 12-1/26 ACT, Vat Green 15, 17% NAC. Vat Green 18, 8% DUP. Vat Brown 1, 11% ACT, *Vat Brown 1, 11% ACT, *Vat Brown 3, 11% AAP, *Vat Brown 5, 13% AAP, Vat Brown 11, 12% DUP, Vat Brown 12, 12-1/2% DUP, Vat Brown 13, 17% MAY. Vat Brown 20, 10-1/2% DUP, Vat Brown 28, 22% ICI. Vat Brown 28, 22% ICI. Vat Brown 31, 28% ACT, Vat Brown 31, 28% ACT, Vat Brown 33, 20% ICI. Vat Brown 40, 14% DUP. Vat Brown 53 GAF, Vat Brown 53 GAF, Vat Brown 54, 15% GAF, Vat Black 1, 17-1/26 GAF, *Vat Black 1, 17-1/26 GAF, Vat Black 11, 17-1/26 GAF, Vat Black 12, 18-1/26 GAF, Vat Black 21, 18-1/26 GAF, Vat Black 21, 18-1/26 GAF, Vat Black 21, 18-1/26 GAF, Vat Black 27, 12-1/26 34, 16% Bla												*Vat Green 9, 12-1/25			DUP,	GAF,	ICI,	MAY,	NAC,	TRC.				*Vat Green 9, 12-1/2* Vat Green 15, 17% Vat Green 18, 8% Vat Green 20, 6% Other vat green dyes *Vat brown dyes: *Vat brown dyes: *Vat Brown 1, 11% Solubilized Vat Brown 1, 17% *Vat Brown 3, 11% *Vat Brown 11, 12% Vat Brown 12, 12-1/2% Vat Brown 12, 12-1/2% Vat Brown 20, 10-1/2% Vat Brown 20, 10-1/2% Vat Brown 29, 13% Vat Brown 29, 13% Vat Brown 31, 28% AAP, Vat Brown 31, 28% AAP, Vat Brown 40, 14% Vat Brown 57, 15% Other vat brown dyes *Vat Black 1- Solubilized Vat Black 1, 27-1/2% Vat Black 13, 14% Vat Black 13, 14% Vat Black 14, 11-1/2% Vat Black 21, 18-1/2% Vat Black 22, 19% *Vat Black 24, 12-1/2% Vat Black 27, 12-1/2% Vat Black 27, 12-1/2% Vat Black 21, 18-1/2% Vat Black 22, 19% *Vat Black 27, 12-1/2% Vat 34, 16% ICI.												Vat Green 15, 17% NAC. Vat Green 18, 8% DUP. Other vat green dyes MAY, *Vat brown dyes: *Vat Brown 1, 11% ACY, Solubilized Vat Brown 1, 17% GAF, *Vat Brown 3, 11% AAP, *Vat Brown 12, 12-1/2% DUP, Vat Brown 12, 12-1/2% DUP, Vat Brown 20, 10-1/2% DUP, Vat Brown 25, 11-1/2% GAF, Vat Brown 29, 13% ACY. Vat Brown 31, 28% ACY. Vat Brown 38, 20% ICI. Vat Brown 40, 14% DUP, Vat Brown 53 GAF. Vat Brown 57, 15% GAF. Other vat brown dyes DUP, Vat Black 1- GAF. Solubilized Vat Black 1, 27-1/2% GAF. Vat Black 13, 14% DUP, Vat Black 14, 11-1/2% DUP, Vat Black 15 DUP, Vat Black 21, 18-1/2% ACY. Vat Black 22, 18-1/2% ACY. Vat Black 27, 12-1/2% ACY. Vat Black 25, 12-1/2% ACY. Vat Black 27, 12-1/2% ACY.					****	ana	mp.c					Vat Green 18, 8% DUP. Other vat green dyes MAY, *Vat Brown 1, 11% ACY, Solubilized Vat Brown 1, 17% GAF, *Vat Brown 3, 11% AAP, *Vat Brown 11, 12% MAY, Vat Brown 12, 12-1/2% DUP, Vat Brown 13, 17% MAY, Vat Brown 20, 10-1/2% DUP, Vat Brown 25, 11-1/2% GAF. Vat Brown 28, 22% ICI. Vat Brown 31, 28% ACY. Vat Brown 38, 20% ICI. Vat Brown 38, 20% ICI. Vat Brown 57, 15% GAF, Cher vat brown dyes DUP, Vat Black 1- GAF, Solubilized Vat Black 1, 27-1/2% GAF, Vat Black 13, 14% DUP, Vat Black 14, 11-1/2% DUP, Vat Black 15, 15-1/2% GAF, Vat Black 11, 17-1/2% ACY. Vat Black 12, 18-1/2% ACY. Vat Black 21, 18-1/2% ACY. Vat Black 22, 19% ACY. Vat Black 25, 12-1/2% AAP, Vat Black 24, 16% ACY. Vat Black	ALL	DOP,	GAP,	MAI,	NAC,	SDC,	TRC.					Vat Green 20, 6%— DUP. Other vat green dyes MAY, *Vat brown dyes: *Vat Brown 1, 11% ACY, Solubilized Vat Brown 1, 17%— GAF, *Vat Brown 3, 11%— AAP, *Vat Brown 11, 12%— MAY, Vat Brown 12, 12-1/2%— DUP, Vat Brown 13, 17%— MAY. Vat Brown 20, 10-1/2%— DUP, Vat Brown 28, 22%— ICI. Vat Brown 29, 13%— ACY. Vat Brown 31, 28%— ICI. Vat Brown 38, 20%— ICI. Vat Brown 57, 15%— GAF. Other vat brown dyes— DUP, *Vat Black 1- GAF. Solubilized Vat Black 1, 27-1/2%— ACY. *Vat Black 29, 16%— ACY. *Vat Black 11, 17-1/2%— ACY. Vat Black 11, 17-1/2%— ACY. Vat Black 12, 18-1/2%— ACY. Vat Black 18, 15-1/2%— ACY. Vat Black 21, 18-1/2%— ACY. Vat Black 22, 12-1/2%— ACY. Vat Black 25, 12-1/2%— ACY. Vat Black 27, 12-1/2%— AAP, *Vat Black 27, 12-												Other vat green dyes												*Vat Brown dyes: *Vat Brown 1, 11% Solubilized Vat Brown 1, 17% *Vat Brown 3, 11% *Vat Brown 5, 13% Vat Brown 12, 12-1/2% Vat Brown 12, 12-1/2% Vat Brown 13, 17% Vat Brown 20, 10-1/2% Vat Brown 25, 11-1/2% Vat Brown 28, 22% ICI. Vat Brown 29, 13% ACY. Vat Brown 31, 28% ACY. Vat Brown 38, 20% ICI. Vat Brown 40, 14% Vat Brown 57, 15% Other vat brown dyes Vat Black 1 Solubilized Vat Black 1, 27-1/2% Vat Black 13, 14% Vat Black 14, 11-1/2% Vat Black 13, 14% Vat Black 14, 11-1/2% Vat Black 15, 18-1/2% Vat Black 21, 18-1/2% Vat Black 21, 18-1/2% Vat Black 22, 19% *Vat Black 24, 16% Vat Black 25, 12-1/2% *Vat Black 24, 16% Vat Black 34, 16% ICI.	SDC.											*Vat Brown 1, 11%—	520.											Solubilized Vat Brown 1, 17%	DUP,	GAF,	ICI,	MAY.	NAC.	TRC.						*Vat Brown 5, 13% AAP, Vat Brown 11, 12% DUP, Vat Brown 12, 12-1/2% DUP, Vat Brown 20, 10-1/2% DUP, Vat Brown 25, 11-1/2% GAF. Vat Brown 28, 22% ICI. Vat Brown 31, 28% AAP. Vat Brown 38, 20% ICI. Vat Brown 38, 20% ICI. Vat Brown 53 GAF. Vat Brown 57, 15% GAF. Other vat brown dyes DUP, Vat Black 1- Solubilized Vat Black 1, 27-1/2% GAF. Vat Black 13, 14% DUP, Vat Black 14, 11-1/2% GAF. Vat Black 14, 11-1/2% GAF. Vat Black 15, 12-1/2% GAF. Vat Black 21, 18-1/2% GAF, Vat Black 21, 18-1/2% GAF, Vat Black 22, 19% AAP, Vat Black 24, 16% AAP, Vat Black 25, 12-1/2% AAP, Vat Black 24, 16% AAP, Vat Black 27, 12-1/2% AAP, Vat Black 27, 12-1/2% AAP, Vat Black 24, 16% ICI.		-										*Vat Brown 5, 13% AAP, Vat Brown 11, 12% DUP, Vat Brown 12, 12-1/2% DUP, Vat Brown 13, 17% MAY. Vat Brown 20, 10-1/2% DUP, Vat Brown 25, 11-1/2% GAF. Vat Brown 29, 13% ACY. Vat Brown 31, 28% AAP. Vat Brown 38, 20% ICI. Vat Brown 38, 20% ICI. Vat Brown 53 GAF. Vat Brown 57, 15% GAF. Other vat brown dyes DUP, *Vat Black 1- Solubilized Vat Black 1, 27-1/2% ACY. Vat Black 11, 17-1/2% ACY. Vat Black 13, 14% DUP, Vat Black 14, 11-1/2% ACY. Vat Black 18, 15-1/2% GAF, Vat Black 21, 18-1/2% GAF, Vat Black 22, 19% AAP, *Vat Black 34, 16% ICI.	ACY,	DUP,	GAF,	ICI,	MAY,	NAC,	TRC,	VPC.				Vat Brown 12, 12-1/2% DUP, Vat Brown 13, 17% MAY. Vat Brown 20, 10-1/2% DUP, Vat Brown 28, 22% ICI. Vat Brown 29, 13% ACY. Vat Brown 31, 28% AAP. Vat Brown 38, 20% ICI. Vat Brown 40, 14% DUP. Vat Brown 57, 15% GAF. Cher vat brown dyes DUP, Vat Black 1- GAF. Solubilized Vat Black 1, 27-1/2% GAF. Vat Black 11, 17-1/2% ACY. Vat Black 13, 14% DUP, Vat Black 14, 11-1/2% DUP, Vat Black 18, 15-1/2% GAF, Vat Black 21, 18-1/2% GAF, Vat Black 22, 19% ACY. *Vat Black 27, 12-1/2% AAP, 24, 16% ICI.							-					Vat Brown 13, 17% MAY. Vat Brown 20, 10-1/2% DUP, Vat Brown 25, 11-1/2% GAF. Vat Brown 28, 22% ICI. Vat Brown 31, 28% ACY. Vat Brown 38, 20% ICI. Vat Brown 40, 14% DUP. Vat Brown 57, 15% GAF. Other vat brown dyes DUP, Vat Black dyes: GAF. Vat Black 1- GAF.																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																		
Solubilized Vat Black 1, 27-1/2% GAF. Vat Black 21, 17-1/2% ACY. Vat Black 14, 11-1/2% DUP, Vat Black 18, 15-1/2% DUP, Vat Black 21, 18-1/2% GAF, Vat Black 22, 19% ACY. Vat Black 25, 12-1/2% AAP, Vat Black 34, 16% ICI.	TRC.											Vat Brown 20, 10-1/2% DUP, Vat Brown 25, 11-1/2% GAF. Vat Brown 28, 22% ICI. Vat Brown 29, 13% ACY. Vat Brown 31, 28% AAP. Vat Brown 38, 20% ICI. Vat Brown 53 GAF. Vat Brown 57, 15% GAF. Other vat brown dyes DUP, Vat Black 1- GAF. Solubilized Vat Black 1, 27-1/2% GAF. Vat Black 29, 16% ACY. Vat Black 14, 11-1/2% DUP, Vat Black 18, 15-1/2% DUP, Vat Black 18, 15-1/2% GAF, Vat Black 21, 18-1/2% ACY. Vat Black 22, 19% ACY. Vat Black 25, 12-1/2% AAP, *Vat Black 27, 12-1/2% AAP, *Vat Black 34, 16% ICI.	NAC.											Vat Brown 25, 11-1/2% GAF. Vat Brown 28, 22% ICI. Vat Brown 31, 28% ACY. Vat Brown 38, 20% ICI. Vat Brown 40, 14% DUP. Vat Brown 53 GAF. Cher vat brown dyes DUP, Cher vat brown dyes CAF. Solubilized Vat Black 1. GAF. Solubilized Vat Black 1, 27-1/2% GAF. Vat Black 11, 17-1/2% ACY. Vat Black 14, 11-1/2% DUP, Vat Black 15, 14% DUP, Vat Black 17, 18-1/2% GAF, Vat Black 18, 15-1/2% GAF, Vat Black 21, 18-1/2% GAF, Vat Black 22, 19% ACY. Vat Black 25, 12-1/2% AAP, *Vat Black 27, 12-1/2% AAP, Vat Black 34, 16% ICI.												Vat Brown 28, 22% ICI. Vat Brown 29, 13% ACY. Vat Brown 31, 28% AAP. Vat Brown 38, 20% ICI. Vat Brown 40, 14% DUP. Vat Brown 53 GAF. Vat Brown 57, 15% GAF. Cher vat brown dyes DUP, Vat Black dyes: GAF. Vat Black 1- GAF. Solubilized Vat Black 1, 27-1/2% GAF. Vat Black 9, 16% ACY. Vat Black 13, 14% DUP, Vat Black 14, 11-1/2% DUP, Vat Black 18, 15-1/2% GAF, Vat Black 21, 18-1/2% ACY. Vat Black 22, 19% ACY. *Vat Black 27, 12-1/2% AAP, *Vat Black 27, 12-1/2% AAP, *Vat Black 27, 12-1/2% AAP, *Vat Black 34, 16% ICI.	GAF,	NAC.										Vat Brown 29, 13% ACY. Vat Brown 31, 28% AAP. Vat Brown 38, 20% ICI. Vat Brown 50, 14% DUP. Vat Brown 57, 15% GAF. Cher vat brown dyes DUP, Vat Black dyes: GAF. Solubilized Vat Black 1, 27-1/2% GAF. Vat Black 1, 17-1/2% ACY. Vat Black 13, 14% DUP, Vat Black 14, 11-1/2% DUP. Vat Black 18, 15-1/2% GAF, Vat Black 21, 18-1/2% GAF, Vat Black 22, 19% ACY. *Vat Black 25, 12-1/2% AAP, *Vat Black 24, 16% ICI.												Vat Brown 31, 28% AAP. Vat Brown 38, 20% ICI. Vat Brown 40, 14% DUP. Vat Brown 53 GAF. Vat Brown 57, 15% GAF. Other vat brown dyes DUP, *Vat Black 1- GAF. Solubilized Vat Black 1, 27-1/2% GAF. *Vat Black 9, 16% ATI. Vat Black 11, 17-1/2% ACY. Vat Black 13, 14% DUP, Vat Black 14, 11-1/2% DUP, Vat Black 18, 15-1/2% GAF, Vat Black 21, 18-1/2% ACY. Vat Black 22, 19% ACY. *Vat Black 25, 12-1/2% AAP, *Vat Black 34, 16% ICI.												Vat Brown 38, 20% ICI. Vat Brown 40, 14% DUP. Vat Brown 53 GAF. Vat Brown 57, 15% GAF. Other vat brown dyes DUP, Vat Black 1 GAF. Solubilized Vat Black 1, 27-1/2% GAF. Vat Black 9, 16% ATI., Vat Black 11, 17-1/2% ACY. Vat Black 14, 11-1/2% DUP, Vat Black 15, 15-1/2% DUP, Vat Black 18, 15-1/2% GAF, Vat Black 21, 18-1/2% ACY. Vat Black 25, 12-1/2% ACY. *Vat Black 25, 12-1/2% AAP, *Vat Black 34, 16% ICI.												Vat Brown 40, 14% DUP. Vat Brown 53 GAF. Vat Brown 57, 15% GAF. Other vat brown dyes DUP, EVat black dyes: Vat Black 1 Vat Black 1 CAF. Solubilized Vat Black 1, 27-1/2% ACY. Vat Black 11, 17-1/2% ACY. Vat Black 13, 14% DUP, Vat Black 14, 11-1/2% DUP, Vat Black 18, 15-1/2% GAF, Vat Black 21, 18-1/2% GAF, Vat Black 22, 19% ACY. *Vat Black 27, 12-1/2% AAP, *Vat Black 27, 12-1/2% AAP, Vat Black 34, 16% ICI.												Vat Brown 53 GAF. Vat Brown 57, 15% GAF. Other vat brown dyes DUP, EVat black dyes: GAF. Vat Black 1 GAF. Solubilized Vat Black 1, 27-1/2% GAF. *Vat Black 9, 16% ATL, Vat Black 13, 14% ACY. Vat Black 14, 11-1/2% DUP, Vat Black 15 AAP. Vat Black 18, 15-1/2% GAF. Vat Black 21, 18-1/2% ACY. *Vat Black 22, 19% ACY. *Vat Black 27, 12-1/2% AAP, *Vat Black 34, 16% ICI.												Vat Brown 57, 15%												Other vat brown dyes DUP, 1 *Vat black dyes: Vat Black 1	HST.	ጥድር										Vat Black 1			VPC-									Vat Black 1- GAF. Solubilized Vat Black 1, 27-1/2%- GAF. *Vat Black 9, 16%- ATI., 6 Vat Black 11, 17-1/2%- ACY. Vat Black 13, 14%- DUP, 1 Vat Black 14, 11-1/2%- DUP. Vat Black 15- AAP. Vat Black 21, 18-1/2%- GAF. 1 Vat Black 22, 19%- ACY. *Vat Black 25, 12-1/2%- AAP, *Vat Black 27, 12-1/2%- AAP, Vat Black 34, 16%- ICI.	111109	ш,	*10.									Solubilized Vat Black 1, 27-1/2%												*Vat Black 9, 16%————————————————————————————————————	HST,	ICI.										Vat Black 11, 17-1/2% ACY. Vat Black 13, 14% DUP. Vat Black 14, 11-1/2% DUP. Vat Black 15, 15-1/2% AAP. Vat Black 21, 18-1/2% ACY. Vat Black 22, 19% ACY. *Vat Black 25, 12-1/2% AAP. *Vat Black 27, 12-1/2% AAP. Vat Black 34, 16% ICI.			NAC,	TRC.								Vat Black 14, 11-1/2%			-									Vat Black 15	NAC.											Vat Black 18, 15-1/2% GAF, 1 Vat Black 21, 18-1/2% ACY. Vat Black 22, 19% ACY, 2 *Vat Black 25, 12-1/2% AAP, 3 *Vat Black 27, 12-1/2% AAP, 3 Vat Black 34, 16% ICI.												Vat Black 21, 18-1/2%												Vat Black 22, 19%	NAC.											*Vat Black 25, 12-1/2%												*Vat Black 27, 12-1/2% AAP, Vat Black 34, 16% ICI.												Vat Black 34, 16% ICI.													ACY,	DUP,	GAF,	ICI,	MAY,	NAC,	TRC,	VPC.																Vat Black 37 GAF. Vat Black 38, 20% GAF.												Vat Black 38, 20% GAF. Vat Black 52, 18-1/2% ACY.												Other vat black dyes DUP, (JAF.	SDC.	ጥድር									All other dyes ACY, i			1110.								## **Pigments** [Benzenoid pigments for which separate statistics are given in table 11A are marked below with an asterisk (*); products not so marked do not appear in table 11A because the reported data are accepted in confidence and may not be published. Manufacturers' identification codes shown below are taken from table 22. An x signifies that the manufacturer did not consent to his identification with the designated product]	Pigment	Manufacturers' identification codes (according to list in table 22)		--	--		TONERS			*Yellow toners:			*Hansa yellows: *Pigment Yellow 1, C.I. 11 680	ACY, AMS, DUP, FCL, GAF, HSC, HSH, ICI, IMP, KON, NAC,		*Pigment Yellow 3, C.I. 11 710	PPG, S, SDH, SNA, SW. HSC, HSH, HST, IMP, KCW, KON, NAC, PPG, S, SW.		Pigment Yellow 4, C.I. 11 665	NAC, SNA.		Pigment Yellow 5, C.I. 11 660	IMP.		Pigment Yellow 9, C.I. 11 720	SNA.		Pigment Yellow 49, C.I. 11 765	ICI.		Pigment Yellow 65, C.I. 11 740	SW.		*Pigment Yellow 73	NAC, SNA, SW, x.		*Pigment Yellow 74, C.I. 11 741	DUP, SDH, SW.		All other Hansa yellows	DUP, HSC, KCW.		*Benzidine yellow:	ACY AMS CIK DID FOI CAR HSC HSH TCC TMD KOM		*Pigment Yellow 12, C.I. 21 090	ACY, AMS, CIK, DUP, FCL, GAF, HSC, HSH, ICC, IMP, KON, LVY, MRX, NAC, S, SDH, SNA, SW.		*Pigment Yellow 13, C.I. 21 100	BUC, FCL, GAF, HSC, HSH, HST, ICC, IMP, ROM, SDH, SNA,		*Pigment Yellow 14, C.I. 21 095	SW. ACY, AMS, BUC, CIK, CPC, DUP, FCL, GAF, HSC, HSH, HST,		116 110 110 110 110 110 110 110 110 110	ICC, IMP, KON, MRX, NAC, ROM, S, SDH, SNA, SW, x.		*Pigment Yellow 17, C.I. 21 105	ACY, BUC, DUP, FCL, HSH, HSC, HST, ICC, IMP, SDH, SNA, SW.		Pigment Yellow 83	HST, NAC.		All other benzidine yellows	AMS, HSH, ICC, IMP, ROM, S, SW.		Pigment Yellow 10, C.I. 12 710	SW.		Pigment Yellow 18, C.I. 49 005	IMP.		Pigment Yellow 60, C.I. 12 705	SW.		(Basic Yellow 2), C.I. 41,000 fugitive	MRX.		(Vat Yellow 1), C.I. 70 600	NAC, TRC.		(Vat Yellow 20), C.I. 68 420All other	NAC. ACY, GAF, ICC, IMP, S, SW.		*Orange toners:	ROI, GRI, 100, IMI, D, DN.		Pigment Orange 1, C.I. 11 725	KCW, NAC.		*Pigment Orange 2, C.I. 12 060	FCL, IMP, SDH, SW.		*Pigment Orange 5, C.I. 12 075	ACY, HSC, IMP, SNA, SW.		*Pigment Orange 13, C.I. 21 110	ACY, AMS, HSC, IMP, KON, NAC, SNA, SW.		Pigment Orange 15, C.I. 21 130	GAF, NAC.		*Pigment Orange 16, C.I. 21 160	BUC, DUP, FCL, GAF, HSH, HST, ICC, IMP, NAC, ROM, SDH,		Di-mont Orange 20	SNA, SW.		Pigment Orange 30 (Vat Orange 1), C.I. 59 105	SNA. HST.		(Vat Orange 2), C.I. 59 705	GAF.		(Vat Orange 3), C.I. 59 300	NAC, TRC.		(Vat Orange 4), C.I. 59 710	NAC.		*(Vat Orange 7), C.I. 71 105	GAF, HST, NAC.		All other	BUC, HSH, ICC, KON, ROM, SDH.		*Red toners:			*Naphthol reds:			*Pigment Red 2, C.I. 12 310	GAF, HSC, IMP, KCW, KON, MRX, NAC, SDH, SW.		*Pigment Red 5, C.I. 12 490	DUP, GAF, HSH, HST, ICC, ICI, IMP, NAC, ROM, S, SDH, SW.		Pigment Red 7, C.I. 12 420	ICI, S.		Pigment Red 9, C.I. 12 460	IMP.		Pigment Red 10, C.I. 12 440	KCW.		*Pigment Red 13, C.I. 12 395	IMP, KCW, NAC, SW.		Pigment Red 14, C.I. 12 380	DUP.		Pigment Red 15, C.I. 12 465	DUP.		*Pigment Red 17, C.I. 12 390* *Pigment Red 18, C.I. 12 350	ACY, BLN, FCL, ICC, IMP, S, SNA, UHL.		*rigment ned to, 0.1. 12 300	IMP, NAC, SW.	See note at end of table for definition of abbreviations. TABLE 11B.--Benzenoid pigments for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	Pigment TONERSContinued *Red tonersContinued *Naphthol redsContinued Pigment Red 19, C.I. 12 400	ACY, BUC, DUP, FCL, ICC, IMP, NAC, ROM, SDH, SNA, SW. SNA, SW. ICC, KCW, ROM, SDH, SW, x. ACY, AMS, FCL, HSC, HSH, IMP, KON, LVY, NAC, SDH, SW.																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																															
---	---		*Red tonersContinued *Naphthol redsContinued Pigment Red 19, C.I. 12 400 *Pigment Red 22, C.I. 12 315 *Pigment Red 23, C.I. 12 355 Pigment Red 31, C.I. 12 360	ACY, BUC, DUP, FCL, ICC, IMP, NAC, ROM, SDH, SNA, SW. SNA, SW. ICC, KCW, ROM, SDH, SW, x. ACY, AMS, FCL, HSC, HSH, IMP, KON, LVY, NAC, SDH, SW.		*Naphthol redsContinued Pigment Red 19, C.I. 12 400 *Pigment Red 22, C.I. 12 315 *Pigment Red 23, C.I. 12 355 Pigment Red 31, C.I. 12 360 All other naphthol reds	ACY, BUC, DUP, FCL, ICC, IMP, NAC, ROM, SDH, SNA, SW. SNA, SW. ICC, KCW, ROM, SDH, SW, x. ACY, AMS, FCL, HSC, HSH, IMP, KON, LVY, NAC, SDH, SW.		*Naphthol redsContinued Pigment Red 19, C.I. 12 400 *Pigment Red 22, C.I. 12 315 *Pigment Red 23, C.I. 12 355 Pigment Red 31, C.I. 12 360 All other naphthol reds	ACY, BUC, DUP, FCL, ICC, IMP, NAC, ROM, SDH, SNA, SW. SNA, SW. ICC, KCW, ROM, SDH, SW, x. ACY, AMS, FCL, HSC, HSH, IMP, KON, LVY, NAC, SDH, SW.		Pigment Red 19, C.I. 12 400	ACY, BUC, DUP, FCL, ICC, IMP, NAC, ROM, SDH, SNA, SW. SNA, SW. ICC, KCW, ROM, SDH, SW, x. ACY, AMS, FCL, HSC, HSH, IMP, KON, LVY, NAC, SDH, SW.		*Pigment Red 22, C.I. 12 315 *Pigment Red 23, C.I. 12 355 Pigment Red 31, C.I. 12 360 All other naphthol reds	ACY, BUC, DUP, FCL, ICC, IMP, NAC, ROM, SDH, SNA, SW. SNA, SW. ICC, KCW, ROM, SDH, SW, x. ACY, AMS, FCL, HSC, HSH, IMP, KON, LVY, NAC, SDH, SW.		*Pigment Red 23, C.I. 12 355 Pigment Red 31, C.I. 12 360 All other naphthol reds	SNA, SW. ICC, KCW, ROM, SDH, SW, x. ACY, AMS, FCL, HSC, HSH, IMP, KON, LVY, NAC, SDH, SW.		Pigment Red 31, C.I. 12 360	- SNA, SW. - ICC, KCW, ROM, SDH, SW, x. - ACY, AMS, FCL, HSC, HSH, IMP, KON, LVY, NAC, SDH, SW.		All other naphthol reds	- ICC, RCW, RCM, SDH, SW, X. - ACY, AMS, FCL, HSC, HSH, IMP, KON, LVY, NAC, SDH, SW.		*Pigment Red 1, C.I. 12 070, dark	- ACT HER HER THE KON DEC CON SW					*Pigment Red 1, C.I. 12 070, light	ACY, BLN, CIK, DUP, FCL, HSC, HSH, IMP, KCW, KON, NAC		*Pigment Red 3, C.I. 12 120	PPG, SDH, SNA, SW, UHL.			ACY, AMS, FCL, HSC, HSH, IMP, KON, MRX, SDH, SNA, SW,		*Pigment Red 4, C.I. 12 085	· UHL.		*Pigment Red 6, C.I. 12 090	DUP, HSC, HSH, KCW, SW.		*Pigment Red 38, C.I. 21 120	- DUP, GAF, ICC, NAC, SNA, SW.		Pigment Red 41, C.I. 21 200	- GAF, NAC.		*Pigment Red 48, C.I. 15 865	- ACY, AMS, BLN, DUP, FCL, GAF, HSC, HSH, IMP, KON, LV		rightent hed 40, 0:10 15 005	MRX, NAC, S, SNA, SW.		Pigment Red 49, C.I. 15 630:			*Barium toner	- ACY, AMS, CIK, FCL, HSC, IMP, KON, LVY, SDH, SNA, SW			I UHL.		*Calcium toner	- ACY, AMS, FCL, HSC, IMP, LVY, PPG, SDH, SNA, SW.		vC-44.m +onon	- I ACY. AMS. FCL. HSC. KUN. SDH. SW.		*Pigment Red 52 C. I. 15 860	- AMS, FUL, HSU, HSH, IMP, SNA, SW.		*Pigment Red 53, C.I. 15 585, barium toner	- ACI, AMO, CIR, FOL, AOC, IMF, ROR, LVI, MAIL, MACK, OD			SNA, SW.		Pigment Red 53, C.I. 15 585, sodium toner	- KON.		*Pigment Red 54: C.I. 14 830, calcium toner	- I HOH, IMP, MRA, SUH.		Pigment Red 55, C.I. 15 820	- DUP, NAC.		*Pigment Red 57, C.I. 15 850, calcium toner	AMS, BLN, CIK, DUP, FCL, HSC, HSH, IMP, KON, LVY, MCI NAC, S, SDH, SNA, SW.		7. 1 7. 50 0 T 35 005	- DUP, GAF, IMP.		Pigment Red 58, C.I. 15 825* *Pigment Red 63, C.I. 15 880	- FCL, HSH, IMP, KON, NAC, SNA, SW.		*Pigment Red 64, C.I. 15 800	- NAC.		Pigment Red 77, C.I. 15 826	- SW.		Pigment Red 79, PMA	- GAF.		Pigment Red 81, C.I. 45 160, fugitive	- BLN, KCW.		*Pigment Red 81, C.I. 45 160, PMA	- BLN, CPC, DUP, FCL, GAF, IMP, KON, LVR, LVY, MGR, MF			NIU, D, DNA.		*Pigment Red 81, C.I. 45 160, PTA	- ACY, AMS, BLN, DUP, FCL, GAF, HSC, IMP, KCW, KON, MC			MRA, D, DUR, DNA.		Pigment Red 87, C.I. 73 310	- NAC.		Dimont Dod 00	- I NAC. SUR.		*Pigmont Red 90 C. T. 45 380	- AMS, FUL, ICC, IMP, LVR, LVI, NIC, SDI, SIMA		Di Pod 117 C T 15 603	- I OW.		Di	NAC.		Pigment Red 123	- NAC.		(Vat Red 1), C.I. 73 360	- HST.		(Vat Red 10), C.I. 67 000	- GAF, NAC.		(Vet Red 23) C. I. 71 130	- NAC.		(Vat Red 29), C.I. 71 140	- GAF, HSC, NAC.		All other	- ACY, DUP, GAF, HAM, HSC, SW, TRC.		Violet toners:	- BLN, UHL.		Pigment Violet 1, C.I. 45 170, fugitive	- GAF, IMP, LVR, MGR, MRX.		*Pigment Violet 1, C.I. 45 170, PMA *Pigment Violet 1, C.I. 45 170, PTA	ACY, AMS, DUP, FCL, GAF, HSC, IMP, KON, MGR, MRX, S		*rigment violet 1, 0.1. 47 1/0, right	SNA.		*Pigment Violet 3, C.I. 42 535, fugitive	- ACY, AMS, BLN, HAM, HSC, IMP, KON, LVR, LVY, MGR, U		*Pigment Violet 3, C.I. 42 535, PMA	- AMS, BLN, CIK, DUP, EAK, GAF, HSC, IMP, KON, LVY, M			MRX, NYC, PPG, SDH, SNA, SW, UHL.		*Pigment Violet 3, C.I. 42 535, PTA	- ACY, AMS, BLN, GAF, HSC, IMP, KON, MRX, SNA, SW.		Pigment Violet 19. C.I. 46 500	DUP, NAC.		*Picmont Violet 23	- ACI, GAF, DSI, NAC, INC.		(Vet Violet 1), C.I. 60 010	- DUP.		(Vet Violet 2). C.I. 73 385	- NAC.		(Vet. Violet 3), C.T. 73 395	NAC-		All other	- BUC, ICC, IMP, ROM.	See note at end of table for definition of abbreviations. 115 TABLE 11B.--Benzenoid pigments for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	oy managacturer, 1			---	--		Pigment	Manufacturers' identification codes (according to list in table 22)		TONERSContinued			*Blue toners: *Pigment Blue 1, C.I. 42 595, PMA	BLN, DUP, EAK, GAF, HSC, IMP, KON, LVR, LVY, MGR, MRX,		*Pigment Blue 1, C.I. 42 595, PTA	NYC, SDH, SNA, SW, UHL. AMS, GAF, HAM, IMP, KON, MGR, NAC, SNA, SW. BLN.		*Pigment Blue 2, C.I. 44 045, fugitive* *Pigment Blue 2, C.I. 44 045, PMA	GAF, IMP, LVR.		*Pigment Blue 2, C.I. 44 045, PTA	HAM.		Pigment Blue 3, C.I. 42 140, PMA	MGR.		Pigment Blue 3. C.I. 42 140, PTA	MGR.		Pigment Blue 5, C.I. 42 600	GAF.		Pigment Blue 9. C.I. 42 025. PMA	LVR, MRX, NYC.		*Pigment Blue 9. C.I. 42 025. PTA	BLN, GAF, IMP, MRX, SDH.		Pigment Blue 10, C.I. 44 040, PMA	IMP, SDH.		Pigment Blue 10, C.I. 44 040, PTA	IMP.		*Pigment Blue 14, C.I. 42 600, PMAPigment Blue 14, C.I. 42 600, PTA	DUP, GAF, IMP, NYC.		*Pigment Blue 15, C.I. 74 160, alpha form	ACY, DUP, FCL, GAF, HSC, ICC, ICI, IMP, NAC, SNA, SW,		*Figure 10 bide 10, 0.1. /4 100, dipid form	TMS, TRC.		*Pigment Blue 15, C.I. 74 160, beta form	ACY, AMS, DUP, FCL, HSC, ICC, IMP, LVY, NAC, SNA, SW, TMS.		*Pigment Blue 19, C.I. 42 750A	ACY, AMS, HSC, NYC, SW.		*Pigment Blue 22. C.I. 69 810	DUP, IMP, NAC, TRC.		*Pigment Blue 25, C.I. 21 180	DUP, GAF, ICC, NAC, S.		Pigment Blue 27, C.I. 77 510	GAF. DUP.		(Basic Blue 7), C.I. 42 595, PTA(Vat Blue 4), C.I. 69 800	GAF.		(Vet Blue 6), C.T. 69 825	ICI, TRC.		All other	GAF, IMP, SDH.		*Green toners:			*Pigment Green 1, C.I. 42 040, PMA	BLN, GAF, IMP, MRX, NYC, UHL.		*Pigment Green 1, C.I. 42 040, PTA	BLN, IMP, MGR, S, SDH.		*Pigment Green 2, C.I. 42 040 and 49 005, PMA	GAF, IMP, KON, LVY, MGR, MRX, SDH, UHL.		*Pigment Green 2, C.I. 42 040 and 49 005, PTA	ACY, AMS, DUP, GAF, IMP, KON, LVY, MRX, S, SDH, UHL.		Pigment Green 4, C.I. 42 000, fugitive *Pigment Green 4, C.I. 42 000, PMA	BLN, GAF. BLN, GAF, MGR.		*Pigment Green 4, C.I. 42 000, PTA	ACY, AMS, HAM, IMP, KON, MGR.		*Pigment Green 7, C.I. 74 260	ACY, CIK, DUP, FCL, GAF, HSC, ICC, IMP, NAC, SNA, SW,			TMS, TRC.		*Pigment Green 8, C.I. 10 006	DUP, HSH, IMP, KCW, SW.		Pigment Green 10. C.I. 12 775	DUP, HSC, IMP, SW.		*Pigment Green 36 C. I. 74 265	ACY, GAF, NAC, SNA.		Pigment Green 38	NAC.		*Brown toners:	TOT		Pigment Brown 1, C.I. 12 480	ICI. HSH, SDH.		*Pigment Brown 3, C.I. 21 010 PMA	BLN, KCW, KON.		*Pigment Brown 5, C.I. 15 800	BUC, HSH, ICC, NAC, ROM, SNA.		(Vet Brown 3) C T 69 015	GAF, NAC, TRC.		All other	GAF, ICC, SDH, SW.		*Black toners			Pigment Black 1, C.I. 50 440	SNA.		Pigment Black 7, C.I. 77 266	GAF.		All other	BLN, DUP, GAF, UHL.		LAKES			*Yellow lakes:			(Acid yellow 1). C.I. 10 316	IMP.		(Acid Vellow 3), C.I. 47 005	IMP.		(Acid Yellow 23), C.I. 19 140	KON, MCR, MRX.		Orange lakes:	CIK CDC TMD KCW MOD		Pigment Orange 17, C.I. 15 510All other	CIK, CPC, IMP, KCW, MGR.		Red lakes:	. ALCOHO		*Pigment Red 60. C.I. 16 105	BLN, HSC, HSH, KON, MRX, SNA, SW.		*Pigment Red 83. C.I. 58 000	HSH, IMP, KON, MRX, PPG, SW, UHL.		(Acid Red 17), C.I. 16 180	IMP, KCW.		· · · · · · · · · · · · · · · · · · ·	·	See note at end of table for definition of abbreviations. TABLE 11B .-- Benzenoid pigments for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	Pigment	Manufacturers' identification codes (according to list in table 22)		--	--		LAKESContinued			Red lakesContinued (Acid Red 25), C.I. 16 050 *(Acid Red 26), C.I. 16 150 (Natural Red 4), C.I. 75 470 (Natural Red 24), C.I. 75 280 All other *Violet lakes: *Pigment Violet 5, C.I. 58 055 Pigment Violet 17), C.I. 42 650 All other	KON. CPC, HAM, IMP, KCW. KON. IMP. HAM, IMP. BLN, DUP, HSH, IMP,																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
KON, NAC. SW. BLN. HAM, HSC.		Pigment Blue 17, C.I. 74 180	BLN, CPC, KCW. AMS, BLN, KON, LVY, SDH. LVR. CPC, KCW. BLN, CPC. HAM, KON. CPC, KON, NYC. HAM.	Note .-- The C.I. (Colour Index) numbers shown in this report are the identifying codes given in the second edition of the Colour Index. When the name of a color is enclosed in parentheses, it indicates that this name is that of the dye from which the pigment can be made and that no name for the pigment itself is given in the Colour Index. The abbreviations PMA and PTA stand for phosphomolybdic and phosphotungstic (including phosphotungstomolybdic) acids, respectively. #### Medicinal Chemicals # TABLE 13B.--Medicinal chemicals for which U.S. production or sales were reported, identified by manufacturer, 1966 [Medicinal chemicals for which separate statistics are given in table 13A in pt. II are marked below with an asterisk (*); medicinal chemicals not so marked do not appear in table 13A because the reported data are accepted in confidence and may not be published. Manufacturers' identification codes shown below are taken from table 22. An x signifies that the manufacturer did not consent to his identification with the designated product]	Chemical	Manufacturers' identification codes (according to list in table 22)		---	--		Antibiotics:			*For medicinal use:			*Antifungal and antitubercular antibiotics:			Antifungal antibiotics:			Amphotericin B	· OMS.		Candicidin	PEN.		Nystatin	OMS.		Antitubercular antibiotics:			Cycloserine	COM.		Dihydrostreptomycin	MRK, PFZ.		Streptomycin	LIL, MRK, OMS, PFZ.		Viomycin	PFZ.		*Bacitracin				COM, PEN, PFZ, PMP.		*Penicillins:	DDC WVT		Ampicillin	BRS, WYT.		Cloxacillin, sodium	BRS.		Dicloxacillin, sodium	BRS.		Hetacillin	BRS.		Methicillin, sodium	BRS.		Nefcillin, sodium	WYT.		Oracillin, sodium	BRS.		Penicillin G. benzathine	PFZ, WYT.		*Penicillin G. potassium	LIL, MRK, OMS, PFZ, WYT.		*Penicillin G. procaine	LIL, MRK, OMS, PFZ, WYT.		Penicillin G, sodium	OMS.		Penicillin O. sodium	UPJ.		Phenethicillin, potassium	BRS, WYT.		Phenoxymethylpenicillin (Penicillin V)	LIL.		Phenoxymethylpenicillin, benzathine	WYT.		Phenoxymethylpenicillin, hydrabamine	ABB.		Phenoxymethylpenicillin, potassium	ABB, LIL.		YOTH an antibiotical for modicinal uses	ADD, IIII.		*Other antibiotics for medicinal use:	TTT		Cephaloridine	LIL.		Cephalothin	LIL.		Chloramphenicol	PD.		Erythromycin	ABB, LIL.		Funagillin	ABB.		Gentamycin	SCH.		Gramicidin	BAX, PEN.		Kanamycin	BRS.		Lincomycin	x.		Neomycin	OMS, PEN, PFZ, UPJ.		Novohi oci n	MRK, UPJ.		Oleandomycin	PFZ.		Paromomycin	MRK.		Polymyxin B	PFZ.			1.2.		Tetracyclines: Chlortetracycline	ACY.		Chiortetracycline			Demethylchlortetracycline	ACY.		Methacycline	PFZ.		Oxytetracycline	PFZ.		Tetracycline	ACY, BRS, PFZ, RLS.		Thiostrepton	OMS.		Triacetyloleandomycin	PFZ.		Tyrothricin	BAX, PEN.		Vancomycin	LIL.		*For other uses:			*Bacitracin	COM, DLI, GPR, PEN, PMP.		Chlortetracycline	ACY.		Cvcloheximide	UPJ.		Hygromycin B	LIL.		Neomycin	PEN, PFZ.		Novobiocin	UPJ.		Oxytetracycline	PFZ.	TABLE 13B.--Medicinal chemicals for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	Chemical	Manufacturers' identification codes		---	-------------------------------------		OHOUIT COA	(according to list in table 22)		v Audditional Completion of			*AntibioticsContinued *For other usesContinued			*Penicillin G salts:			Penicillin G. benzathine	_ WYT.		Penicillin G. procaine	- LIL, MRK, OMS, PFZ, WYT.		Streptomycin	- LIL, MRK, PFZ.		Tylosin	- LIL.		*Anticoagulants:	WITT		Ammonium heparin	- WIL.		Anisindione	- SCH. - ABB, FIN.		Phenindione	- CTN, GAN.		Potassium heparin	- WIL.		*Sodium heparin	- ABB, RIK, WIL.		Sodium warfarin	- EN.		*Antihistamines:			*Antinauseants:			Cyclizine hydrochloride	- BUR.		Dimenhydrinate	- SRL.		Meclizine hydrochloride	- PFZ.		Trimethobenzamide hydrochloride	- HOF.		Bromodiphenhydramine hydrochloride	- PD.		Brompheniramine maleate	- SCH.		Carbinoxamine	- SCH. - ABB, BUR.		Chlorothen citrate	- ACY.		*Chlorotheniramine maleate	- HEX, LEM, SCH, SK, x.		Cyproheptadine hydrochloride	- MRK.		Dexbrompheniramine maleate	- SCH.		Devchlorpheniramine maleate	- SCH.		Dimethindene maleate	- CBP.		Diphenhydramine hydrochloride	- ARA, GAN, PD.		Doxylamine succinate	- BKC.		Methapyrilene fumarate	- ABB.		Methapyrilene hydrochloride	- ABB.		Methapyrilene hydroxybenzoylbenzoate	- LIL.		Phenindemine tartrate	- HOF.		*Pheniramine maleate	- HEX, LEM, SCH, x.		Phenyltoloxamine citrate	- BRS.		Pyrrobutamine phosphate	- HEX, MRK, RSA. - LIL.		Thenyldiamine hydrochloride	- SDW.		Thonzylamine hydrochloride	- NEP.		Tripelennamine	- CBP.		Tripelennamine citrate	- CBP.		Tripelennamine hydrochloride	- CBP.		Triprolidine hydrochloride	- BUR.		*Anti-infective agents (except antibiotics):			*Arsenic, bismuth, and mercury compounds:			Arsenic and bismuth compounds:	CAT WITH		Arsanilic acid1	- SAL, WHL.		Bismuth dipropylacetateBismuth sodium triglycollamate	- X. - BPC.		Bismuth subsalicylate	- MAL, NOR, PEN.		Carbarsone	- LIL, PYL, WHL.		Glycobiarsol	- PYL, SDW.		Nitarsone	- SAL.		Roxarsone	- SAL.		Sodium arsanilate ¹	- PYL, SAL, WHL.		Mercury compounds:			o-Hydroxyphenylmercuric chloride	- MRK.		Merbromin	- HYN.		Mercuric salicylate	- MAL.		Nitromersol	- ABB.		Phenylmercuric acetate	- WRC.		Phenylmercuric benzoate	- MRK, WRC.					Phenylmercuric borate	- MRK, WRC.		Phenylmercuric borate Phenylmercuric nitrate Thimerosal	- MRK, WRC.	TABLE 13B.--Medicinal chemicals for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	Chemical.	Manufacturers' identification codes (according to list in table 22)		---	---		Anti-infective agents (except antibiotics)Continued			*Caprylates and undecylenates:			Calcium undecylenate	WIL.		Sodium caprylate	LEM, TNC.		Sodium undecylenate	BAC.		Undecylenic acid	BAC.		Zinc undecylenate	BAC, LEM, TNC, WIL.		*n-Hydroxybenzoic acid esters:			Benzylparaben	LEM.		Butyl paraben ¹	HN, ICO.		Ethylparaben	HN.		*Methylparaben1	HN, ICO, LEM, PYL, WSN.		Propylparaben1	HN, ICO, LEM, WSN.		*5-Nitrofurane, -imidazole, and -thiazole derivatives:	A COT		Acinitrazole	ACY.		2-Amino-5-nitrothiazole	ACY.		Furazolidone	NOR.		Metronidazole Nihydrazone	RDA.		Nithiazide	NOR.		Nitniazide Nitrofurantoin	MRK.		Nitrofurazone	NOR.			NOR.		*Phenolic antiseptics and disinfectants: Betanaphthol ¹	ACY, FIN.		Bithionol	SDH.		Chlorothymol	OPC.		Resorcinol ¹	LEM.		Resorcinol monoacetate1	FIN, KPT.		Thymol	GIV.		Thymol iodide	MAL.		*Piperazine base and salts:			*Piperazine base and saits.	DOW, FLM, JCC, UCC.		Piperazine adipate	JCC, PYL.		Piperazine calcium edetate	EN.		Piperazine citrate	BUR, JCC.		Piperazine dihydrochloride	DOW, FLM, JCC, WHL.		Piperazine hexahydrate	JCC, RDA, SEL.		Pinerezine hydrochloride	DOW, JCC.		Piperazine phosphate	BUR, JCC, PYL.		Pinerazine sulfate	JCC.		Piperazine tartrate	PYL.		*Orinoline derivetives:			Amodiaguine	PD.		Amodiaguin hydrochloride	PD.		Chloroquine phosphate	SDW.		*Diiodohydroxyguin	CBP, LEM, PYL, RSA, SRL.		Hydroxychloroquine sulfate	SDW.		8-Hydroxy-5-quinolinesulfonic acid	MRK.		Iodochlorhydroxyquin	CBP, PYL.		Oxyquinoline	GAM, LEM, MRK.		*Oxyquinoline benzoate	GAM, LEM, MRK.		Oxyquinoline citrate	GAM.		Oxyquinoline potassium sulfate*Oxyquinoline sulfate	GAM, LEM, MRK, PYL.		Primaquine phosphate	PD, SDW.			10, 00%.		*Sulfonamides: Acetyl sulfamethoxypyridazine	ACY.		Acetyl sulfisoxazole	HOF.		Azosulfamide	SDW.		Dinsed	SAL.		Mafenide acetate	SDW.		Mafenide hydrochloride	SDW.		Para-nitrosulfathiazole	SDW.		Phthalylsulfacetamide	LEM.		Phthalylsulfathiazole	LEM. MRK. PYL.		Succinylsulfathiazole	LEM, MRK, PYL		Sulfabenzamide	ACY.		Sulfabenzamide, sodium	ACY.		DUTT ODCINGMITAL DOCTOR	1		Sulfabromomethazine, sodium	MRK.	${\it TABLE~13B.--Medicinal~chemicals~for~which~U.S.~production~or~sales~were~reported,~identified~by~manufacturer,~1966--Continued}$	Chemical		1	,				ion cod ble 22)	es			--	------	---------	------	------	------	---	--------------------	----	--		*Anti-infective agents (except antibiotics)Continued											*SulfonemidesContinued Sulfacetamide, sodium	LEM.										Sulfachloropyrazine, sodium											Sulfadiazine		LEM.									Sulfadiazine, sodium	ACY.										Sulfadimethoxine											Sulfaethidole	ACY.										Sulfaguanidine	ACY,	LEM.									Sulfamerazine	ACY,	LEM.									Sulfamerazine, sodium											SulfamethazineSulfamethizole		LEM.									Sulfamethoxazole	ACY.																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																								
Sulfamethoxypyridazine	HOF.										Sulfanilamide	LEM.										Sulfanitran	SAL.	MILLIE.									Sulfapyridine	ACY.	MRK.									Sulfapyridine, sodium	ACY.										Sulfaquinoxaline	MRK.										Sulfathiazole	ACY,	LEM,	MRK.								Sulfathiazole, sodium	ACY,	MRK.									Sulfisoxazole	HOF.					•					*Other anti-infective agents:	1										*Anthelmintic, antifungal, antiprotozoan, and											antiviral agents:											Anthelmintic agents: Cadium anthranilate	MAL.										Diethylcarbamazine citrate	ACY.										Gentian violet	1	SDH.									Hexylresorcinol		MRK.									Phenothiazine	CLV.	*******									Pyrvinium pamoate	x.										Thiabendazole	MRK.										Antifungal agents:											Benzoic acid1	MON,	PFZ.									Diamthazole hydrochloride	HOF.										Fuchsin, basic	NAC.										Salicylanilide ²	LEM.										Antiprotozoan agents: Aklomide	SAL.										Amprolium	MRK.										Chlorbetamide	SDW.										Nitrophenide	ACY.										Pyrimethamine	BUR.										Antiviral agent: Amantadine hydrochloride	x.										*Urinary antiseptics:											Ammonium benzoate	PEN.					:					Ammonium mandelate	RSA.										Calcium mandelate	MAL.										Ethoxazene hydrochloride	KON.										Mandelic acid	MAL.										Me thenamine	HN.										Methensmine hippurate	RIK.	T 170 f	MOD	DAG	miro						Methenamine mandelate			NEP,	PYL,	TNC.						Methylene bluePhenazopyridine hydrochloride		NAC.	MPD								*All other:	mor,	KON,	MEP.								Acriflavine	NAC.										Aminacrine	SDW.										Aminacrine hydrochloride	SDW.										Antileprotic and antitubercular agents:											Aminosalicylic acid	MIS.										Calcium aminosalicylate	MLS.										Dapsone	SDW.										Isoniazid	RIL.										Potassium aminosalicylate	MLS.										Pyrazinamide	MRK.										Sodium aminosalicylate	MLS.										Sodium sulfoxone	ABB.									${\it TABLE~13B.--Medicinal~chemicals~for~which~U.S.~production~or~sales~were~reported,~identified~by~manufacturer,~1966--Continued}$	Chemical	Manufacturers' identification codes (according to list in table 22)						---	--	--	--	--	--		*Anti-infective agents (except antibiotics)Continued *Other anti-infective agentsContinued	·						*All otherContinued	CDV.						Benzalkonium chloride Bromoform							Camphor, monobromated							Cetalkonium chloride	MAL, PEN.						Cetylpyridinium chloride	FIN, HEX, NEP.						Chloramine T	MON.						Chlorobutanol	BPC, PD.						Iodoform ²							Magnesium salicylate	MAL.						Nalidixic acid							Nitromide							Providone - iodine complex	GAF.						*Antineoplastic agents and local anesthetics:							Antineoplastic agents: Mercaptopurine	DID.						Urethane							Vinblastine sulfate							Vincristine sulfate	LIL.						Local anesthetics:	1 HID.						Butacaine sulfate	ABB.						Butamben picrate	ABB.						Butyl aminobenzoate (Butamben)	ABB.						Dibucaine	· CBP.						Dibucaine hydrochloride	CBP.						Ethyl aminobenzoate (Benzocaine)	ABB, LEM.						Isobutyl aminobenzoate	· 100.						*Lidocaine	1 == -, ==						Oxethazaine							Phenacaine hydrochloride	GAN, SDW.						Piperocaine hydrochloride Pramoxine hydrochloride	LIL.						Procaine	ABB.						Procaine hydrochloride							Proparacaine hydrochloride	OMS.						Propyl aminobenzoate	· ICO.						Pyrrocaine hydrochloride	EN.						Tetracaine							Tetracaine hydrochloride	ICO, RSA, SDW.						*Autonomic drugs:	To a						Ganglionic blocking agent: Hexemethonium chloride	RSA.						Parasympatholytic (anticholinergic) agents: *Quaternary ammonium compounds (except tropane							derivatives):							Ambutonium bromide	. 100.						Diphemanil methylsulfate	SCH.						Hexocyclium methylsulfate	ABB.						Isopropamide iodide	· I SK.						Mepenzolate bromide	· LKL.						Methantheline bromide	SRL.						Pipenzolate bromide							Pralidoxime chloride	CBP, NEP.						Propantheline bromide							Thihexinol methylbromide							Tridihexethyl iodide	ACY.						Tertiary amines (except tropane derivatives): Adiphenine hydrochloride	CBP.						Aminopentamide sulfate							Caramiphen edisylate	SK.						Dicyclomine hydrochloride							Ethopropazine							Orphenadrine citrate	RIK.						Orphenadrine hydrochloride	RIK.						Oxyphencyclimine hydrochloride	PFZ.						Piperidolate hydrochloride	LKL.						Thiphenamil hydrochloride	BJL, x.						Trihexyphenidyl hydrochloride	1					TABLE 13B.--Medicinal chemicals for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	Chemical	Manufacturers' identification codes (according to list in table 22)		--	---		*Autonomic drugsContinued	,		Parasympatholytic (anticholinergic) agentsContinued			Tropene derivatives:			Anisotropine methylbromide	x.		Panetropine mesulate	x.		Vemetroning	CTN, HEX.		Hometropine hydropromide	CTN.		*Homatropine methylbromide	CTN, EN, HEX.		Paragramosthomimetic (cholinergic) agents:			Agetylcholine chloride	MRK, RSA.		Methacholine chloride	MRK, RSA.		Noostigmine browide	HEX.		Physosticmine salicylate	PEN.		Pyridostigmine bromide	HOF.		Sympatholytic (antiadrenergic) agent: Ergonovine	LIL.					maleate *Sympathomimetic (adrenergic) agents:			*Adrenalone	SDW.		Cinnamedrine (Cinnamylephedrine)	SDW.		Cyclopentamine hydrochloride	LIL.		Cyclopentamine nydrochioride	SDW.		Epinephrine bitartrate (levo)	VB.		Epinephrine hydrochloride (racemic)	* D.		*Toomotemenol calts.	CAN STM		Isoproterenol hydrochloride	GAN, SDW.		Icoproterenol sulfate	ABB, GAN.		Inventeranol hitertrate	SDW.		dl Metanenhrine hydrochloride	SDW.		Motorominol bitartrate	SDW.		Mothorymhenemine hydrochloride	x.		Nonhagoline hydrochloride	CBP.		Nordofrin hydrochloride	SDW.		Mylidrin bydrochloride	x.		*Dhonyl anhring	CTN, GAN, SDW.		Phonylophnine hitertrete	GAN.		Phenylephrine hydrochloride	CTN, GAN, HEX, SDW.		*Phenylpropanolamine hydrochloride	BKL, GAN, ICO, NEP, ORT.		Propylhexedrine	HEX, SK.		Protokylol hydrochloride	LKL.		Pseudoephedrine hydrochloride	BUR, GAN.		Pseudoephedrine sulfate	GAN.		Tetrahydrozoline hydrochloride	PFZ.		Tetranydrozoffne nydrodnioride	1		*Cardiovascular agents:			*Cardiac drugs: Calcium camphorsulfonate	FIN, PYL.		Digitoxin	BUR.		Procainemide hydrochloride	LEM, OMS.		Procainamide hydrochioride	HEX.		Quinidine gluconate			Quinidine sulfate	HEX.		*Rauwolfia and veratrum alkaloids:	DEM DIV		Alkavervir	PEN, RIK.		Alseroxylon	RIK.		Deserpidine	PEN.		Reserpine	PEN.		Syrosingopine	CBP.		*Other cardiovascular agents:			Antihypertensive agents (except rauwolfia and veratrum			alkaloids):	CBP.		Hydralazine hydrochloride	MRK.		Methyldopa			Pargyline hydrochloride	ABB.		Bioflavonoids:	SVO		Hesperidin	SKG.		Hesperidin methyl chalcone	SKG.		Lemon bioflayonoid	SKG.		Noringin	SKG.		Rutin	PEN.		Vegedilators:			Diografine phognhete	LIL.		Tthri nitnita	MAL.		Clycomyl trinitrate	APD.			l .mm		Isosorbide dinitrate Mannitol hexanitrate	APD.	${\it TABLE~13B.--Medicinal~chemicals~for~which~U.S.~production~or~sales~were~reported,~identified~by~manufacturer,~1966--Continued}$	Chemical	Manufacturers' identification codes (according to list in table 22)																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																							
--	---		*Cardiovascular agentsContinued			*Other cardiovascular agentsContinued			VasodilatorsContinued			Nicotinyl alcohol tartrate	HOF.		Pentaerythritol tetranitrate	APD.		*Central depressants and stimulants:			*Amphetamines:			Amphetamine (racemic)	HEX, ORT.		Amphetamine hydrochloride (racemic)	ARN, HEX.		Amphetamine sulfate (racemic)	ARN, HEX.		Dextroamphetamine	HEX.		Dextroamphetamine carboxymethylcellulose	ARN.		Dextroamphetamine hydrochloride	ARN, HEX.		Dextroamphetamine phosphate	ARN, HEX.		*Dextroamphetamine sulfate	ARN, HEX, SK.		Dextroamphetamine tannate Levamphetamine succinate	ARN.		Levamphetamine succinate	Aruv.		*Methamphetamine base and hydrochloride: Methamphetamine (dextro)	HEX.		Methamphetamine (levo)	ABB.		Methamphetamine (racemic)	HEX.		Methamphetamine hydrochloride (dextro)	ABB, ARN, GAN, HEX.		Methamphetamine hydrochloride (racemic)	ARN, GAN, HEX.		*Anticonvulsants, hypnotics, and sedatives (except			barbiturates):			Anticonvulsants:			Aminoglutethimide	CBP.		Diphenylhydantoin	PD.		Diphenylhydantoin, sodium	PD.		Ethosuximide	PD.		Ethotoin Methsuximide	ABB.		Paramethadione	ABB.		Phenacemide	ABB.		Phensuximide	PD.		Trimethadione	ABB.		Hypnotics and sedatives:	1000		Carbromal	PD.		Ethchlorvynol	ABB.		Ethinamate	LIL.		Glutethimide	CBP.		Methyprylon	HOF.		*Antidepressants:			Amitriptyline	MRK.		Desipramine hydrochloride	GGY, LKL.		Imipramine hydrochloride	GGY.		Isocarboxazid	HOF.		Nialamide	PFZ.		NortriptylinePhenelzine sulfate	LIL.		*Barbiturates:	NEP.		5-Ally1-5-(2-cyclopenten-1-yl)barbituric acid	GAN.		Amobarbital	LIL.		Amobarbital, sodium	GAN, LIL.		Barbital	GAN.		Barbital, sodium	GAN.		Butabarbital	ABB, GAN.		*Butabarbital, sodium	ABB, BPC, GAN.		Butalbital	GAN.		Butalbital, sodium	GAN.		Butethal	GAN.		Cyclobarbital	SDW.		Cyclobarbital, calcium	SDW.		5-Ethyl-5-pentylbarbituric acid	BPC.		Hexobarbital codium	GAN, SDW.		Hexobarbital, sodium	SDW.		Metharbital	SDW. ABB.		Methohexital, sodium	LIL.		WE MINIETT AT ' BONT MINISTER AND A STATE OF THE PROPERTY T	ABB, GAN.					PentobarbitalPentobarbital, sodium	ABB, BPC, GAN.	TABLE 13B.--Medicinal chemicals for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	Chemical	Manufacturers' identification codes (according to list in table 22)		--	--		*Central depressants and stimulantsContinued			*BarbituratesContinued	CAN MAT STAN		*Phenobarbital, sodium	GAN, MAL, SDW.		Secobarbital	GAN, LIL.		Secobarbital, sodium Talbutal	SDW.		TalbutalThiamylal, sodium	PD.		Thiopental, sodiumThiopental, sodium	ABB.		[[] = b = b d = 0	x.		*Hydrocodone bitartrate	EN, MAL, MRK.		v C-242 -+- c-	, ,		Aliminum osninin	ABB, PYL, SCH.		v A i i	CFC, DOW, MLS, MON, NOR, SDG.		Ether colicylete corbonate	PD.		Dhamel coliaviate	DOW, MAL.		Detection colicylete	HN, PEN.		Salicylamide	CFC, x.		Salicylsalicylic acid Sodium salicylate	TNC. DOW, HN.		Sodium salicylateStrontium salicylate	TNC.		*Skeletal muscle relaxants:			Configuration and a second sec	X.		Chlombenesin carbamate	X.		(h) ongoverone	OTC.		Manhanagin	HEX, OMS.		Phonoglygodol	LIL.		Cternomoto	ARP.		Succinglaboline chloride	ABB, BUR, SDW.		Tubocurarine	ABB, OMS.		*Tranquilizers:	אקת דעת מתא		*Meprobamate	ABB, BKL, PEN.		*Phenothiazine derivatives:	WYT.		Carphenazine maleate	SK.		Chlorpromazine hydrochloride	OMS, SCH.		Mepazine hydrochloride	NEP.		Perphenazine	SCH.		Deschlompensgine malestères	SK.		Promogine hydrochloride	WYT.		Promotherine hydrochloride	WYT.		Twiflyoperagine hydrochloride	SK.		Triflupromazine hydrochloride	OMS.		*Other tranquilizers:			Argeral and hydrochloride	BKC.		Prolicing hydrochloride	PFZ.		Chlordiazepoxide hydrochloride	HOF.		Chlormezanone	SDW.		ChlorprothixeneDiazepam	HOF.		DiazepamEthomoxane hydrochloride	LIL.		Illude around on ometa	ARA, ARP.		Underwreine hydnochloride	PFZ.		Undergrafine namonth	PFZ.		Make to another the second and s	1 X.		Noth equal one	HEX, x.		Methoguelone hydrochloride	I BPC.		(Y 0.7.27) AM	WIT.		Tvbamate	PEN, x.		*Other central depressants and stimulants:			Analgesics and antipyretics (except salicylates):	AMD MED *		AcetaminophenAcetamilide	ATP, MLS, NEP, x.		Acetanilide	oin.		p-Aminobenzoic acid and salts: Aminobenzoic acid	LEM.		Coloium eminobengoste	GAN. LEM.		Magnesium aminobenzoate	LEM.		Poteggium eminohenzoate	CAN. LEM.		Codium aminahangasta	GAN. LLM.		test and dine bydroubloride	MRK.		A.mothical110000	I SCH.					Calcium succinate	LIEM.		Chemical	Manufacturers' identification codes (according to list in table 22)					--	---	--	--	--		*Central depressants and stimulantsContinued						*Other central depressants and stimulantsContinued						Analgesics and antipyretics (except						salicylates)Continued						Ethoheptazine citrate	WYT.					Indomethacin	MRK.					Meperidine hydrochloride	SDW, WYT.					Oxycodone hydrochloride	EN.					Oxymorphone hydrochloride	EN.					Oxyphenbutazone	GGY.					Pentazocine	SDW.					Phenacetin																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																														
MON.					Phenylbutazone	GGY.					Phenyramidol hydrochloride	OTC.					Propoxyphene hydrochloride	LIL.					Propoxyphene napsylate							LIL.					Anesthetics:	CTM					Tribromoethanol	SDW.					Vinyl ether	MRK.					Antitussives:						Benzonatate	CBP.					Carbetapentane citrate	PFZ.					Dextromethorphan hydrobromide	HOF.					Dimethoxanate hydrochloride	х.					Ethylmorphine hydrochloride	MAL, MRK, PEN.					Stimulants:						Benzphetamine hydrochloride	x.					Caffeine:						Natural	GNF, MYW.					Synthetic	PFZ.					Caffeine, citrated	MAL, MRK.					Caffeine sodium benzoate	MAL.					Chlorphentermine hydrochloride	NEP.					Diethylpropion hydrochloride	BKC, x.					Nikethemide	CBP, PYL.					Phendimetrazine	x.					Phenmetrazine hydrochloride	GGY.					Phentermine	HEX.					*Dermatological agents:						*Allantoin	CTN, FIN, HFT.					Aluminum phenolsulfonate	MAL.					Ammonium phenoisulfonate	SAL.					*Bismuth subgallate	BKC, MAL, PEN.					Dipropylene glycol salicylate	SBC.					Glycol salicylate	RDA.					Homomenthyl salicylate	ICO.					Momomentnyi salicyiate						Menthyl salicylate	CFC.					p-Methoxycinnamic acid, 2-ethoxyethyl ester	GIV.					Podophyllum resin	ABB, PEN.					*Salicylic acid1	DOW, HN, MON, SDH.					Scarlet red	NAC.					Sodium phenolsulfonate	MAL, SAL.					Zinc phenolsulfonate	MAL.					*Expectorants and mucolytic agents:						Ethylenediamine dihydriodide	CLV, PYL, WHL.					*Guaiacol and its derivatives:						Glyceryl guaiacolate	BKL, GAN, ICO, x.					Guaiacol	MON.					Potassium guaiacolsulfonate	HN.					Iodinated glycerol	x, x.					Iodobrassid	CBP.					Lobeline sulfate	ABB.					Terpin hydrate	LEM, PEN.					Thonzonium bromide	NEP.											*Costrointestinel egents·												*Choleretics and hydrocholeretics:	SRI. WII.					Bile acids, oxidized	SRL, WIL.					*Choleretics and hydrocholeretics:	SRL, WIL. WIL. SRL.				TABLE 13B.--Medicinal chemicals for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	Chemical			Manufacturers (according				--	------	--------------	-----------------------------	--	---		*Gastrointestinal agentsContinued							*Choleretics and hydrocholereticsContinued							Ox bile extract	ABB.						Sodium dehydrocholate	WIL.						Tocamphy1	x.						*Choline salts: Choline bicarbonate	COM						Choline bitartrate	COML	HFT.					*Choline chloride (all grades):	HOI,						Feed grade	COM.	DLI.	HFT, TMH.				Medicinal grade	HFT.	•	•				Technical grade	GAF,	RH.					Choline citrate (Tricholine citrate)		HFT.					Choline dihydrogen citrate	ACY,	HFT.					*Methionine and its hydroxy analogue:	DOM						Methionine (feed grade)	DOM.	TEM					Methionine (medicinal grade)	1	LEM.					Methionine, hydroxy analogue, calcium salt	DOF,	MON.					*Other gastrointestinal agents: Betaine base	חשת	MAL.					Betaine hydrate	HFT.	merri.					Betaine hydrochloride	1	TNC.					Calcium polycarbophil	WLI.	2					Dihydroxy aluminum aminoacetate	CHT.						Magnesium citrate	MAL.						Pectin	SKC.						Phenolphthalein	MON.						Phenolphthalein, vellow	WLI.						Polycarbophil	WLI.						Sitosterols	UPJ.						Sodium tartrate	MAL.		•				*Hormones and synthetic substitutes:							*Antithyroid agents: Methimazol	LIL.						Propylthiouracil	PYL.						Thiouracil	ACY.						*Estrogens:	1						Chlorotrianisene	BKC.						Dienestrol diacetate	SCH.						Diethylstilbestrol		, LIL.					Diethylstilbestrol dipropionate	CTN.						Natural estrogenic substances Piperazine estrone sulfate	ORG.						*Prednisone	1	SCH,	IIPJ.		e		*Synthetic hypoglycemic agents:		, 2011,	0.00				Acetohexamide	LIL.	,					Chlorpropamide	PFZ.	,					Phenformin hydrochloride	x.						Tolazamide	x.						Tolbutamide	HST,	х.					*Other hormones and synthetic substitutes:	l						Androgen: Fluoxymesterone	UPJ.	•					Corticosteroids:	COTT						Betamethasone acetate	SCH.						Betamethasone acetate Betamethasone phosphate	SCH.						Cortisone acetate	4		UPJ.				Dexamethasone		SCH.					Dexamethasone acetate	SCH.						Dexame thas one phosphate	MRK.						Dichlorisone acetate	SCH.						Fludrocortisone acetate	UPJ.						Fluorometholone	UPJ.						Flunrednisolone	UPJ.				*		Hydrocorti sone		UPJ.					Hydrocortisone acetate		, UPJ.					Hydrocortisone phosphate	MRK.								_					Methylprednisolone	UPJ.						Methylprednisolone Prednisolone Prednisolone acetate	MRK,	UPJ. UPJ.				${\it TABLE~13B.--Medicinal~chemicals~for~which~U.S.~production~or~sales~were~reported,~identified~by~manufacturer,~1966--Continued}$	Chemical	Manufacturers' identification codes (according to list in table 22)					--	---	--	--	--		*Hormones and synthetic substitutesContinued						*Other hormones and synthetic substitutesContinued						Progestogens:						Medroxyprogesterone acetate	x.					Progesterone	x.					All other:						Corticotropin (ACTH) (pituitary)						Insulin (pancreas)	ARP, LIL.					*Renal-acting and edema-reducing agents:						*Mercurial diuretics:	TVT					Meralluride Mersalyl acid						Sodium mercaptomerin						Sodium mercaptomerinSodium mercaptomerin	FIN.					*Theobromine and theophylline derivatives:	2.440					Ambuphylline	GAN.					*Aminophylline						Aminophylline sodium biphosphate	GAN.					Oxtriphylline	NEP.					Theobromine sodium acetate	MAL.					Theobromine sodium salicylate	CLC.					Theophylline magnesium	MAL.					Theophylline monoethanolamine	LIL.					Theophylline piperazine ethanoate	SEL.					Theophylline sodium glycinate	CHT.					*Other renal-acting and edema-reducing agents: Acetazolamide	- ACY.					Benzothiadiazine derivatives:	ACT.					Benzthiazide	PFZ.					Chlorothiazide						Flumethiazide						Hydrochlorothiazide						Hydroflumethiazide						Methyclothiazide						Polythiazide						Trichlormethiazide						Chlorthalidone						Dichlorphenamide						Probenecid						Spironolactone						Triamterene	SK.					*Therapeutic nutrients:						*Amino acids and salts: Acetyltryptophane	- SDW.					Aminoacetic acid (glycine) ²	BPC, DOW.					Amino acid mixtures	ABB, CUT, STA.					Arginine glutamate	- ABB.					Aspartic acid and salts:	ADD.					Aspartic acid	HEX, NAC.					Magnesium aspartate	- WYT.					Potassium aspartate	- WYT.					Beta-alanine	- BFG, NOP.					Glutamic acid and salts:						Ammonium glutemate						Calcium glutamate	· · · · · · · · · · · · · · · · · · ·					*Glutamic acid	- IMC, LEM, PFZ.					Glutamic acid hydrochloride						*Potassium glutamate Lysine (feed grade)						Lysine hydrochloride						Phenylalanine						d-Threonine						Tryptophane						*Calcium gluconate						*Other therapeutic nutrients:	,,					Calcium glucoheptonate	- PFN.					Calcium lactophosphate	- MAL.					Calcium levulinate						Calcium phytate											TABLE 13B.--Medicinal chemicals for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	Chemical	Manufacturers' identification codes (according to list in table 22)				---	---	--	--		Therapeutic nutrientsContinued					*Other therapeutic nutrientsContinued					Ferrous gluconate	PFZ, SDW.				Fructose	DLI, PFN.				Iecithin	l . *				Lecithin	ARP.				Liver concentrate	WIL.				Liver, desiccated	WIL.				Magnesium gluconate	PFZ.				Manganese gluconate	PFZ.				Potassium gluconate	PFZ.				Sodium glycerophosphate	SEL.				Vitamins:					*Vitamin A alcohol and esters:	•				Vitamin A acetate (feed grade)	HOF.				Vitamin A acetate (medicinal grade)	HOF, PFZ.				Vitamin A alcohol	CW, HOF.				Vitamin A natural esters	l cw.				*Vitamin A palmitate (feed grade)	EK, HOF, PFZ.				Vitamin A palmitate (medicinal grade)	EK, HOF, PFZ.					In, nor, 112.				*Vitamin B-complex: *Cyanocobalamin (except U.S.P. crystalline):					Feed grade	GPR, MRK, PMP.				Medicinal grade	I 1 1					IMC, MRK.				*Niacin: Feed grade	ADD OUT MOV NED DIT				Medicinal grade	ABB, CKL, MRK, NEP, RIL.				Medicinal grade	MRK, NOP, RIL, SCR.				*Niacinamide	MRK, NEP, PD, RIL, SCR.				*Pantothenic acid and derivatives:	100V				Calcium pantothenate (dextro)																																																																																																																																																																																																																																																																																																																																																																
MRK, x.				*Calcium pantothenate (racemic) (feed grade)	CKL, DLI, HFT, NOP.				Calcium pantothenate (racemic) (medicinal grade)	NOP.				Calcium pantothenate (racemic) - calcium	CKL, HFT, NOP.				chloride complex.					Dexpanthenol	HOF.				Panthenol (racemic)	HOF.				Sodium pantothenate	PD.				*Riboflavin:					Feed grade	COM, GPR, HOF, MRK, PMP.				Medicinal grade	HOF, MRK.				*Other B-complex vitamins:					Biotin	HOF.				Cyanocobalamin (U.S.P. crystalline)	MRK.				Cyanocobalamin with intrinsic factor concentrate	WIL.				Folic acid	ACY.				Inositol					Most tol	STA.				Magnesium nicotinate	NEP.				Niacinamide hydrochloride	NEP.				Pyridoxine	HOF, MRK.				Riboflavin-5-phosphate, sodium	HOF.				Sodium nicotinate	NEP.				Thiamine hydrochloride	HOF, MRK.				Thiamine mononitrate	HOF, MRK.				*Vitemin C:					*Ascorbic acid	HOF, MRK, PFZ.				Ascorbyl palmitate	PFZ.				Calcium ascorbate	PFZ.				Sodium ascorbate	HOF, MRK, PFZ.				*Vitemin E:	· ·				d-Alpha tocopherol	CW, EK.				dl-Alpha tocopherol	HOF.				d-Alpha tocopheryl acetate	CW, EK.				dl-Alpha tocopheryl acetate (feed grade)	HOF.				dl-Alpha tocopheryl acetate (reed grade)dl-Alpha tocopheryl acetate (medicinal grade)	HOF.				d-Alpha tocopheryl acid succinate					dl Alpha tocopheryl acid succinate	CW, EK.				dl-Alpha tocopheryl acid succinate	HOF.				*Vitamin K:					11					Menadione Menadione sodium bisulfite	ABB, HET, HFT, WHL.			## ${\tt TABLE~13B.--Medicinal~chemicals~for~which~U.S.~production~or~sales~were~reported,~identified~by~manufacturer,~1966--Continued}$	Chemical	Manufacturers' identification codes (according to list in table 22)		---	---		*VitaminsContinued			*Other vitemins:			Beta-carotene (Provitamin A)	EK, HOF.		Cholecalciferol (Vitamin D ₃)			Ergocalciferol (Vitamin D2)	DLI, SCR.		*Miscellaneous medicinal chemicals:			Diagnostic agents:			Roentgenographic contrast media:			Acetrizoate, sodium	MAL.		Diatrizoate, meglumine			Diatrizoate, sodium			Diprotrizoate, sodium			Iodihippurate, sodium	MAL.		Iodopyracet	SDW.		Iopanoic acid			Iophendylate			Iothalamate, meglumine	MAL.		Iothalamate, sodium	MAL.		Methiodal, sodium			Other diagnostic agents:			Galactose (liver function test)	PFN.		Indocyanine green (cardiac output test)	. x.		Metyrapone (pituitary function test)	CBP.		Hematological agents (except anticoagulants):			Aminocaproic acid	ACY.		Cellulose, oxidized	EKT.		Dextran (plasma expander)			Smooth muscle relaxants:			Alverine	CTN.		Alverine citrate	- CTN.		Alverine hydrochloride	· CTN.		Papaverine hydrochloride	· LIL.		Sodium benzyl succinate	- LEM.		Unclassified medicinal chemicals:			Berberine hydrochloride	ABB, PEN.		Hydrastine	PEN.		Hydrastine hydrochloride	PEN.		Penicillamine (copper chelating agent)	- MRK.	$^{^{1}}$ See table 7B for producers of the technical grade. 2 See table 21B for producers of the technical grade. ### Flavor and Perfume Materials TABLE 14B. -- Flavor and perfume materials for which U.S. production or sales were reported, identified by manufacturer, 1966 [Flavor and perfume materials for which separate statistics are given in table 14A are marked below with an asterisk (*); those not so marked do not appear in table 14A because the reported data are accepted in confidence and may not be published. Manufacturers' identification codes shown below are taken from table 22. An x signifies that the manufacturer did not consent to his identification with the designated product]	Material	Manufacturers' identification codes (according to list in table 22)		--	--		FLAVOR AND PERFUME MATERIALS, CYCLIC			Benzenoid and Naphthalenoid			2'-Acetonaphthone (Methyl \beta-naphthyl ketone)Acetophenone	GIV, TBK.		7-Acetyl-6-ethyl-1,1,4,4-tetramethyl-1,2,3,4-tetra- hydronaphthalene.	GIV, TBK.		p-Allylanisole	GIV. FB, GIV, ICO, IFF, LUE, NEO, PEN, RT, TBK, UNG, VLY.		Allyl phenoxyacetate	GIV. GIV, TBK.		*Anethole (p-Propenylanisole)	ARZ, FB, GLD, HNW, HPC.		*n-Anisaldehyde (p-Methoxybenzaldehyde)	GIV, OPC, SHL, TBK, UNG.		Anisole (Methyl phenyl ether)	GIV.		Anisyl acetate	GIV, TBK.		Anisyl alcohol	GIV, TBK.		*Benzophenone	GAF, GIV, ICO, NEO, TBK.		*Benzyl acetate	GIV, IFF, OPC, SHL, TBK.		*Benzyl alcohol Benzyl benzoate	BPC, OPC, SHL, TBK, VEL.		*Benzyl butyrate	MON, OPC, TBK, VEL. FB, GIV, TBK.		*Benzyl cinnamate	FB, GIV, ICO, TBK.		*Benzyl ether	OPC, SHL, VEL.		Renzyl formate	GIV, TBK.		Benzyl glyceryl acetal	GIV.		Renzul isobuturate	TBK.		Benzyl isopentyl ether	GIV.		1-(Benzyloxy)-2-methoxy-4-propenylbenzene (Benzyl isoeugenyl ether).	GIV, TBK.		*Benzyl phenylacetate (Benzyl \alpha-toluate)	GIV, MYW, TBK.		*Benzyl propionate *Benzyl salicylate	FB, GIV, TBK. GIV, OPC, TBK, UNG.		α-Bromostyrene	TBK.		4'-tert-Butyl-2',6'-dimethyl-3',5'-dimitroaceto-	GIV.		phenone (Musk ketone).			6-tert-Butyl-3-methyl-2.4-dinitroanisole (Musk ambrette)	GIV.		p-tert-Butyl-α-methylhydrocinnamaldehyde (α-Methyl-	GIV.		β-(p-tert-butylphenyl)propionaldehyde).	arv.		5-tert-Butyl-1,2,3-trimethyl-4,6-dinitrobenzene (5-tert-	GIV.		Butyl-4,6-dinitrohemimellitene). 5-tert-Butyl-2,4,6-trinitro-m-xylene (Musk xylol)	GIV.		Carvacrol (2-p-Cymenol)	GIV.		*Cinnemeldehyde	FB, OPC, TBK.		Cinnemic ecid	BPC.		*Cinnemy] ecetate	FB, GIV, TBK.		*Cinnemy1 elcohol	FB, GIV, NEO, TBK.		Cinnemy enthrenilate	FEL, RT.		Cinnemyl cinnemete	TBK.		Cinnamyl formate	TBK.		Cinnamyl isovalerate	TBK.		Cinnamyl propionate trans-Decahydro-2-naphthol	GIV, TBK.		trans-Decahydro-2-naphthol	GIV.		p,α-Dimethylbenzyl alcohol (p-Methylphenylmethyl-	GIV.		Dimethylhydrogui none	ICO.		α α-Dimethylphenethyl acetate (DMBCA)	GIV, IFF, RDA.		α α-Dimethylphenethyl alcohol (DMBC)	GIV, IFF.		4.6-Dinitro-1.1.3.3.5-pentamethylindane	GIV.		Diphenylmethane	ARA, TBK.		1,3-Diphenyl-2-propanone (Dibenzyl ketone)	GIV. SHL.	${\it TABLE~14B. --Flavor~and~perfume~materials~for~which~U.S.~production~or~sales~were~reported,~identified~by~manufacturer,~1966--Continued}$	Material	Manufacturers' identification codes (according to list in table 22)		--	--		FLAVOR AND PERFUME MATERIALS, CYCLICContinued			Benzenoid and NaphthalenoidContinued			2-Ethoxynaphthalene (Ethyl β-naphthyl ether)	GIV, ICO, TBK.		Ethyl anthranilate	FB.		Ethyl benzoateEthyl cinnamate	TBK.		Ethyl α,β-epoxy-β-methylhydrocinnamate (Ethyl	GIV, TBK.		methylphenylglycidate). Ethyl eugenol	100.		2-Ethylhexyl salicylate	100.		Ethyl phenylacetate	GIV.		Ethyl 3-phenylglycidate	GIV, TBK.		Ethyl salicylate	FB, TBK.		EthylvanillinEthylvanillin	MON, RDA.		Eugenol acetate	GIV.		α-Hexylcinnamaldehyde	GIV, IFF, TBK.		Hydratropaldehyde (α-Phenylpropionaldehyde)	GIV, IFF.		Hydroxycitronellal methyl anthranilate	GIV.		2-Hydroxypropyl p-N, N-bis(2-hydroxypropyl)amino-	SHL.		benzoate.			Isobutyl cinnamate	TBK.		Isobutyl phenylacetate (Isobutyl α-toluate)	FB, GIV, OPC, TBK.		Isobutyl salicylate	FB, GIV, TBK.		Isoeugenyl acetate	TBK.		Isopentyl salicylate (Isoamyl salicylate)	FB, GIV, OPC, TBK.		p-Isopropylbenzaldehyde (Cumaldehyde)p-Isopropylcyclohexanol	GIV.		p-Isopropyl-a-methylhydrocinnamaldehyde (Cyclamen	GIV, RDA.		aldehyde).			p-Isopropyl-α-methylhydrocinnamyl alcohol	GIV.		4'-Methoxyacetophenone	GIV, ICO, OPC, TBK.		2-Methoxynaphthalene (Methyl β-naphthyl ether)	GIV, TBK.		Methoxyphenyl butanone	TBK.		1-(p-Methoxyphenyl)-1-pentene-3-one2-Methoxy-4-propenylphenol (Isoeugenol)	GIV. GIV, SHL, TBK, VLY.		4'-Methylacetophenone (Methyl p-tolyl ketone)	OPC, TBK.		Methyl anisate	ICO.		p-Methylanisole (p-Cresyl methyl ether)	GIV, TBK, VLY.		Methyl anthranilate	DOW, FB, GIV, MEE, OPC, SHL, UNG.		Methylanthanilydene p-isopropyl methylhydrocinnamal-	RDA.		dehyde. Methyl benzoate	HN.		Methyl benzoateα	GIV, TBK, VLY.		n-Methylbenzyl acetate	IFF.		w_Methylbengyl Alcohol	UCC.			FB, GIV, TBK, VLY.		Methyl cinnamate	FB, ICO, TBK.		Methyl eugenol	100.		p-Methyl hydratropic aldehyde Methyl N-methylanthranilate (Dimethyl anthranilate)	GIV. OPC.		Methyl phenylacetate (Methyl α-toluate)	GIV, TBK.		2-Methyl-4-phenyl-2-butanol(\alpha,\alpha-Dimethyl-3-phenyl-	IFF.		1-propanol).			Methyl salicylate (Synthetic wintergreen oil)	CFC, DOW, HN, MON, PEN.		α-Pentylcinnamaldehyde (α-Amylcinnamaldehyde)	FB, GIV, IFF, NEO, RDA, TBK, VLY.		Phenethyl acetate	GIV, IFF.		Phenethyl alcohol	GIV, IFF, OPC.		Phenethyl formate	IFF, TBK. GIV, IFF, TBK.		Phenethyl isovalerate	FB, GIV.		Phenethyl phenylacetate (Phenethyl a-toluate)	FB, GIV, IFF, TBK.		Phenethyl propionate	GIV, IFF, TBK.		Phenethyl salicylate	GIV, TBK.		2-Phenoxyethyl isobutyrate	GIV, IFF, TBK.		Phenylacetaldehyde (a-Tolualdehyde)	GIV, TBK.		Phenylacetaldehyde, dimethyl acetal	GIV, TBK.		o-Phenylanisole (2-Methoxybiphenyl)																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																														
GIV.		4-Phenyl-3-buten-2-one (Benzylidene acetone)	FB, TBK,	TABLE 14B. --Flavor and perfume materials for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	Material	Manufacturers' identification codes (according to list in table 22)		--	--		FLAVOR AND PERFUME MATERIALS, CYCLIC Continued			Benzenoid and NaphthalenoidContinued			Phenylethyl tiglate	FB.		*3_Phenyl-1-propanol (Hydrocinnamic alcohol)	FB, GIV, TBK.		2 Phored -1-proped acetate (Hydrocinnamy) acetate)	FB, GIV, TBK.		The array among a innomate	FB. GIV, ICO, TBK.		#4-Propenylveratrole (Isoeugenyl methyl ether) p-Propylanisole	GIV.		n Tolueldehyde (n_Methylhenzaldehyde)	GIV, HN.		- Polyglocotoldobydo	GIV.		Tolyl scetate (p-Cresyl acetate)	GIV, ICO, IFF, TBK.		p-Tolyl isobutyrate (p-Cresyl isobutyrate) p-Tolyl phenylacetate (p-Cresyl \alpha-toluate)	GIV.		** (Trichloromethyl)henzyl acetate (HOSetone)	ICO, NEO, TBK.		Trimethylphenethyl alcohol	IFF.		Trimethyltetrahydrohenzylidene acetone	TBK.		VanillinAll other	MON, SLV. FB, GIV, IFF, PFW, SHL.		All other	,,		Terpenoid, Heterocyclic, and Alicyclic				atu.		Allyl cyclohexyl propionateAllyl ionone	GIV.		p-tert-Amylcyclohexanone	IFF.		A	GIV.		Demark contate	FEL.		/ topt Putylavalohevenole	IFF.		4-tert-Butylcyclohexanone	DOW, IFF.		A-31	FB.		(0	FB, FRM, OPC.		2 Commonbar long.	FB, GIV.		cedarwood acetate	FB.		(odespo)	GIV.		Today of the second sec	GIV, IFF, OPC, TBK.		/*Cedryl acetate	GIV, IFF, NEO, TBK, UNG. FB, FEL, GIV, HOF, LUE, NEO, RT, TBK.		*Citral dimethyl acetal	GIV.		(/	FB, GIV, IFF, TBK.		**************************************	FB, GIV, GLD, IFF, NEO, TBK, VLY.		*Citronelly1 acetate	GIV, IFF, TBK, VLY.		*/// thomas 1 mg farmete	(GIV, IFF, IDA, VIII.		Citronollyl icomityrate	GIV, IDA.		01417-7 every set of deby/de	1 F F •		Citronelly1 propionate	IFF.		A-alchomilaralchevenone	· IGIV.		Gral ment anone	AKA.		Dihydroterpinyl acetate	· GIV.		*Forential oils chemically modified:			Acetyl cedrene	GIV, IFF.		Clara last all termenes	· Jone.		Pthyl ownhydroto	· (FELL, FILO, HOLL, VILO)		A	· PB. GIV, IDA.		Townsin englyleted	· FEL, GIV, UNG.		Oil clove stem, acetylated	- IGTA* TLL* ATT*		Secretors oil hydrogeneted	- GIV.		~ Bymfymal marcantan	ni.		*//owenial	FB, FEL, GIV, GID, III, KEO, IDI, CKG, III		Geranoxy acetaldehyde	- IFF. - FEL, GIV, IFF, NEO, TBK, VLY.		*Geranyl acetate	- GIV.		Ceremy henzoste			Company hutamate	- IGIV, IDA.		Geranyl butyrate	- IGIV, IDA.	TABLE 14B. -- Flavor and perfume materials for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	Material	Manufacturers' identification codes (according to list in table 22)		---	---		FLAVOR AND PERFUME MATERIALS, CYCLICContinued			Terpenoid, Heterocyclic, and AlicyclicContinued			Geranyl isovalerate	FB. GIV, TBK.		Geranyl phenylacetate (Geranyl & Foliate)	FB.		Hexadecanolide	IFF.		2-Hexyl-2-cyclopenten-1-one	IFF.		Hydrocoumarin (3,4-Dihydrocoumarin)	GIV, TBK.		Hydroxycitronellal	GIV, GLD, IFF, OPC, TBK, VLY.		*Hydroxycitronellal, dimethyl acetal	FB, GIV, IFF, TBK.		2-Hydroxy-3-methyl-2-cyclopenten-1-one (Methyl cyclopentenolone).	DOW.		4-(4-Hydroxy-4-methylpentyl)-3-cyclohexene-1-	IFF.		2 Wrdneyr 2 methyl-4-pyrone (Maltol)	DOW, PFZ.		Indole	GIV, LUE.		*Ionones:	CITY THE NOW NEO THE		*Tonones:	GIV, IFF, MYW, NEO, TBK.		G Tanana	HOF, MYW, TBK.		Tanana (a and B)	GIV, LUE, MYW, TBK, UNG.		Techamool (Techamul alcohol)	RDA.		*Icohomyl costate	FB, GIV, OPC, RDA, TBK, UNG.		Icohomyl methoxycyclohexanol	IFF.		2 Toobutylouinoline (a-Tsobutylouinoline)	IFF.		T	GIV, TBK.		6-Isopropylquinoline (p-Isopropylquinoline)	FMT.			GIV.		Isosafrole	GIV.		Laevo carveol	FB.		d-Limonene	FB, FEL, GIV, GLD, HOF, LUE, SHL, TBK, UNG, VLY.		Linalool (Linalyl alcohol)			Linalyl acetate	FB, GIV, GLD, HOF, LUE, NEO, SHL, UNG.		Linalyl anthranilate	FMT.		Linalyl isobutyrate	HOF, TBK.		Linalyl propionate	FB, GIV, HOF.		Menthadiene-7-carbinol 1, 1-p-Menthen-6-yl-1-propanone	GIV.		1,1-p-Menthen-6-y1-1-propanone	ui.		*Menthol, synthetic:	GIV, ICO, NEO.		U.S. P	GIV, GLD, HNW, NEO.		V1/	GIV. HNW. NEO. OPC.		1/	FB. GIV.		6-Methylcoumarin	GÍÝ.		ulf-th-ulf amamons			6 Mother - and onone	GIV, IFF, MYW.		6 Notherl - R - 1 00000	INEO. TBK.		Matheritaness (A. and A.)	· IGIV. LUE. MIW. IBK.		\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-	· IIBA.		/_Wethyl_2_(2'-methyl-1-propan-1-yl)-tetrahydropyran	· GIV.		*Nono1	· PD. GLD. IFF, IDA, VLI.		Neryl acetate prime	GIV.		Nopyl acetate	SHL, VLY.		Omega decenol (Rosalva)	IFF.		α-Phellandrene	ICO. GIV, SHL, TBK.		*Piperonal (Heliotropin)	SHL.		Piperonal, sodium bisulfite complex	SHL.		Piperonal terpenes	IFF.		Pseudolinalyl acetate (Myrcenyl acetate, principally) *Rhodinol	FB, FEL, GIV, IFF, LUE, NEO, SHL.		*Rhodinol	FB, GIV, IFF.		Safrole	GIV, OPC.					*Sweeteners, synthetic: Cyclohexanesulfamic acid	- ABB.		Cyclonexanesulfamic acid, calcium salt	ABB, CYC, DRW, MON, NRS, PBY, PFZ, UNS.		Cyclohexanesulfamic acid, sodium salt	ABB, DRW, MON, NRS, PBY, PFZ, UNS.		Saccharin	MEE, MON, NRS.		Saccharin, calcium salt	MEE, MON, NRS, PBY.		Saccharin, sodium salt	MEE, MON, NRS.		All othèr	GIV.		TIT OMET	•	TABLE 14B. -- Flavor and perfume materials for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	Material	Manufacturers' identification codes (according to list in table 22)		--	---		FLAVOR AND PERFUME MATERIALS, CYCLIC Continued			Terpenoid, Heterocyclic, and AlicyclicContinued			*Terpineols:			α-Terpineol	GLD, HPC.		β-Terpineol	HNW.		Terpineol (α - and β -)			Terpinol hydrate (Terpin hydrate), tech	HPC.		*α-Terpinyl acetate α-Terpinyl propionate	GIV, NEO, RDA, TBK, UNG.		Tetrahydro alloocimenol	GIV, TBK.		Tetramethylethylacetyltetralin	TBK.		3,5,5-Trimethylcyclohexanol	ICO.		Vétivenol	GIV, TBK.		*Vetivenyl acetate	FB, GIV, IFF, NEO, TBK.		All other	FB, IFF.		FLAVOR AND PERFUME MATERIALS, ACYCLIC			Acetyl propionyl	FB.		Allyl heptanoate (Allyl enanthate)	TBK.		Allyl hexanoate (Allyl caproate)	FB, GIV, UNG.		Allyl isothiocyanate (Synthetic mustard oil)	MRT.		Allyl mercaptanAllyl sulfide (Diallyl sulfide)	RT.		Amyl propionate	RT. GIV.		Brazinol	RDA.		Butyl butyrate	TBK.		Butyl butyryl lactate	ICO.		Butyl isovalerate	TBK.		Butyl undecylenate	GIV.		Decanal (Capraldehyde) (C10)	GIV, IFF, OPC, TBK.		Diethyl succinate	FEL, TBK.		2,6-Dimethyl-5-hepten-1-al	GIV.		3,6-Dimethyl-3-octanol	CUC.		3,7-Dimethyl-l-octanol	GIV, VLY.		3,7-Dimethyl-3-octanol	GIV.		Dimethyl succinate Dodecyl acetate (Lauryl acetate)	ICO.		Ethylamyl ketone	TBK. GIV.		Ethyl butyrate	FB, NW, RT, TBK.		Ethyl caprate	FB.		Ethyl decanoate	TBK.		Ethylene brassylate	VLY.		Ethylene glycol tridecandiote Ethyl formate	RDA.		Ethyl heptanoate (Ethyl enanthate)	FB. FEL, RT, TBK.																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																															
Ethyl hexanoate (Ethyl caproate)	FB, NW, TBK.		Ethyl isovalerate	FB.		Ethyl laurate	FB, TBK.		Ethyl myristate	GIV, RT.		Ethyl nonanoate (Ethyl pelargonate)Ethyl octanoate (Ethyl caprylate)			Ethyl propionate	FB, TBK. FB.		Glutamic acid, monosodium salt (Monosodium glutamate)	COM, GRW, IMC, MRK.		Heptanal (Enanthaldehyde) (C7)	BAC.		4-Heptanone (Butyrone) (Di-n-propyl ketone)	TBK.		Heptyl alcohol (1-Heptanol)	BAC, UCC.		2-Hexenal	TBK. GIV.		cis-3-Hexen-1-01			Hexyl octanoate (Hexyl caprylate)	TBK.		cis-3-Hexyn-1-01	x.		3-Hydroxy-2-butanone (Acetoin)			4-Hydroxynonanoic acid, γ-lactone (γ-Nonalactone)	GIV, TBK		4-Hydroxyoctanoic acid, γ-lactone (γ-Octalactone) 4-Hydroxyundecanoic acid, γ-lactone (γ-Undecalactone)	GIV, TBK.		Isosmyl propionate	FB, GIV, TBK.				TABLE 14B. --Flavor and perfume materials for which U.S. production or sales were reported, identified by manufacturer, 1966 --Continued	Material	Manufacturers' identification codes (according to list in table 22)		--	--		FLAVOR AND PERFUME MATERIALS, ACYCLICContinued			*Isopentyl butyrate (Isoamyl butyrate)	FB, GIV, NW, RT, TBK.		Isopentyl formate (Isoamyl formate)	FEL, RT, TBK.		Isopentyl heptanoate	FB. TBK.		Isopentyl isovalerate (Amyl isovalerate)	GIV, IFF, TBK.		Lauraldehyde (Dodecyl aldehyde) (C12)	GIV.		Linalyl butyrate	FB.		Methyl luroate	GIV.		6-Methyl-5-hepten-2-one	RT.		Methyl-β-methylthiopropionate	GIV.		Methyl-2-nonenoate	GIV.		Methylolmethylhexyl ketone	RT.		3-Methylthiopropionaldehyde			2-Methylundecanal (2-Methylnonylacetaldehyde)	GIV, IFF.		Myristic aldehyde (C14)	GIV, TBK.		Nonanal (Pelargonaldehyde) (C ₉) Nonanediol monoacetate	GIV.		Nonanol	TBK.		NonanolNonyl acetate			Nonyl acetate	GIV. IFF.		Octanal (Caprylaldehyde) (Cg)	FB.		n-Octyl isobutyrate	FB, TBK.		Tepyl acetate	IFF. TBK.		Trimethyl hexanal, sodium bisulfite complex	SHL.		2,6,10-Trimethyl-9-undecen-l-al	GIV.		Undecanal (Hendecanaldehyde) (C ₁₁)	GIV, IFF, TBK.		2-Undecanone (Methyl nonyl ketone)	GIV.		9-Undecenal (9-Hendecenaldehyde)			9-Undecen-1-ol (9-Hendecenol)	TBK.		10-Undecen-1-ol	GIV.		Valerolactone	GIV.	### Plastics and Resins Materials ${\it TABLE~15B.--Plastics~and~resin~materials~for~which~U.S.~production~or~sales~were~reported,~identified~by~manufacturer,~1966}$ [Plastics and resin materials for which separate statistics are given in table 15A are marked below with an asterisk (*); chemicals not so marked do not appear in table 15A because the reported data are accepted in confidence and may not be published. Manufacturers' identification codes shown below are taken from table 22. An x signifies that the manufacturer did not consent to his identification with the designated product]	Chemical	Manufacturers' identification codes (according to list in table 22)		--	--		THERMOSETTING RESINS			*Alkyd resins, domestic: *Phthalic anhydride type	AAI, ACP, ACY, ADM, AMR, APV, BAL, BEN, BOY, BRU, CEL, CIK, CM, COM, CPV, DAV, DEG, DSO, DUN, DUP, EW, FAR, FBR, FCD, FLW, FCC, FRE, FSH, GEI, GIL, GID, GRG, GRV, HAN, HPC, HRS, ICF, JOB, JSC, JWL, KEL, KMC,		*Polybasic acid type	KMP, KPS, KYN, MCC, MID, MMM, MNP, MR, NPV, NCI, NTL, ORO, OSB, OKR, PER, FFP, PPG, PRT, QCP, RCI, RED, REL, RH, SCF, SCN, SED, SIP, SM, SRR, SVC, SW, SYV, TV, VTV, WAS. ACP, ACY, ADM, APT, APV, BEN, BRU, CGL, CM, COM, CPV, DSO, DUN, DUP, EW, FAR, FBR, FCD, FOC, GEI, GIL, GID, GRV, HAN, HPC, HRS, HYC, ICF, KYN, MCC, MID, MMM, NCI, NON, NPV, ORO, OSB, PFP, PPG, PRT, RCI, RED, RH, SCN, SHA, SM, SRR, SW, TV, VTV.		*Coumarone-indene and petroleum polymer resins:			*Floor tile* *Rubber compounding* *All other uses (including export)	ACC, ACP, NEV, NSP, PAI, RCI, VEL. ACC, ACP, KPI, NEV, NSP, PAI, RCI, VEL, WTC. ACC, ACP, CM, DSO, DUP, ENJ, MCA, MID, NEV, NSP, PAI, PPG, RCI, VEL, VSV.		Epoxy resins:			*Unmodified:			*Bonding and adhesives	CBA, CEL, DOW, SHC, UPC.		*Protective coatings* *Reinforced plastics	CBA, CEL, DOW, RCI, SHC, UCP.		*All other uses (including export)	CBA, CEL, DOW, RCI, SHC, UCP.		*Modified			- Modified	ACP, ADM, BEN, CM, FMP, FOM, GLD, HAP, IOC, LEF, MID, MAMM, MNP, MRB, NON, OSB, PLS, PPG, PYR, REZ, SCN, SRR, VTV, WAS.		*Polyester resins:			Reinforced plastics:			*Sheets, flat and corrugated	ACY, APD, DA, EW, GLD, HKD, ICF, LAS, MFG, ORO, PPG, RCI, RH, SIC, SW, USR.		*All other	ACP, ACY, ADM, CPV, DA, DSO, FRE, GLD, GNT, GRV, HKD, ICF, IPC, KPS, LAS, MFG, MRO, PLU, PPG, RCI, SW, USR, UTR, VAL.		*Surface coatings	ACP, ACY, APD, COM, CPV, DA, GLD, GYR, ICF, MCC, ORO, PPG, SM, SW.		*All other uses (including export)	ACP, ACR, ACY, AMR, APD, DA, DAV, DSO, EKT, EPC, EW, FMP, FRE, GEI, GID, GNT, GRG, GYR, HKD, LAS, MMM, OCF, PLU, PPG, RCI, RH, SCN, SW, TXT, USR, VAL.		*Phenolic and other tar acid resins:			*Molding materials	FRL, GE, HER, HKD, HVG, MON, MRB, NPI, PLS, RCI, RGC, SYR, UCP, VAR, VSV.		Bonding and adhesive resins for:			*Laminating	ACP, AMR, BOR, CAT, CBR, CD, EW, FOM, GE, HKD, IRI, MCA, MON, NPI, NPP, NTC, NVF, PGU, PPL, PYZ, RCD, RCI, SCN, SPL, SYR, TKL, UCP, VAR.		*Coated and bonded abrasives	AMR, BME, BOR, CAT, CBM, CBR, HKD, MMM, MON, MRB, PPG, PYZ, SCN, SYR, UCP, VAR.		*Friction materials	ABS, BME, BOR, FRL, GE, HKD, MMM, MON, PYZ, RAB, SCN, SYR, SYV, UCP, VAR, VSV.		*Thermal insulation* *Foundry or shell molding	ACP, AMR, CAT, HKD, MON, OCF, PYZ, RCI, SCN, UCP. ACP, ACR, AMR, BOR, GE, HKD, MON, NPI, PYZ, RCI, SCN,		*Plywood	SYR, TXT, UCP, UNO, VAR. BOR, CAT, CBC, CBD, HPC, MON, PGU, PYZ, RCI, RH, SIM,		*Fibrous and granulated wood	WCA, WRD. AMR, BOR, CBC, CBD, HKD, MCA, MON, NPI, PYZ, RCI, SIM,	TABLE 15B.--Plastics and resin materials for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	Chemical	Manufacturers' identification codes (according to list in table 22)		---	--		THERMOSETTING RESINSContinued			where lie and other ten said regins Continued			*Protective coatings, unmodified and modified	ADM, BOR, CIK, CPV, DSO, EW, FCD, FRE, GE, GEI, GRV, HAN, HER, HKD, ICF, INL, KMC, KRM, KYN, MID, MMM, MON, MRB, NCI, NPI, ORO, OXR, PYR, PYZ, RCI, RH, SM, SNC, SW, SYR, TV, UCP, VAR, VTV, WAS.		*All other uses (including export)	ACP, AMR, BME, BOR, CAT, CBM, CBR, DSO, EW, GE, GEI, GRG, HER, HKD, IOC, IRC, IRI, KND, KPT, MMM, MON, MRB, NPI, PLS, PYR, PYZ, RAB, RCI, REZ, RGC, RH, RPC, SCN, SHA, SNC, SYR, UCP, USR, VAR, VSV.		*Polyurethane and diisocyanate resins	ACB, ADM, AFP, ARK, BFG, CBM, DUP, GPM, HAP, IPI, JWI, KMC, MCC, NOP, NPV, PEL, PFP, QUN, SCN, UPJ.		*Rosin modifications: *Rosin and rosin esters, unmodified (ester gums)	ADM, CBY, DPP, ECC, FAR, FRP, HPC, KRM, MCC, NCI, OSB, SRR.		*All other	ADM, CBY, DPP, FAR, FLW, FRP, HPC, JNS, KRM, MCC, NCI,			OSB, PPG, RH, SCF, SHA. ACP, BOR, DCC, GLD, SPD, UCC.		*Silicone resinsStyrene-alkyd polyesters	ADM, DEG, PFP.		*Nres and melamine resins:			*Textile treating and coating resins	ACY, APX, BRY, CAT, CBR, CIB, CRC, DAN, DEP, DUP, ECC, GAF, GGY, HNC, HRT, JSC, MON, MRA, ONX, OXR, PC, QCF RCI, RH, ROC, RPC, S, SBC, SEY, SNW, STC, SYN, USO, VAL, WIC.		*Paper treating and coating resins	ACY, AMR, BME, BOR, CBC, CBD, CBR, DEP, DUP, HPC, MAMM, MON, RCI, RH, SIM, TXT, x.		Molding materials	ACP, ACY, FMB, GDN, PMC, SFA.		Bonding and adhesive resins for: *Laminating	ACY, BOR, CAT, CBR, FOM, GE, MON, NPP, NTC, OCF, PGU, PMC, PPL, STC.		*Plywood	ACP, ACY, BOR, CAT, CBC, CBD, HPC, MON, NPI, NTC, PGU RCI, REN, RH, SAC, SIM, SOR, WRD.		*Fibrous and granulated wood	ACY, ÁMR, ÉOR, CED, IPR, MON, PGU, RCI, SAC, SOR, SYV UPL.		*Protective coatings	ACP, ACY, CEL, CPV, DSO, DUP, GLD, GRV, HAN, KPS, MID MON, NON, OXR, PPG, RCI, REL, RH, SCN, SW, TV.		*All other uses (including export)	ACP, ACY, AMR, BOR, CAT, CMP, DUP, EFH, FMB, HPC, MON RCI, RH, STC, UNO, VAL, VAR.		*All other thermosetting resins	ACP, ACY, CIB, GGY, HPC, HVG, JNS, MOB, MON, NOP, NPV NTC, OCF, PPG, RPC, UBS, UNO, WTC.		THERMOPLASTIC RESINS			Acrylic resins	ACY, CEL, CIB, CMG, DUP, FIH, GLC, GLX, HCO, JNS, JSC PPG, QUN, RH, RPC, SAR, SEY, VPC, x.		*Cellulose plastics materials:			Sheets, continuous: *Under 0.003 gage	CEL, DUP, EKT, NIX.		*0.003 gage and over	CEL, DOW, EKT, MON, MPP, NIX, PDJ, SPY.		*All other sheets, rods, and tubes	CEL, MPP, NIX, PDJ, RSB, SPY.		*Molding and extrusion materials	CBN, CEL, DOW, EKT, MON, RSB.		*Polyamide resins: *Nylon type	ATE DID EG POT SPN		*Nylon type* *Non-nylon type	BCM, EMR, GNM, JNS, KRM, SNW.		Polyolefin plastics materials:	300, 200, 000, 000,		Ethylene polymers and copolymers:			Production:	LEE TOWN THE THE WOLLD DOG ONLY HOD HOT		*High pressure polyethylene	ACP, DOW, DUP, EKX, KPP,																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																						
MON, RCC, SPN, UCP, USI.		*Low pressure polyethylene*Ethylene copolymers	ACP, CEL, DOW, DUP, HPC, KPP, MON, PLC, UCP, USI. DUP, UCP, USI.		*Polyethylene, density 0.940 and below:			*Sales and use: *Injection molding	ACP, CEL, DOW, DUP, EKX, KPP, MON, PLC, RCC, SHC, SPN UCP, USI.		*Blow molding	ACP, DOW, DUP, EKX, KPP, MON, PLC, RCC, SHC, SPN, UCI USI.		*Film and sheet	ACP, ALO, CEL, DOW, DUP, EKX, KPP, MON, PLC, RCC, SHO		*Extrusion coating on paper and other substrates	CEL, DOW, DUP, EKX, KPP, MON, PLC, SPN, UCP, USI.			CEL, DOW, DUP, EKX, KPP, MON, PLC, SHC, UCP, USI.	${\it TABLE~15B. -- Plastics~and~resin~materials~for~which~U.S.~production~or~sales~were~reported,~identified~by~manufacturer,~1966-- Continued}$	Chemical	Manufacturers' identification codes (according to list in table 22)		---	---		THERMOPLASTIC RESINSContinued			Polyolefin plastics materials Continued *Polyethylene, density 0.940 and belowContinued *Sales and useContinued			*Pipe and conduit	DOW, EKX, KPP, PLC, UCP, USI.		*Other extruded products	ACP, DOW, DUP, EKX, KPP, PLC, UCP, USI.		*All other uses (including export)	ACP, CEL, DOW, DUP, EKX, KPP, MON, PLC, RCC, SPN, UCP USI.		*Polyethylene, density over 0.940: *Sales and use:			*Injection molding	ACP, CEL, DOW, DUP, EKX, HPC, KPP, PLC, RCC, SHC, UCP USI.		*Blow molding	ACP, CEL, DOW, DUP, EKX, HPC, KPP, MON, PLC, RCC, SHC UCP, USI.		*Film and sheet	ACP, CEL, DOW, DUP, EKX, HPC, KPP, PLC, SHC, UCP, USI		*Extrusion coating on paper and other substrates	DUP, EKX, PLC, UCP, USI.		*Wire and cable	ACP, CEL, DUP, EKX, HPC, MON, PLC, SHC, UCP, USI.		*Pipe and conduit	ACP, CEL, DUP, EKX, HPC, KPP, PLC, SHC, UCP, USI.		*Other extruded products	ACP, CEL, DOW, DUP, EKX, HPC, KPP, PLC, UCP, USI.		*All other uses (including export)	ACP, CEL, DOW, DUP, EKX, HPC, KPP, MON, PLC, UCP, USI		Polypropylene:	, , , , , , , , , , , , , , , , , , , ,		*Production	ALO, AVS, DOW, EKX, ENJ, HPC, NVT, RCC, SHC.		*Sales and use:			*Molding	ACP, AVS, DOW, EKX, ENJ, HPC, NVT, ORO, PLC, RCC, SHOUCP, USI.		*Extrusion	ACP, ALO, AVS, EKX, ENJ, HPC, NVT, ORO, PLC, RCC, SHOUCP, USI, VEL.		*All other uses (including export)	ACP, ALO, AVS, DOW, EKX, ENJ, HPC, NVT, ORO, PLC, RCC SHC, UCP, USI, VEL.		tyrene type plastics materials: ABS and SAN resins:			*Production	BFG, DOW, FBF, FIR, GRD, MCB, MON, RCC, SW, UCP, USR, WIC.		*Sales and use:			*Molding	BFG, DOW, FBF, MCB, MON, UCP, USR.		*Extrusion* *All other uses (including export)	BFG, DOW, MCB, MON, MPP, RCC, UCP, USR. BFG, DOW, FIR, GRD, MCB, MON, MPP, RCC, SW, UCP, USR,		Styrene and styrene copolymer resins:	WIC.		*Production:			Straight polystyrene	BPL, CBN, CSD, DOW, FBF, FG, KPP, MON, ONX, PLA, POL, RCC, SEK, SOL, TIC, UBS, UCP, WAS.		Rubber-modified polystyrene	BPL, CSD, DOW, FG, GOR, KPP, MON, PLA, RCC, SHC, UCP.		Styrene-butadiene copolymer	BFG, BOR, DOW, FIR, GGC, GNT, GRD, GYR, ILC, KPP, SEI USR, WIC.		All other	ACC, BCN, BKC, BOR, DOW, DSO, DUP, FLH, GAF, GLD, GRI IOC, JNS, JSC, MON, MRT, PAI, PVI, RCC, RH, SM, SPI		ton not you	UNC, WAS.		*Sales and use: *Molding	BFG, BKC, BPL, CSD, DOW, FBF, FG, FIR, GOR, GYR, KPP, MON, PLA, RCC, SHC, SOL, TIC, UCP, USR.		*Textile and paper treating and coating	BOR, DOW, FIR, FIH, GNT, GRD, GYR, ILC, JSC, KPP, MOR ONX, SEP, USR, WAS, WIC.		*Emulsion paint	BOR, DOW, DSO, FIR, GNT, GRD, GYR, KPP, MON, RCC, USE		*Extrusion	CBN, CSD, DOW, DSO, KPP, MON, MPP, RCC, SHC, UCP, x.		Foam and foamable materials	CSD, DOW, GYR, KPP, MON, RCC, SEK, SHC, UNC, USR, x.		*All other uses (including export)	ACC, BCN, BFG, BOR, CSD, DOW, DSO, DUP, FG, GAF, GGC, GLD, GNT, GRD, GYR, IOC, JNS, JSC, KPP, MON, MPP, MRT, PAI, POL, PVI, RCC, RH, SEK, SEP, SHC, SM, SPI		inyl resins: Polyvinyl chloride and copolymers:	UBS, UCP, UNC, USR, WAS.		*Production:	AME ATTI BEG BOD CDV CITY DA DOW ESC ETD ONE		Suspension homopolymers	ALU, DEG, DOR, ORI, OUG. DA. DOW. ESC. FIR. UNI.		Suspension homopolymers	GRA, GYR, MON, PLA, SFA, UCP, USR. AME, BFG, BOR, CRY, CUC, DA, FIR, GNT, KYS, MON, NSC,	## PLASTICS AND RESIN MATERIALS TABLE 15B. --Plastics and resin materials for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	Chemi cal	Manufacturers' identification codes (according to list in table 22)		--	--		THERMOPLASTIC RESINSContinued			Vinyl resinsContinued Polyvinyl chloride and copolymersContinued			*Sales and use: *Calendering, except flooring	AME, ATU, BFG, BOR, CRY, CUC, DA, DOW, ESC, FIR, GNT, GYR, MON, PNT, SFA, THC, UCP, USR.		Flooring: *Calendered	AME, ATU, BFG, BOR, CRY, CUC, DA, ESC, FIR, MON, THC, UCP.		*Coated	BFG, BOR, CRY, DA, FIR, GNT, GYR, MON, THC, UCP, USR.		Paper and textile uses: *Coating	ATU, BFG, BOR, CRY, DA, ESC, FIR, MON, ONX, THC, UCP, USR.		*Other	BFG, BOR, ESC, FIR, ONX, THC, UCP.		*Protective coatings and adhesives	BFG, BOR, DA, ESC, FIR, MON, NSC, UCP.		*Wire and cable	AME, BFG, BOR, CRY, CUC, DA, DOW, FIR, MON, PNT, THC, UCP, USR.		*Extruded film and sheet	AME, BFG, BOR, CUC, DA, DOW, FIR, GYR, MON, PNT, SFA, THC, UCP, USR.		*Other extruded products	ACP, ATU, BFG, BOR, CRY, CUC, DA, DOW, ESC, FIR, GNT, GYR, MON, PNT, SFA, THC, UCP, USR.		*Sound records	BFG, BOR, CRY, CUC, DA, KYS, MON, PLA, PNT, SFA, THC, UCP, USR.		*Injection and blow molding	ATU, BFG, BOR, CRY, DA, DOW, ESC, FIR, GYR, MON, THC, UCP, USR.		*Plastisol formulating and molding	BFG, BOR, CRY, CUC, DA, ESC, FIR, MON, PYR, THC, UCP, USR.		*All other uses (including export)	BFG, BOR, CRY, CUC, DA, DOW, ESC, FIR, GNT, GRA, GYR, MON, PYR, SFA, THC, UCP, USR.		Polyvinyl acetate: *Production:			*Iatexes	AMI, APV, BOR, BOY, CEL, CUC, DSO, DUP, FC, FLH, GLC, GLD, GRD, HAN, HNC, HRT, JSC, KMC, KMP, MCC, MMM, MRN, NCI, NPV, NSC, NTC, PII, PPG, PVI, QCP, REL, RPC, SED, SEY, SPC, UCP, WAS, WIC.		*Resins	AFP, BEN, BIS, BOR, CAT, CST, CUC, DAN, DAV, DUP, FAR, HNC, JOB, MON, NSC, OCF, PPG, RCI, SCO, SED, SH, UCP.		*Sales and use: *Emulsion paints	AML, APV, BEN, BOR, CAT, CEL, CUC, DAV, DSO, DUP, FIH, GLC, GLD, GRD, HAN, JOB, KMC, KMP, MCC, MON, MR, NCI, NPV, NSC, PPG, RCI, SED, SPC, UCP, WAS, WIC.		*Adhesives	AMI, BOR, CEL, CUC, DUP, FC, FIH, GLC, GRD, HNC, JSC, MAMM, MON, MRN, NSC, NTC, PII, PPG, RCI, SH, UCP.		*Paper treating	AML, BOR, CEL, CUC, DUP, FLH, GLC, MAMM, MON, NSC, PII, SEY, UCP, WIC.		*Textile treating	AML, BOR, CEL, CST, CUC, DAN, DUP, GLC, GRD, HRT, JSC, NSC, PII, RPC, SCO, SEY.		*All other uses (including export)	AFP, AML, BLS, BOR, CEL, CUC, DUP, FAR, FLH, GLC, GLD, GRD, HRT, MON, NSC, OCF, PII, PVI, QCP, REL, RCI, UCP, WAS.		*Polyvinyl alcohol*Other vinyl resins	BOR, CUC, DUP, FC, MCC, MON. BOR, DOW, DUP, GLD, GRD, IOC, MON, SW, UCP.		*All other thermoplastic resins	ACG, ACP, CBY, CIB, DEP, DUP, ECC, GE, GLC, HPC, JSC, KRM, MID, MAM, MOB, RH, RPC, SBC, SCN, SNW, UCP.	## Rubber-Processing Chemicals TABLE 16B. -- Rubber-processing chemicals for which U.S. production or sales were reported, identified by manufacturer, 1966 [Rubber-processing chemicals for which separate statistics are given in table 16A are marked below with an asterisk (*); chemicals not so marked do not appear in table 16A because the reported data are accepted in confidence and may not be published. Manufacturers' identification codes shown below are taken from table 22. An x signifies that the manufacturer did not consent to his identification with the designated product]	Chemical.	Manufacturers' identification codes (according to list in table 22)						--	--	--	--	--	--		RUBBER-PROCESSING CHEMICALS, CYCLIC							*Accelerators, activators, and vulcanizing agents:							*Aldehyde-amine reaction products:							Acetaldehyde-aniline condensate							n-Butyraldehyde-aniline condensate	,,,,						Butyraldehyde-butylideneaniline condensate α-Ethyl-β-propylacrylanilide							Formaldehyde-p-toluidine condensate							Heptaldehyde-aniline condensate							Triethyltrimethylenetriamine							*Dithiocarbamic acid derivatives:							Dibutyldithiocarbamic acid, N,N-dimethylcyclo-	MON.						hexylamine salt.							Dibutyldithiocarbamic acid, diphenylguanidine salt							Dimethylethylene diphenyldithiocarbamic acid, lead salt.							2,4-Dinitrophenyl dimethyldithiocarbamate Piperidinecarbodithioic acid, piperidinium-potassium	l e e e e e e e e e e e e e e e e e e e						salts, mixed.	DUP.						Guanidines:							Dicatechol borate, di-o-tolylguanidine salt	DUP.						1,3-Diphenylguanidine	ACY.						Diphenylguanidine phthalate	MON.						1,3-Di-o-tolylguanidine	ACY.						1,2,3-Triphenylguanidine	NAC.						*Thiazole derivatives:							2-Benzothiazyl N,N-diethylthiocarbamoyl sulfide	PAS.						1,3-Bis(2-benzothiazolylmercaptomethyl)urea	MON.						N-tert-Butyl-2-benzothiazolesulfenamide																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																	
*N-Cyclohexyl-2-benzothiazolesulfenamide	MON.						N, N-Diisopropyl-2-benzothiazolesulfenamide	ACY, BFG, MON, USR.						N-(2,6-Dimethylmorpholino)-2-benzothiazolesulfenamide	MON.						*2,2'-Dithiobis(benzothiazole)	ACY, BFG, GYR, MON, USR.						*2-Mercaptobenzothiazole	ACY, BFG, GYR, MON, USR.						2-Mercaptobenzothiazole, zinc chloride	DUP.						2-Mercaptobenzothiazole, zinc salt	ACY, GYR, USR.						4-Morpholinyl-2-benzothiazyl disulfide	GYR.						N-Oxydiethylene-2-benzothiazolesulfenamide Thiazoline-2-thiol	ACY, MON.						All other cyclic accelerators, activators, and	ACY.						vulcanizing agents:							p-Benzoquinonedioxime	CTA, DUP.						Bis(p-aminocyclohexyl)methane carbamate	DUP.						Bis(2,6-dimethylmorpholinothiocarbonyl)sulfide	DUP.						Dibenzoyl-p-quinonedioxime	CTA, USR.						Dibenzylamine	MLS, USR.						N, N'-Dicinnamylidene-1,6-hexanediamine	DUP.						Di-N, N'-pentamethylenethiuram tetrasulfide	DUP, VNC.						4,4'-Dithiodimorpholine	MON.						2-Imidazoline-2-thiol	DUP, RBC.						Styrene polysulfide	DUP.						Tetrahydro-4,4,6-trimethyl-2(1H)-pyrimidinethione	VNC.						Antioxidants, antiozonants, and stabilizers:	****						*Amino antioxidants, antiozonants, and stabilizers:							Aldehyde- and acetone-amine reaction products:							Acetaldehyde-aniline hydrochloride condensate	USR.						Aldol-a-naphthylamine condensate	BFG.						Butyraldehyde-aniline condensate	DUP.						Diphenylamine-acetone condensate	ACY, BFG, DUP, USR.						Phenyl-2-naphthylamine-acetone condensate* *Substituted p-phenylenediamines:	USR.						N, N'-Bis(1,4-dimethylpentyl)-p-phenylenediamine	EKT, USR, x.						N, N'-Bis(1-ethyl-3-methylpentyl)-p-phenylenediamine	EKT, MON, UPM.							EAI, MON, UPM.					TABLE 16B.--Rubber-processing chemicals for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	Chemical	Manufacturers' identification codes (according to list in table 22)		---	--		RUBBER-PROCESSING CHEMICALS, CYCLICContinued			*Antioxidants, antiozonants, and stabilizersContinued *Amino antioxidants, antiozonants, and stabilizers			Continued *Substituted p-phenylenediaminesContinued			N, N'-Bis(1-methylheptyl)-p-phenylenediamine	BFG, EKT, MON, UPM.		N-sec-Butyl-N'-phenyl-p-phenylenediamine N-Cyclohexyl-N'-phenyl-p-phenylenediamine	USR.		Diarylarylenediamines, mixed	GYR.		N, N'-Di-sec-butyl-p-phenylenediamine	USR.		N, N'-Di-2-naphthyl-p-phenylenediamine* *N, N'-Diphenyl-p-phenylenediamine	BFG. BFG, DUP, USR.		N-Isopropyl-N'-phenyl-p-phenylenediamine	MON, USR.		All other p-phenylenediamines	MON.		Other amino antioxidants, antiozonants, and stabi- lizers:			p-Anilinophenol	BFG.		1,2-Dihydro-6-dodecyl-2,2,4-trimethylquinoline	MON.		1,2-Dihydro-6-ethoxy-2,2,4-trimethylquinoline	MON.		1,2-Dihydro-2,2,4-trimethylquinoline	BFG, MON.		4,4'-Dioctyldiphenylamine	BFG.		N, N'-Diphenylethylenediamine	CCO, NOP, x.		N, N'-Diphenyl-1, 3-propanediamine N, N'-Di-o-tolylethylenediamine	CCO.		p-Isopropoxydiphenylamine	BFG.		4,4'-Methylenedianiline	USR.		*Octyldiphenylamine mixture (mono-, nonyl-, and di-)-	ACY, NPI, PAS, USR.		N-Phenyl-1-naphthylamine	DUP, USR.		*N-Phenyl-2-naphthylamine	BFG, DUP, USR.		p-(p-Toluenesulfonamido)diphenylamineAll other	USR.		*Phenolic and phosphite antioxidants and stabilizers:	DUP.		Phosphites:			Nonyl phenyl phosphites, mixed	USR.		Polyphenolic phosphite, polyalkylated *Polyphenolics (including bisphenols):	BFG.		Bisphenol, hindered	GYR.		4,4'-Butylidenebis(6-tert-butyl-m-cresol)	MON.		2,5-Di-(1,1-dimethylpropyl)hydroquinone 2,2'-Methylenebis(6-tert-butyl-p-cresol)	MON. ACY, CAT.		2,2'-Methylenebis(6-tert-butyl-4-ethylphenol)	ACY.		2,2'-Methylenebis(6-tert-octyl-p-cresol)	ACY.		2,2'-Thiobis(4,6-di-sec-amylphenol)	MON.		1,1,3-Tri(2-methyl-4-hydroxy-5-tert-butylphenyl)	ICI.		butane.			Other phenolic antioxidants and stabilizers: p-Benzyloxyphenol	BFG.		N-Butyroyl-p-aminophenol	MIS.		o-Cresol, alkylated	PIT.		N-Lauroyl-p-aminophenol* *Phenol, alkylated	MLS. ACY, BFG, CCO, GYR, PAS, PIT, USR.		Phenol, hindered	DUP, GYR, PIT.		Phenol, styrenated	BFG, GYR, USR.		N-Stearoyl-p-aminophenolXylenol, alkylated	MIS.		Blowing agents:	1		N, N'-Dimethyl-N, N'-dimitrosoterephthalamide	DUP.		Dinitrosopentamethylenetetraminep,p'-Oxybis(benzenesulfonhydrazide)	DUP, NPI. USR.		*Peptizers:	ounce.		Alkylated o-thiocresol	PIT.		Alkylated thiophenol, zinc salt	PIT.		Aryl mercaptans2-Benzamidothiophene, zinc salt	PIT.		2',2''-Dithiobis(benzanilide)	ACY.		Dixylyl disulfides, mixed	PIT.		2-Naphthalenethiol	DUP.	TABLE 16B.--Rubber-processing chemicals for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	Chemical]					ficati in tab	on code le 22)	s			--	-------	------	------	--------	------	------	------------------	-------------------	---	--		RUBBER-PROCESSING CHEMICALS, CYCLICContinued												*PeptizersContinued	-											Pentachlorobenzenethiol, zinc salt	DUP.											Thiophenol (Benzenethiol)	PIT.											Xylenethiol	DUP.											Other cyclic rubber-processing chemicals:							-					p-tert-Amylphenol sulfide (tackifier)	PAS.											Dicresyl disulfide	USR.											N,4-Dinitroso-N-methylaniline (physical-property improver).	CTA,	MON.										Hindered aromatic polyamine	USR.											*N-Nitrosodiphenylamine (retarder)	ACY,	BIG,	CTA,	GYR,	USR.							RUBBER-PROCESSING CHEMICALS, ACYCLIC						•						*Accelerators, activators, and vulcanizing agents:												*Dithiocarbamic acid derivatives:	1											Dibutyldithiocarbamic acid, potassium salt	VNC.											Dibutyldithiocarbamic acid, sodium salt	DUP,	PAS,	USR,	VNC.								*Dibutyldithiocarbamic acid, zinc salt	ALC,	DUP,	PAS,	USR,	VNC.							Diethyldithiocarbamic acid, selenium salt	VNC.											Diethyldithiocarbamic acid, sodium salt		PAS.										Diethyldithiocarbamic acid, tellurium salt	VNC.		210	Han	1214							*Diethyldithiocarbamic acid, zinc salt		GYR,	PAS,	usr,	VNC.							Dimethyldithiocarbamic acid, bismuth salt Dimethyldithiocarbamic acid, copper salt	VNC.											Dimethyldithiocarbamic acid, lead salt	VNC.											Dimethyldithiocarbamic acid, selenium salt	VNC.											Dimethyldithiccarbamic acid, sodium salt and sodium polysulfide.	1	GNT.						,				*Dimethyldithiocarbamic acid, zinc salt	ALC,	DUP,	FMN,	GYR,	PAS.	RBC.	USR, W	VRC.				All other		VNC.		•	•	•	,					*Thiurams:												Bis(dibutylthiocarbamoyl) sulfide	USR.		D. C									*Bis(diethylthiocarbamoyl) disulfide *Bis(dimethylthiocarbamoyl) disulfide	DOP,	GYR,	PAS.	CVD	DAC	IICD	mo					Bis(dimethylthiocarbamoyl) disulfide and 2-mercapto-	DIIP.	VNC.	uni,	, GIR,	PAS,	USR,	VNC.					benzothiazole, mixed.	,											*Bis(dimethylthiocarbamoyl) sulfide	DUP.	GYR,	USR.									Bis(ethylmethylthiocarbamoyl) sulfide	VNC.	,										Thiuram blend	DUP.											Xanthates and sulfides:												Di-n-butylxantho disulfide	USR.											Diisopropylxantho disulfide	BFG.											Zinc dibutyl xanthateZinc isopropyl xanthate	USR.											All other acyclic accelerators, activators, and vulcan-	VNC.											izing agents:												n-Butyraldehyde-butylamine condensate	DUP.											Di-n-butylammonium oleate	DUP.											3-Ethyl-1,1-dimethyl-2-thiourea	VŃC.											Ethylenediamine carbamate	DUP.											Polyoxyalkalenetetrasulfide	TKL.											1,1,3-Trimethyl-2-thioureaBlowing agents:	VNC.											Modified urea	DUP.											Urea-bluret mixture	SW.											Conditioning and lubricating agents:	-".											Methyl stearyl-10-sulfonic acid, sodium salt	DUP.											Mono- and dialkyl acid phosphates, mixed	DUP.											Mono- and dialkyl phosphate ammonium salts, mixed	DUP.												,										TABLE 16B. -- Rubber-processing chemicals for which U.S. production or sales were reported, identified by manufacturer, 1966-- Continued	Chemical	Manufacturers' identification codes (according to list in table 22)		--	---		RUBBER-PROCESSING CHEMICALS, ACYCLICContinued			Polymerization regulators: Alkyl mercaptans, mixed *Dodecyl mercaptans	PAS, PLC. HK, PAS, PLC. PAS. GYR, PAS, USR. ALC, BFG, DUP, GYR, PAS, USR. USR. USR.	## Elastomers (Synthetic Rubbers) TABLE 17B.--Elastomers (synthetic rubbers) for which U.S. production																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																			
or sales were reported, identified by manufacturer, 1966 [Elastomers (synthetic rubbers) for which separate statistics are given in table 17A are marked below with an asterisk (*); products not so marked do not appear in table 17A because the reported data are accepted in confidence and may not be published. Manufacturers' identification codes shown below are taken from table 22. An x signifies that the manufacturer did not consent to his identification with the designated product]	Product	Manufacturers' identification codes (according to list in table 22)		--	--		*Polybutadiene-styrene type (S-type) *Polybutadiene-styrene-vinylpyridine type *Polyurethane type ELASTOMERS, ACYCLIC	ASY, BFG, CPY, FIR, FRS, GGC, GNT, GYR, ILC, MCB, PLC, RUB, SHC, TUS, URC, USR, WIC. BFG, FIR, FRS, GNT, GYR, PLC, USR. ACY, DUP, GNT, MOB, PRC, RUB, TKL, USR.		Polyacrylate ester type	ACY, BFG, TKL. TKL. BFG, FRS, GYR, TKL, TUS. BFG, FRS, GYR, ILC, MCB, USR. DUP. CBN, ENJ. GYR, HPC. DCC, SPD, UCS. ASY, BAR, DUP, ENJ, FRS, GGC, GNT, GYR, PLC, SHC, TUS. DUP, ENJ, x.	### Plasticizers # TABLE 18B. --Plasticizers for which U.S. production or sales were reported, identified by manufacturer, 1966 [Plasticizers for which separate statistics are given in table 18A are marked below with an asterisk (*); products not so marked do not appear in table 18A because the reported data are accepted in confidence and may not be published. Manufacturers' identification codes shown below are taken from table 22]	Chemical	Manufacturers' identification codes (according to list in table 22)		---	--		PLASTICIZERS, CYCLIC			Coumarone-indene plasticizer	- NEV.		N-Cyclohexyl-p-toluenesulfonamide	- MON.		Dibenzvl sebacate	- WTH.		Diethylene glycol dibenzoate	- VEL.		Di-tert-octyldiphenyl oxide	- DOW.		Dipropanediol dibenzoate	- VEL.		N-Ethyl-p-toluenesulfonemide	- MON.		Isopropylidenediphenoxypropanol	- DOW.		Naphthalene, alkylated	- ACC.		Phosphoric acid esters:	THE ROLL NUMBER CLEAN		*Cresyl diphenyl phosphate Dibutyl phenyl phosphate	- IMP, MUN, MIR, SFA, X.		Diphenyl mono-o-xenyl phosphate			Diphenyl octyl phosphate	- MON		Methyl diphenyl phosphate	FMP. MON-		*Tricresyl phosphate	FMP. MON. MTR. SFA.		*Triphenyl phosphate	- EK. MON. SFA.		All other phosphoric acid esters	- SFA.		Phthalic anhydride esters:			Alkyl benzyl phthalates	- x.		Bis(4-methyl-2-pentyl) phthalate	- GRH.		Butyl benzyl phthalate	- GRH, MON.		Butyl cyclohexyl phthalate	- ACP.		n-Butyl n-decyl phthalate	- PCC.		*Butyl 2-ethylhexyl phthalate	- ACP, MON, UCC.		n-Butyl isodecyl phthalate	- GRH, UCC.		*Butyl octyl phthalate	- GRH, PCC, RCI, RUB.		Di(2-butoxyethyl) phthalate	- IMP, WM.		*Dibutyl phthalate			*Dicyclohexyl phthalate	UCC, WIH.		*Diethyl phthalate	DUP EKT KE MON PF7.		*Dihexyl phthalate			*Diisodecyl phthalate			•	WTH.		*Di(2-methoxyethyl) phthalate	- DUP, EKT, FMP, RCI, SFA.		Dimethyl isophthalate	- PFZ.		*Dimethyl phthalate	- EKT, KF, MON, PFZ, TCC.		Dinonyl phthalate	- RCI.		*Dioctyl phthalates:			Dicapryl phthalate	- GRH, WTH.		Di(2-ethylhexyl) isophthalate *Di(2-ethylhexyl) phthalate	ACD DEC FUT THE CON MON DOC DET DOT DID THO		*DI(Z-eddythexyl) phonatate	UCC, WTH.		*Diiso-octyl phthalate	- ACP. ADM. BEG. EKT ENI GRH MON DCC DEZ RCI RIB		MPIIBO-OC 031 phonarave	THC, UCC.		Di-n-octyl phthalate	- ADM.		Mixed dioctvl phthalates	- ACP.		Diphenyl phthalate	- MON.		*Ditridecyl phthalate	- ACP, ENJ, GRH, MON, PCC, PFZ, RCI, RUB, THC, UCC.		2-Ethylhexyl isodecyl phthalate	- UCC.		*Glycolate phthalate esters:			Butyl phthalyl butyl glycolate			Ethyl (and methyl) phthalyl ethyl glycolate			All other glycolate phthalate esters			Hexyl n-decyl phthalate	- ACP, UCC.		Hydrogonetod coutom oil mbtholeto	- DOE •		Hydrogenated castor oil phthalate			Isodecyl tridecyl phthalate			Iso-octyl isodecyl phthalate	- ACP, GRH, RUB.		Isodecyl tridecyl phthalate	- ACP, GRH, RUB. - ACP, ENJ, GRH, MON, PCC, PFZ, RCI, RUB, THC.	${\it TABLE~18B. --Plasticizers~for~which~U.S.~production~or~sales~were~reported,~identified~by~manufacturer,~1966--Continued}$	Chemical	Manufacturers' identification codes (according to list in table 22)		---	--			(according to fist in table 22)		PLASTICIZERS, CYCLICContinued			Tetrahydrofurfuryl oleate	CCW, EMR.		Toluenesulfonamide, o-, p- mixtures	ACY, MON.		Triethylene glycol dibenzoate	VEL.		*Trimellitic acid esters: n-Octyl n-decyl trimellitate	THC.		Tri(2-ethylhexyl)trimellitate	PFZ.		Triisodecyl trimellitate	PFZ.		Triiso-octyl trimellitateTri-n-octyl trimellitate	PFZ, RUB.		All other trimellitic acid esters	PFZ, RUB.		All other cyclic plasticizers	CCW, EKT, MON, NEV.		PLASTICIZERS, ACYCLIC			*Adipic acid esters:			*Di(2-(2-butoxyethoxy)ethyl) adipate	FMP, RCI, TKL, WTH.		*Di(2-ethylhexyl) adipate	EKT, GRH, MON, PCC, RCI, RH, THC, UCC.		Diisobutyl adipate *Diisodecyl adipate	FMP, GRH, HAL. ACP, EKT, GRH, MON, PCC, PFZ, RCI, RH, RUB, THC, UCC.		Diiso-octyl adipate	PCC, RCI, RH, RUB, WTH.		Diisopropyl adipate	SBC, VND.		Dinonyl adipate	THC.		Di-n-octyl adipate	ACP.		n-Hexyl n-decyl adipateIso-octyl isodecyl adipate	GRH, NOP, RCI.		*n-Octyl n-decyl adipate	ACP, GRH, MON, PCC, RCI, RH, THC, TKL, UCC.		Polyethylene glycol adipate	PFZ.		All other adipic acid esters	GRH, PFZ.		*Azelaic acid esters: Dicyclohexyl azelate	PFZ.		Di(2-ethylbutyl) azelate	EMR.		Di(2-ethylhexyl) azelate	EKT, EMR, PFZ, RCI, RH, RUB, UCC.		Diisobutyl azelate	HAL.		Diiso-octyl azelateDi-n-octyl azelate	PFZ.		All other azelaic acid esters	ACP, EMR.		1,4-Butanediol dicaprylate	RUB.		Butoxyethyl pelargonate	HAL.		Citric and acetylcitric acid esters	PFZ. ADM, EKT, EMR, GLY, HAL, MON, RH, RUB, THC, WTH.		Di(butoxyethoxy-ethoxy) methane	TKL.		Di(2-(2-butoxyethoxy)ethyl)methane	GRD.		Dibutyl tartrate	ARC.		Diethylene glycol dinonanoate Diiso-octyl diglycolate	EMR, RUB.		*Epoxidized esters:	CCA, FMP.		Butyl epoxydioleate	ADM.		Butyl epoxystearate	BAC.		Butyl epoxytallate Epoxidized linseed oils	ADM, THC.		*Epoxidized soya oils	ADM, SWT. ADM, ARG, BAC, RCI, RH, SWT, THC, UCC.		Epoxidized tall oils	RCI.		*2-Ethylhexyl epoxytallates	ADM, BAC, UCC.		Octyl epoxystearates	ARG.		*Octyl epoxytallatesAll other epoxidized esters	ARG, RH, THC, UCC.		Glycerol pelargonate	EMR.		Glyceryl tributyrate and tripropionate	EKT.		Glycol pelargonate	EMR.		Isodecyl nonanoate (Isodecyl pelargonate)	EMR.		Myristic acid esters:	HAL, SBC.		Butyl myristate	ARC.		*Isopropyl myristate	ARC, DRW, ICI, NOP.		Other myristic acid esters*Oleic acid esters:	ICI.		2-Butoxyethyl oleate	ARC.		*Butyl oleate	ARC, CHL, HAL, ICI, NOP. SWT, WM, WTH.		*Glycerol trioleate (Triolein)	DRW, EMR, SWT, WM.		*Isopropyl oleate	EMR, ICI, WM.	${\it TABLE~18B. --Plasticizers~for~which~U.S.~production~or~sales~were~reported,~identified~by~manufacturer,~1966--Continued}$	Chemical	Manufacturers' identification codes (according to list in table 22)		---	---		PLASTICIZERS, ACYCLICContinued			*Oleic acid estersContinued			*Methyl oleate	CHL, EMR, ICI, NOP, SWT.		*n-Propyl oleate			All other oleic acid esters	HAL, RH, VND.		Palmitic acid esters:	,,		Isobutyl palmitate	ARC, EKT.		Iso-octyl palmitate	RUB.		Isopropyl palmitate	ARC, ICI, WM.		2-Methoxyethyl palmitate	EKT.		Phosphoric acid esters:			Tri(2-butoxyethyl) phosphate	FMP, WES.		Tri(2-chloroethyl) phosphate	UCC.		Triethyl phosphate	EKT.		Trioctyl phosphate	FMP, UCC.		All other phosphoric acid esters	SF, x.		Ricinoleic and acetylricinoleic acid esters:	1 '		n-Butyl acetylricinoleate	BAC, WTH.		Butyl ricinoleate			*Glycerol monoricinoleate	BAC, GLY, HAL, NOP.		Glyceryl tri(acetylricinoleate)			Methyl ricinoleate			All other ricinoleic and acetylricinoleic acid esters			Sebacic acid esters:			*Dibutyl sebacate	EKT, GRH, HAL, PFZ, RCI, RH, WTH.		*Di(2-ethylhexyl) sebacate	GRD, GRH, HAL, PCC, RH, RUB, WTH.		Diiso-octyl sebecate	NOP.		Dimethyl sebacate			Dipentyl sebacate	RCI.		All other sebacic acid esters	NOP.		Stearic acid esters:	·		Butoxyethyl stearate	ARC, WM.		*n-Butyl stearate	ARC, CHL, EMR, HAL, ICI, RUB, SCP, SWT, WTH.		Dimethylammonium stearate	RH.		2-Ethylhexyl stearate	FMP.		Glycerol triacetyl stearate	BAC.		Isopropyl stearate	ARC, WM.		Methoxyethyl stearate	ARC.		Methyl dichlorostearate	HK.		Methyl pentachlorostearate	HK.		Methyl stearate	CHL.		All other stearic acid esters	HPC, WM.		Sucrose acetate isobutyrate	EKT.		Tetraethylene glycol di(2-ethylhexanoate)	UCC.		Triethylene glycol dicaprylate	RUB.		<pre>friethylene glycol di(caprylate-caprate)</pre>	DRW, FOR, HAL, RUB.		Triethylene glycol di-2-ethylbutyrate	UCC.		Triethylene																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																															
glycol di(2-ethylhexanoate)			Triethylene glycol dipelargonate			2,2,4-Trimethyl-1,3-pentanediol diisobutyrate	EKX.		All other acyclic plasticizers	EMR, HAL, HPC, PFZ, TKL, UCC, WM.	## Surface-Active Agents TABLE 19B. --Surface-active agents for which U.S. production or sales were reported, identified by manufacturer, 1966 [Surface-active agents for which separate statistics are given in table 19A are marked below with an asterisk (*); products not so marked do not appear in table 19A because the reported data are accepted in confidence and may not be published. Manufacturers' identification codes shown below are taken from table 22. An x signifies that the manufacturer did not consent to his identification with the designated product]	Chemical	Manufacturers' identification codes (according to list in table 22)					---	---	--	--	--		Amphoteric Surface-Active Agents						Acyclic:						(1-Carboxyheptadecyl)trimethylammonium hydroxide, inner	DUP.					<pre>salt (C-Hexadecylbetaine). (Carboxymethyl)(coconut oil alkyl)dimethylammonium</pre>	CUL.					hydroxide, inner salt [N-(Coconut oil alkyl)betaine].						(Carboxymethyl)[3-(coconut oil amido)propyl]-dimethyl-	JRG.					ammonium chloride, sodium salt. (Carboxymethyl)dimethyl(9-octadecenyl)ammonium hydroxide,	DUP.					inner salt [N-(9-Octadecenyl)-betaine].	201.					(1-Carboxyundecyl)trimethylammonium hydroxide, inner	DUP.					salt (C-Decylbetaine). N-(Coconut oil alkyl)-β-alanine, sodium salt	GNM.					N-(2-Coconut oil amidoethyl)-N-(2-hydroxyethyl)-glycine,	TCC.					sodium salt.						N-Dodecy1-3-iminodipropionic acid, disodium salt N-(2-Hydroxyethy1)-N-(2-lauramidoethy1)-β-alanine,	GNM.					sodium salt.	UVC.					N-(2-Hydroxyethyl)-N-(2-stearamidoethyl)glycine, sodium	GAF.					salt.						Mixed acyclic primary amines, ethoxylated and sulfated, sodium salt.	RH.					(Mixed alkyl)sulfobetaine	DUP, TXT.					Mixed fatty betaines	TXT.					Oleic acid - ethylenediamine condensate, propoxylated and sulfated, sodium salt.	S.					Polypeptide, ammonium salt	MYW.					Polypeptide, sodium salt	MYW.					N-(Tallow alkyl)-3-iminodipropionic acid, disodium salt	GNM.					<pre>Cyclic: 1,1-Bis(carboxymethyl)-2-undecyl-2-imidazolinium</pre>	MIR.					hydroxide, disodium salt.	Milt.					1-Carboxymethy1-2-heptadecy1-1-(2-hydroxyethy1)-	MIR.					2-imidazolinium hydroxide, sodium derivative, sodium salt.	·					1-Carboxymethyl-1-(2-hydroxyethyl)-2-nonyl-2-	PCS, UVC.					imidazolinium chloride, sodium salt.						1-Carboxymethyl-1-(2-hydroxyethyl)-2-nonyl-2-	MIR.					imidazolinium hydroxide, sodium derivative, sodium salt.						1-Carboxymethy1-1-(2-hydroxyethy1)-2-undecy1-2-	UVC.					imidezolinium chloride.						<pre>1-Carboxymethy1-1-(2-hydroxyethy1)-2-undecy1-2- imidazolinium hydroxide, sodium derivative, sodium</pre>	MIR.					salt.						Heptadecylmethylbenzimidazolinesulfonic acid, sodium	CIB.					salt.						3-[2-(2-Undecy1-2-imidazolin-1-y1)ethoxy]propionic acid, sodium salt.	UVC.					Anionic Surface-Active Agents												<pre>*Carboxylic acids (and salts thereof): *Amine salts of fatty, rosin, and tall oil acids:</pre>						Coconut oil acids, triethanolamine salt	EMR.					Oleic acid, butylamine salt	DYS.					Oleic acid, diethylamine salt	WTC.					Oleic acid, triethanolamine saltSaturated C ₁₂ -C ₁₈ acids, ethanolamine salt	DOM, HAL, TCC.					Stearic acid, morpholine salt	SBP. CSB.					Stearic acid, N, N, N', N'-tetrakis(2-hydroxyethyl)-	ICI.					ethylenediamine salt.					TABLE 19B. --Surface-active agents for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	Chemical	Manufacturers' identification codes (according to list in table 22)		---	---		Anionic Surface-Active AgentsContinued			*Carboxylic acids (and salts thereof)Continued *Amine salts of fatty, rosin, and tall oil			acidsContinued	NE GEN MOG		Stearic acid, triethanolamine salt	AML, GLY, TCC.		Tallow acids, triethenolamine salt	SBP.		*Carboxylic acids having amide or ester linkages:	NOW.		N-(Coconut oil acyl)polypeptide, ammonium salt	MYW.		N-(Coconut oil acyl)polypeptide, potassium salt N-(Coconut oil acyl)polypeptide, sodium salt	MYW.		N-(Coconut oil acyl)sarcosine	MYW.		N-(Coconut oil acyl)sarcosine, sodium salt	HMP.		*N-Lauroylsarcosine, sodium salt	CP, GGY, HMP, ONX.		N-(Mixed alkylsulfonyl)glycine, sodium salt	GAF.		N-Oleoylpolypeptide, sodium salt	IMI, MYW.		N-Oleoylsarcosine, sodium salt	GAF, GGY.		Phthalic acid, octadecyl ester, potassium salt	CIB.		Stearolactolactic acid	GLY.		Stearolactolactic acid, calcium salt	GLY.		Stearolactolactic acid, sodium salt	GLY.		N-Stearoylsarcosine, sodium salt	GGY.		N-Undecencylpolypeptide, potassium salt	MYW.		All other	HMP.		*Potassium and sodium salts of fatty, rosin, and tall			oil acids:			Castor oil acids, potassium salt	ARL, BAC, SEA.		Castor oil acids, sodium salt	HAL, MRV, WHI.		*Coconut oil acids, potassium and sodium salts:			*Potassium salt	ACE, BSC, CSB, DSO, DYS, GRL, HNT, JRG, LUR, NMC, PCH			PG, SWT.		*Sodium salt	CON, CP, JRG, LEV, NPR, PG, PRX.		Coconut oil and tallow acids, sodium salt	GRC.		*Corn oil acids, potassium and sodium salts:			Potassium salt	HNT, PCH.		Sodium salt	LUR, NMC.		Cottonseed oil acids, sodium salt	WHI.		Lauric acid, potassium salt	DRW, NOP, VAL.		Mixed vegetable fatty acids, potassium salt	AML, ARL, DYS, GRC, GRL, PCH, SWT.		*Oleic acid, potassium salt	AML, BSC, BSW, CCL, CIB, CPY, DAN, FRS, GYR, HNT, NMC		*Oleic acid, sodium salt	NOP, QCP, S, SHP, USR, WBG, WIC.		notete deta, bottom batterness.	BSW, FRS, LEV, LUR, MRV, NOP, SEA, SNW, SWT, USR, WBG		Olive oil acids, sodium salt	HNT, LUR.		Palm oil acids, sodium salt	LUR.		Peanut oil acids, potassium salt	KAL, SLC.		Rosin acids, potassium salt	ASY, FRS, GRC, x.		Rosin acids, sodium salt	ASY, CRT, MRA, PLC, PRX, QCP, x.		Soybean oil acids, potassium salt	CON, DRW, DYS.		*Stearic acid, potassium and sodium salts:			Potassium salt	GYR, VAL, WTC.		Sodium salt	GYR, LEV, MAL, NOP, WTC.		*Tall oil acids, potassium and sodium salts:			*Potassium salt	ACE, ASY, BSC, CON, CSB, DRW, DYS, EFH, FRS, GAF, GYF			HNT, LUR, NMC, PNX, QCP, USR, VAL, WHI, x.		*Sodium salt	CPY, GYR, MRV, PCS, PRX, QCP, TXT, UNP, x.		Tallow acids, potassium salt	ASY, CPY, NMC, PG, SWT.		*Tallow acids, sodium salt	ASY, CON, CP, DYS, FRS, GYR, JRG, LEV, LUR, NMC, NOP,		411 adham	NPR, PG, PLC, PRX, QCP, SWT.		All other	NMC.		*Phosphoric and polyphosphoric acid esters (and			salts thereof):			*Alcohols and phenols, ethoxylated and phosphated:	CAR		Dinonylphenol, ethoxylated and phosphated Dodecyl alcohol, ethoxylated and phosphated	GAF.			GAF.		Dodecyl alcohol, ethoxylated and phosphated, barium salt.	GAF.			TOT		Dodecylphenol, ethoxylated and phosphated	TCI.		2-Ethylhexanol, ethoxylated and phosphated	TCI, WAY.		Iso-octyl alcohol, ethoxylated and phosphated	GAF.		*Nonylphenol, ethoxylated and phosphated	CRT, CST, GAF, SEY.			GAF, NLC, RTF, SEY, TCC, TXT, VAC, WAY, WSN.	TABLE 19B. --Surface-active agents for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	Chemical	Manufacturers' identification codes (according to list in table 22)		---	---		Anionic Surface-Active AgentsContinued			*Phosphoric and polyphosphoric acid esters (and salts thereof)Continued			*Alcohols and phenols, ethoxylated and phosphated Continued			Nonylphenol, ethoxylated and phosphated, barium salt.	GAF.		9-Octadecenyl alcohol, ethoxylated and phosphated Octylphenol, ethoxylated and phosphated	GAF.		Octylphenol, ethoxylated and phosphated, magnesium salt.	х.		Phenol, ethoxylated and phosphated Tridecyl alcohol, ethoxylated and phosphated All other	GAF, LUR, NLC, WAY.		*Alcohols, phosphated or polyphosphated:	NLC.		Decyl, dodecyl, and octyl phosphate, morpholine salt	DUP.		2-Ethylhexyl phosphate	MOA, RCD.		*2-Ethylhexyl phosphate, sodium salt	SEY, UCC, UVC.		2-Ethylhexyl polyphosphate	UVC. CST, DEX.		Mixed alkyl phosphate	BCN, CST, DUP.		Mixed alkyl phosphate, diethanolamine salt	DUP.		Octadecyl phosphate, triethanolamine salt9-Octadecenyl phosphate	RCD. DUP.		Octyl phosphate	DUP, SFA.		Octyl phosphate, alkylamine salt	DUP.		Octyl phosphate, potassium salt	DUP. DEX, TXT.		Octyl polyphosphate, alkylamine salt	TXT.		Octyl polyphosphate, potassium salt	X.		*Sulfonic acids (and salts thereof):	SFA.		*Alkylbenzenesulfonates:			*Dodecylbenzenesulfonates: *Dodecylbenzenesulfonic acid	ATTD GO GDM GMT TRGE LITT COME AND AND AND		"Dodecy identicated actu	ARD, CO, CRT, CTL, EMK, HLI, LEV, MON, NAC, PIL, RCD, RTF, STP, TCI, TDC, TEN, TXT, WTC.		Dodecylbenzenesulfonic acid,																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																		
ammonium salt	ARL, CTL.		Dodecylbenzenesulfonic acid, butylamine salt *Dodecylbenzenesulfonic acid, calcium salt	APD, NLC, RCD, RH, RTF, STP, WTC, x.		Dodecylbenzenesulfonic acid, diethanolamine salt	VAL.		Dodecylbenzenesulfonic acid, ethylenediamine salt	APD, RTF.		*Dodecylbenzenesulfonic acid, isopropanolamine salt *Dodecylbenzenesulfonic acid, isopropylamine salt	CTL, RCD, x. APD, ARD, CTL, RCD, RTF, SNW, STP.		Dodecylbenzenesulfonic acid, (mixed alkyl)-amine salt.	PCS, STP, VAL, WTC.		Dodecylbenzenesulfonic acid, potassium salt Dodecylbenzenesulfonic acid, propoxylated	VAL.		ethylenediamine salt.	PCS.		*Dodecylbenzenesulfonic acid, sodium salt	AAC, APX, ARD, ARL, ATR, BLA, CO, CP, CRT, CTL, DEP, DSO, DYS, EFH, HLI, HRT, LEV, MON, NAC, NOP, PEK, PG, PIL, PRX, RCD, STP, SWT, TEN, UNP, WIC, WTC.		Dodecylbenzenesulfonic acid, strontium salt	RTF. AAC, AML, ARD, ARL, ATR, CRT, CTL, DSO, DYS, HLI, NAC,		*Other alkylbenzenesulfonates:	PCS, PIL, RCD, RTF, SOS, STP, SWT, TXT, VAC.		Decylbenzenesulfonic acid, sodium salt	ADM, MON.		Didodecylbenzenesulfonic acid, sodium salt	CO. CO.		Pentadecylbenzenesulfonic acid, potassium salt	STP.		Pentylbenzenesulfonic acid, sodium salt	MON.		*Tridecylbenzenesulfonic acid* Tridecylbenzenesulfonic acid, sodium salt	KON, NPR, TXT.		Undecylbenzenesulfonic acid	BLA, CP, NPR, RCD, WTC.		Undecylbenzenesulfonic acid, sodium salt	TXT.		*Benzene-, cumene-, toluene-, and xylenesulfonates: Benzenesulfonic acid, sodium salt	MES		Cumenesulfonic acid, ammonium salt	NES.		2,4-Dinitrobenezenesulfonic acid, sodium salt	NES.		Toluenesulfonic acid	NES, RCD.		Toluenesulfonic acid, potassium salt	NES, RCD, STP, TXN.	TABLE 19B. --Surface-active agents for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	Chemical	Manufacturers' identification codes (according to list in table 22)		--	--		Anionic Surface-Active AgentsContinued			Sulfonic acids (and salts thereof)Continued			*Benzene-, cumene-, toluene-, and xylenesulfonates			Continued			Toluenesulfonic acid, sodium salt	CO, NES, PIL, RCD, STP, WTC.		*Xylenesulfonic acid, ammonium salt	ATR, CO, HLI, NES, RCD, STP, TXN, WTC.		Xylenesulfonic acid, potassium salt	NES, STP.		*Xylenesulfonic acid, sodium salt	ATR, CO, HLI, JRG, NES, PIL, RCD, STP, TXN, WTC.		*Ligninsulfonates: Ligninsulfonic acid, aluminum salt	MAD		Ligninsulfonic acid, ammonium salt	MAR. CRZ.		*Ligninsulfonic acid, calcium salt			Ligninsulfonic acid, chromium salt	CRZ, CWP, GLY, LKY, LPC, MAR, PSP.		Ligninsulfonic acid, iron salt	CRZ.		Ligninsulfonic acid, magnesium salt	LPC, MAR.		Ligninsulfonic acid, mixed salts	PSP.		*Ligninsulfonic acid, sodium salt	CRZ, CWP, MAR, WVA.		*Naphthalenesulfonates:	OLD) OHI) MAILY WYAS		Benzylnaphthalenesulfonic acid	GAF.		Butylnaphthalenesulfonic acid	SCP.		*Butylnaphthalenesulfonic acid, sodium salt	CLD, CMG, GGY, PFZ.		Dibutylnaphthalenesulfonic acid	GAF, MRA, S.		Didodecylnaphthalenesulfonic acid, sodium salt	PFZ.		Diisopropylnaphthalenesulfonic acid	DUP, GAF, GRD, NAC.		Diisopropylnaphthalenesulfonic acid, sodium salt	GAF, PFZ.		Dipentylnaphthalenesulfonic acid, ammonium salt	NLC.		Dipentylnaphthalenesulfonic acid, (mixed alkyl)amine	NLC.		salt.	 -		Dipentylnaphthalenesulfonic acid, sodium salt	GGY.		Isopropylnaphthalenesulfonic acid	DUP, NOP, ONX.		Methylenebis(2-naphthalenesulfonic acid)	DUP.		6,6'-Methylenebis(2-naphthalenesulfonic acid), calcium	DUP.		salt.			Methylnaphthalenesulfonic acid, sodium salt	UDI.		Methylnonylnaphthalenesulfonic acid, sodium salt	UDI.		Tetrahydronaphthalenesulfonic acid	DUP.		*Other sulfonic acids:			*N-Methyl-N-oleoyltaurine, sodium salt	CRC, CRT, DEP, GAF, HRT, MRA, NOP.		*Sulfosuccinamic acid derivatives:			N-(1,2-Dicarboxyethyl)-N-octadecylsulfosuccinamic	ACY.		acid, tetrasodium salt.			N-(2-Hydroxyethyl)-N-(tallow alkyl)sulfosuccinamic	SCP.		acid, disodium salt.			N-Octadecylsulfosuccinamic acid, disodium salt	ACY.		N-(Oleoyloxyisopropyl)sulfosuccinamic acid, disodium	WTC.		salt.	•		*Sulfosuccinic acid esters:			Sulfosuccinic acid, bis(2,6-dimethyl-4-heptyl) ester,	GAF.		sodium salt.	ACTU COO COM DAN THE THE ACTU AND THE ACTU		*Sulfosuccinic acid, bis(2-ethylhexyl) ester, sodium	ACY, CRC, CRT, CST, DAN, EFH, EMK, GGY, HRT, ICI, MOA		salt.	PC, SBC, TCI.		Sulfosuccinic acid, bis(tallow monoglyceride) ester, sodium salt.	ACY.			ACTV MOA CARR		Sulfosuccinic acid, dihexyl ester, sodium salt	ACY, MOA, SNW.		Sulfosuccinic acid, dioctyl ester, sodium salt Sulfosuccinic acid, dipentyl ester, sodium salt	RH.		Sulfosuccinic acid, ditridecyl ester, sodium salt	ACY.		*All other sulfonic acids:	ACY, MOA.		Butylhydroxybiphenylsulfonic acid	RBC.		Butylhydroxybiphenylsulfonic acid, sodium salt	i '		Coconut oil acids, 2-sulfoethyl ester, sodium salt	ICO. GAF, LEV.		(Coconut oil isethionate, sodium salt).	war, mat.		Dodecyldiphenyloxidedisulfonic acid, disodium salt	DOW.		Dodecyl sulfoacetate	NAC.		Clycerol monostearate sulfoacetate, sodium salt	WTC.		Lauric acid, 2-sulfoacetamidoethyl ester, potassium	WTC.		salt.	#10°		2-Lauroyloxy-1-propanesulfonic acid	SDH.		Mixed alkanesulfonic acid	RET, TXT.		Mixed alkanesulfonic acid, sodium salt	DUP, RET, VPC.		TOTAL ATTENDED OF COLUMN SOT PROFILE P	DOI, 1001) 4100				TABLE 19B.--Surface-active agents for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	**All other sulfonic acids—Continued **All other sulfonic acids, Continued Octylphenol, ethoxylated and sulfonated, sodium salt—Petroleumsulfonic acid, water soluble (acid layer), sodium salt. Taurine derivatives: N-(Coconut oil acyl)-N-methyltaurine, sodium salt—N-Oyclohexyl-N-palmitoyltaurine, sodium salt—GAF. N-Methyl-N-palmitoyltaurine, sodium salt—GAF. N-Methyl-N-(tall oil acyl)taurine, sodium salt—GAF. All other————————————————————————————————————	Chemical	Manufacturers' identification codes (according to list in table 22)																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																											
--	---	---		**Sther sulforine solds—Continued Cotylphenol, ethorylated and sulforine solds—Continued Cotylphenol, ethorylated and sulfornated, sodium salt-sodium salt. **Statum salt.** **Nethodocont oil sayl)—"*Statum salt—"*Nethodocont oil sayl)—"*Statum salt."* **Nethodocont oil sayl)—"*Statum salt—"*Statum salt—"*S	Anionic Surface-Active AgentsContinued			Devylphenol, ethoxylated and sulfonated, sodium salt- Petrolemumilcanic soid, water soluble (soid layer) STM. SON. STM. SON. STM. STM. SON. STM.	*Sulfonic acids (and salts thereof)Continued *Other sulfonic acidsContinued			Petroleumualfond soid, water soluble (soid layer), sodium salt. Taurine derivatives: N-(Cocount oil sayl)-N-methypitaurine, sodium salt. N-(Cocount oil sayl)-N-methypitaurine, sodium salt. N-Methyl-N-(tall oil ogyl)surine, sodium salt. N-Methyl-N-(tallow sayl)teurine, salt) sodium salt. N-Methyl-N-(tallow salt) sodium salt. N-Methyl coleste, sulfated, colester, sulfated, sodium salt. N-Methyl colester, sulfated, sodium salt. N-Methyl sulfate, sal		CDM DVI		N-(Gocomut of 1 eayl)-N-methyltaurine, sodium salt— N-Methyl-N-paint(cyltaurine, sodium salt— N-Methyl-N-(valiow sayl)teurine, salt)teurine, N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	Petroleumsulfonic acid, water soluble (acid layer), sodium salt.	1 - 7		N-Kytyl-N-paint toyl taurine, sodium salt— N-Methyl-N-paint on solium N-Methyl cleate, sulfated, sodium sulfate, s		GAR MYT		N-Methyl-N-(tallor acyl)taurine, sodium salt— N-Methyl-N-(tallor acyl)taurine, sodium salt— All other————————————————————————————————————				N-Methyl-N-(tall oil acyl)taurine, sodium sait— N-Methyl-N-(tall or acyl)taurine, sodium sait— Silruric acid esters (and salts thereof): **Anids, sandes, and esters, sulfated: **Coconut oil acids - estanciamine condensate, sulfated, potassium sait. **2-Entopethyl cleate, sulfated, sodium sait— **2-Entopethyl cleate, sulfated, sodium sait— Glyserol tricleate, sulfated, sodium sait— **Silry cleate, **Alcohola and phenola, sulfated; **Silry cleate, sodium sait— cleate		I .		All other————————————————————————————————————				### Waids, and enters, sulfated, potessium salt— ### Waids and enters, sulfated, potessium salt— ### Waids and sulfated older edde:				*Motics, amides, and esters, sulfated; *Occount of lacids - ethanolamine condensate, sulfated, potassium salt. *Exters of sulfated oleic soid: 2-Ritoxyethyl oleste, sulfated, sodium salt		STC.		#*Coconut oil ecide - ethanolamine condensate, sulfated, potassius mealt. #*Extere of sulfated oleic soid: 2-Bitoyrethyl oleate, sulfated, sodium salt				potassium salt. *Extere of sulfated coleic acid: 2-Butoxyethyl cleate, sulfated, sodium salt		DEX. EMK. HRT. ONX.		2-Butoxyethyl cleate, sulfated, sodium salt————————————————————————————————————				#Bityl cleate, sulfated, sodium salt————————————————————————————————————				Ethyl cleate, sulfated, sodium salt————————————————————————————————————				##Sorpoy cloates, sulfated, sodium salt— ##Sorpoy cloates, sulfated, sodium salt— ##Total cit, sulfated, sodium salt— ##Cocont cit aside, and esters, sulfated: ##Cocont cit aside - isopropenolamine condensate, sulfated, sodium salt. ##Cocont cit aside - isopropenolamine condensate, sulfated, amonium salt. ##Cocont cit aside - ethenolamine condensate, sulfated, sodium salt. ##Cocont cit aside - ethenolamine condensate, sulfated, sodium salt. ##Cocont cit aside - ethenolamine condensate, sulfated, sodium salt. ##Cocont cit aside - ethenolamine condensate, sulfated, sodium salt. ##Cocont cit aside - ethenolamine salt— ##Ricohols and phenols, sulfated: ##Dodecyl sulfate salts: ##Commonium salt— ##Ricohols and phenols sulfated: ##Rico				#Isopropyl cleate, sulfated, sodium salt————————————————————————————————————				Methyl cleate, sulfated, sodium salt————————————————————————————————————				**Cleic scid, sulfated, disodium salt————————————————————————————————————				*Tall oil, sulfated, sodium salt				*Tall oil, sulfated, sodium salt	*Oleic acid, sulfated, disodium salt	ACT, ACY, CRT, DRW, EMR, GAF, LEA, LUR, MRV, NOP, SCO,		#Other acids, amides, and esters, sulfated: Bityl roinoleate, sulfated, disodium salt— Cocomut oil acids - isopropanolamine condensate, sulfated, sodium salt. Glycerol monoester of occomut oil acids, sulfated, ammonium salt. 9-Octadecenyl acetate, sulfated, sodium salt————————————————————————————————————	*Tell oil sulfated sodium salt			Coconut oil acids - isopropanolamine condensate, sulfated, sodium salt. Glycerol monoester of coconut oil acids, sulfated, amonium salt. Glycerol monoester of coconut oil acids, sulfated, sodium salt. Glycerol monoester of coconut oil acids, sulfated, sodium salt. Glect acid - ethenolamine condensate, sulfated, sodium salt. Glect acid - ethenolamine condensate, sulfated, sodium salt. Glect acid - ethenolamine condensate, sulfated, sodium salt. Alc other		AOI, AIA, IOI, FILV, NOI, SEA, WIII.		sulfated, sodium salt. Glycerol monoester of coconut oil acids, sulfated, ammonium salt. Glycerol monoester of coconut oil acids, sulfated, sodium salt. Gleic acid - ethanolamine condensate, sulfated, sodium salt. Gleic acid - ethanolamine salt. SCP. sodium salt. Gleostearin, sulfated, sodium salt. SCP. sodium salt. Gleostearin, sulfated, disodium salt. Ricinoleic acid, sulfated, disodium salt. SCP. SCR. SCR. NOP. All other. SCR. NOP. All other. SCR. NOP. All other. SCR. NOP. All other. SCR. NOP. ALC, CTI., DUF, ONX, STP. DUF, MAC, CTI., DUF, HLI, JRG, ONX, STP. DUF, MAC, CTI., DUF, HLI, JRG, ONX, STP. DUF, MAC, CTI., UII, DUF, HLI, JRG, ONX, FCI, PCS, PG, RCD, RET. SCR. WTriethanolamine salt. SCR. AC, CTI., DUF, ONX, STP. DUF, MAC, CTI., DUF, HLI, JRG, ONX, STP. DUF, MAC, CTI., UII, DUF, HLI, JRG, ONX, PCI, PCS, PG, RCD, RET. AC, CTI., CUI, DUF, HLI, JRG, ONX, PCI, PCS, PG, RCD, RET. AC, UCC, WTC. DUF, MAC, ONY, PC. ACC, UTI., DUF, HLI, ONX, PCS, PG, RCD, RET. ACC, CTI., CUI, DUF, HLI, JRG, ONX, PCI, PCS, PG, RCD, RET. ACC, CTI., CUI, DUF, HLI, JRG, ONX, PCI, PCS, PG, RCD, RET. ACC, CTI., CUI, DUF, HLI, JRG, ONX, PCI, PCS, PG, RCD, RET. ACC, CTI., CUI, DUF, HLI, JRG, ONX, PCI, PCS, PG, RCD, RET. ACC, CTI., CUI, DUF, HLI, JRG, ONX, PCI, PCS, PG, RCD, RET. ACC, CTI., CUI, DUF, HLI, JRG, ONX, PCI, PCS, PG, RCD, RET. ACC, CTI., CUI, DUF, HLI, ONX, PCS, PG, RCD, RET. ACC, CTI., CUI, DUF, HLI, ONX, PCS, PG, RCD, RET. ACC, CTI., CUI, DUF, HLI, ONX, PCS, PG, RCD, RET. ACC, CTI., CUI, DUF, HLI, JRG, ONX, PCI, PCS, PG, RCD, RET. ACC, CTI., CUI, DUF, HLI, ONX, PCS, PG, RCD, RET. ACC, CTI., CUI, DUF, HLI, ONX, PCS, PG, RCD, RET. ACC, CTI., CUI, DUF, DUF, HLI, ONX, PCS, PG, RCD, RET. ACC, CTI., CUI, DUF, HLI, ONX, PCS, PG, RCD, RET. ACC, CTI., CUI, DUF, HLI, ONX, PCS, PG, RCD, RET. ACC, CTI., CUI, DUF, HLI, ONX, PCS, PG, RCD, RET. ACC, CTI., CUI, DUF, HLI, ONX, PCS, PG, RCD, RET. ACC, CTI., CUI, DUF, HLI, ONX, PCS, PG, RCD, RET. ACC, CTI., CUI, DUF, HLI, ONX, PCS, PG, RCD, RET. ACC, CTI., CUI, DUF, HLI, ONX, PCS, PG, RCD,		NOP.		Glycerol moncester of coconut oil acids, sulfated, ammonium salt. Glycerol moncester of coconut oil acids, sulfated, sodium salt. 9-Cetadecenyl acetate, sulfated, sodium salt————————————————————————————————————		APX.		Glycerol moncester of coconut cil acids, sulfated, sodium salt. 9-Octadeceryl acetate, sulfated, sodium salt. Oleci acid - ethanolamine condensate, sulfated, sodium salt. Oleostearin, sulfated, sodium salt. Ricincleic acid, sulfated, disodium salt. **All other	Glycerol monoester of coconut oil acids, sulfated,	CP.		Oleic acid - ethanolamine condensate, sulfated, sodium salt. Oleostearin, sulfated, sodium salt. Oleostearin, sulfated, sodium salt. Ricinoleic acid, sulfated, disodium salt. All																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																														
other. All other. All other. Amnonium salt. DUP. Amnonium salt. DUP. Amnonium salt. DUP. AMC, CTL, DUP, ONX, STP. AMC, CTL, DUP, HLI, JRG, ONX, STP. DUP. AMGgnesium salt. Whdgnesium salt. Wholethanolamine Dup. Wholethanolamine salt. Dup. Wholethanolamine salt. Dup. Wholethanolamine salt. Dup. Wholethanolamine salt. Dup. Wholethanolamine salt. Dup. Mired linear alcohols, sulfated, ammonium salt. Mixed linear alcohols, sulfated, polyamine	Glycerol monoester of coconut oil acids, sulfated,	AAC, CP.		Cleic acid - ethanolamine condensate, sulfated, sodium salt. Cleostearin, sulfated, sodium salt		DUP.		Ricinoleic acid, sulfated, sodium salt————————————————————————————————————		SCP.		Ricinoleic acid, sulfated, disodium salt————————————————————————————————————				#All other————————————————————————————————————				*Alcohols and phenols, sulfated: *Dodecyl sulfate salts: 2-Amino-2-methylpropanol salt				2-Amino-2-methylpropanol salt				Ammonium salt — AAC, CTL, DUP, ONX, STP. Diethanolamine salt — DUP, Isopropanolamine salt — JRG. *Magnesium salt — AAC, CTL, DUP, HLI, JRG, ONX, STP. DUP, Potassium salt — AAC, CTL, HLI, STP. CTL, HLI, PG. AAC, CTL, CUL, DUP, HLI, JRG, ONX, PCI, PCS, PG, RCD, RET. *Triethanolamine salt — AAC, CTL, CUL, DUP, HLI, JRG, ONX, PCI, PCS, PG, RCD, RET. **Z-Ethylhexyl sulfate, sodium salt — AAC, UCC, WTC. **Cotyl sulfate, sodium salt — Coconut oil alkyl sulfated: Iinear alcohols, sulfated: Coconut oil alkyl sulfate, triethanolamine salt — Coconut and sperm oil alkyl sulfate, sodium salt — Decyl sulfate, sodium salt — PCS. Hexadecyl and 9-octadecenyl sulfate, sodium salt — Hexadecyl sulfate, sodium salt — Hexadecyl sulfate, sodium salt — Hexadecyl sulfate, sodium salt — PCS. Mixed linear alcohols, sulfated, ammonium salt — Mixed linear alcohols, sulfated, ammonium salt — Mixed linear alcohols, sulfated, ammonium salt — Mixed linear alcohols, sulfated, polyamine NLC.				Diethanolamine salt————————————————————————————————————	2-Amino-2-methylpropanol salt	DUP.		N, N-Diethylcyclohexylamine salt	Ammonium salt			Isopropanolamine salt	N. N-Diethylcyclohexylamine salt			#Codium salt	Isopropanolamine salt	JRG.		*Sodium salt				*Triethanolamine salt				*Triethanolamine salt	*Sodium salt			*2-Ethylhexyl sulfate, sodium salt	*Triethanolamine salt	AAC, CTL, CUL, DUP, HLI, ONX, PCS, PG, RCD, RET, STP,		**Cctadecyl sulfate, sodium salt	*2-Ethylhexyl sulfate, sodium salt	AAC, UCC, WTC.		*Other alcohols and phenols, sulfated: Linear alcohols, sulfated: Coconut oil alkyl sulfate, triethanolamine salt Coconut and sperm oil alkyl sulfate, sodium salt Decyl sulfate, sodium salt	*Octadecyl sulfate, sodium salt	DUP, EMK, ONX, PG.		Linear alcohols, sulfated: Coconut oil alkyl sulfate, triethanolamine salt Coconut and sperm oil alkyl sulfate, sodium salt Decyl sulfate, sodium salt		AAC, DUP, PCS, SEY.		Coconut oil alkyl sulfate, triethanolamine salt Coconut and sperm oil alkyl sulfate, sodium salt Decyl sulfate, sodium salt				Coconut and sperm oil alkyl sulfate, sodium salt Decyl sulfate, sodium salt Decyl sulfate, triethanolamine salt		PCS.		Decyl sulfate, triethanolamine salt				Hexadecyl and 9-octadecenyl sulfate, sodium salt Hexadecyl sulfate, sodium salt Hexyl sulfate, potassium salt				Hexadecyl sulfate, sodium salt				Hexyl sulfate, potassium salt Mixed linear alcohols, sulfated, ammonium salt Mixed linear alcohols, sulfated, polyamine salt Mixed linear alcohols, sulfated, polyamine salt				Mixed linear alcohols, sulfated, ammonium salt PCS, TXT. Mixed linear alcohols, sulfated, polyamine salt NLC.				Mixed linear alcohols, sulfated, polyamine salt NLC.		PCS, TXT.		Mixed linear alcohols, sulfated, sodium salt LAK, PCS, TXT.		NLC.			Mixed linear alcohols, sulfated, sodium salt	LAK, PCS, TXT.	${\it TABLE~19B.--Surface-active~agents~for~which~U.S.~production~or~sales~were~reported,~identified~by~manufacturer,~1966--Continued}$	Chemical	Manufacturers' identification codes (according to list in table 22)		---	---		Anionic Surface-Active AgentsContinued			Sulfuric acid esters (and salts thereof)Continued			*Alcohols and phenols, sulfatedContinued	·		*Other alcohols and phenols, sulfatedContinued			Linear alcohols, sulfatedContinued	mp.		Nonyl sulfate, sodium salt	TEN. DUP.		Tetradecyl sulfate, sodium salt			All other	PCS.		Phenols and nonlinear alcohols, sulfated:			Branched hexadecyl sulfate, sodium salt	APX.		3,9-Diethyl-6-tridecyl sulfate, sodium salt 7-Ethyl-2-methyl-4-undecyl sulfate, sodium salt			Trichlorophenol sulfate, ethanolamine salt			Tridecyl sulfate, sodium salt			*Ethers, sulfated:			*Alkylphenols, ethoxylated and sulfated:			Dodecylphenol, ethoxylated and sulfated, ammonium	GAF.		salt. (Mixed alkyl)phenol, ethoxylated and sulfated,	CAR		sodium salt.	GAF.		Nonylphenol, ethoxylated and sulfated, ammonium	CIB, CTL, GAF, STP, TXT.		salt.	() () () () () () () () () ()		Nonylphenol, ethoxylated and sulfated, ethanolamine	GAF.		salt.			Nonylphenol, ethoxylated and sulfated, sodium salt			Nonylphenol, ethoxylated and sulfated, triethanol- amine salt.	ARL.		Octylphenol, ethoxylated and sulfated, sodium salt	RH.		*Dodecyl alcohol, ethoxylated and sulfated, ammonium	AAC, CTL, ONX, PG.		salt.	111, 111, 111, 111		*Dodecyl alcohol, ethoxylated and sulfated, sodium salt-	AAC, CTL, CUL, DUP, ONX, PCS, RCD, RET, RTF, STP.		Mixed linear alcohols, ethoxylated and sulfated,	CO, CRT, GAF, SCP, TCI, TXT, UCC.		sodium salt.			*Other sulfated ethers: Dodecyl and tetradecyl alcohols, ethoxylated and	LEV.		sulfated, ammonium salt.	DE4.		Dodecyl and tetradecyl alcohols, ethoxylated and	STP.		sulfated, potassium salt.			Hexyloxypropyl sulfate, sodium salt	S.		Mixed linear alcohols, ethoxylated and sulfated, ammonium salt.	CO, LAK, NLC, PIL, RCD, SCP, SHC, STP, TXT, UCC.		Mixed linear alcohols, ethoxylated and sulfated,	CO, GAF, RCD, SHC, TXT.		potassium salt.	13, 42, 431, 431, 431		Sperm oil alcohol, ethoxylated and sulfated, sodium	DUP.		salt.	Dog Dop		Tridecyl alcohol, ethoxylated and sulfated, ammonium salt.	PCS, RCD.		Tridecyl alcohol, ethoxylated and sulfated, sodium	AAC, ARL, RCD.		salt.	12007 12007 10007		All other	APX, PCS, PG, SEY.		*Natural fats and oils, sulfated:	.		*Castor oil, sulfated, sodium salt	AAE, ACT, ACY, AML, APX, BRY, bSC, BSW, CRT, DEX, DRW,			DUP, GAF, HRT, ICI, KAL, KNG, LEA, LUR, MRA, MRD, MRV, NOP, ONX, PC, S, SCO, SCP, SEA, SLC, WHI, WHW.		*Coconut oil, sulfated, sodium salt	ACY, MRD, NOP, RTC, SEA, WHW.		*Cod oil, sulfated, sodium salt	ACT, CRT, DRW, MRD, NOP, S, SEA, WAW, WHI, WHW.		Cottonseed oil, sulfated, sodium salt	NOP, RTC.		Grease, other than wool, sulfated, sodium salt	NOP, SEA, WHI, WHW.		Herring oil, sulfated, sodium salt	WHI.		Lard, sulfated, sodium salt Mixed fish oils, sulfated, sodium salt	WAW. AML, SCO, WHI.		Mixed vegetable oils, sulfated, sodium salt	PCI.		Mustard seed oil, sulfated, sodium salt	LUR, NOP.		*Neat's-foot oil, sulfated, sodium salt	ACT, CRT, KAL, LUR, MRD, NOP, PC, SEA, WHW.		*Peanut oil, sulfated, sodium salt	ACY, ICI, LUR, NOP, SCP, SLC.		Redfish oil, sulfated, sodium salt	WHI.		*Ricebran oil, sulfated, sodium salt	EFH, KNG, LUR, NOP.		*Sperm oil, sulfated, sodium salt	CRT, DRW, HRT, KAL, MRD, NOP, ONX. ACT, CLD, CRT, DRW, HRT, KAL, KNG, LEA, MRD, NOP, ONX.		agram vany summarvay, sousant sum v	RTC, S, SEA, WHI, WHW.				TABLE 19B. --Surface-active agents for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	Chemical								ation (--	-------------------------------------	------------------------------	------------------------------	------------------------------	------	------	------	---------	-------------------	--		Anionic Surface-Active AgentsContinued												Sulfuric acid esters (and salts thereof)Continued *Natural fats and oils, sulfatedContinued *Tallow, sulfated, sodium salt	MR	O, NO							LEA, LU SNW, S			Whale oil, sulfated, sodium saltOther anionic surface-active agent: Tridecyl alcohol, ethoxylated and carbonated, sodium salt.	KNG. S.	٧.										Cationic Surface-Active Agents												*Amine oxides and oxygen-containing amines (except those having amide linkages): *2-(8-Heptadecenyl)-1-(2-hydroxyethyl)-2-imidazoline *2-Heptadecyl-1-(2-hydroxyethyl)-2-imidazoline *(Mixed alkyl)amine, ethoxylated	GGY, APD, HPC, AAC,	HDG, CIB, NLC, ARC,	MOA, GAF, PCS, VAC.	UVC. UVC. NOP, RTF.								*Other amine oxides and oxygen-containing amines (except those having amide linkages): Acyclic:		·		•								N, N-bis(2-hydroxyethyl)(coconut oil alkyl)amine oxide.	ARC,	ENJ.										N, N-Bis(2-hydroxyethyl)dodecylamineN, N-Bis(2-hydroxyethyl)octadecylamineN, N-Bis(2-hydroxyethyl)(tallow alkyl)amine	FIN.	FIN.										N, N-Bis(2-hydroxyethyl)(tallow alkyl)amine acetate (Coconut oil alkyl)amine, ethoxylated, acetate (Coconut oil alkyl)amine, ethoxylated, maleate N, N-Dimethylhexadecylamine oxide	PG. AAC, RPC. SDH. ONX.	APD,	ARC,	NLC,	SNW,	TCH,	VAC.																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																							
		(Hydrogenated tallow alkyl)amine, ethoxylated N-(2-Hydroxyethyl)-N,N',N'-tris(2-hydroxypropyl) ethylenediamine.	CIB,	TCH,	VAC.									N-(2-Hydroxyethyl)-N,N',N'-tris(2-hydroxypropyl) ethylenediamine distearate, methyl sulfate.	DUP.											Octadecylamine, ethoxylated	NLC.	ICI,	TCH.									N-(Tallow alkyl)trimethylenediamine, ethoxylated N, N, N', N'-Tetrakis(2-hydroxyethyl)ethylenediamine	ARC, NLC. DUP.	RTF.										N, N, N', N'-Tetrakis(2-hydroxypropyl)ethylenediamine, propoxylated and ethoxylated.	WYN.											N, N, N', N'-Tetrakis(2-hydroxypropyl)ethylenediamine dioleate, methyl sulfate.	DUP.				•							All otherCyclic:	GAF,	x.										2-(8-Heptadecenyl)-4,4-bis(hydroxymethyl)-2-oxazoline. 2-(8-Heptadecenyl)-4-hydroxymethyl-4-methyl-2-oxazoline.		UVC.										N-Hexadecylmorpholine N-(2-Hydroxyethyl)-1,2-diphenylethylenediamine	APD.	PCS.										1-(2-Hydroxyethyl)-2-nonyl-2-imidazoline	PCS,	UVC.										1-(2-Hydroxyethyl)-2-nor(coconut oil alkyl)-2- imidazoline.		UVC.										<pre>1-(2-Hydroxyethyl)-2-nor(tall oil alkyl)-2- imidazoline. 1-(2-Hydroxyethyl)-2-tridecyl-2-imidazoline</pre>		UVC.										hydrochloride. 1-(2-Hydroxyethyl)-2-undecyl-2-imidazoline		UVC.										Piperazine, ethoxylated N-(Soybean oil alkyl)morpholine *Amines and amine oxides having amide linkages:	GAF.											*Carboxylic acid - diamine and polyamine condensates: Adipic and stearic acids - diethylenetriamine	APX.											condensate. *Coconut oil acids - diethylenetriamine condensate		NOP,	mam								${\it TABLE~19B.--Surface-active~agents~for~which~U.S.~production~or~sales~were~reported,~identified~by~manufacturer,~1966---Continued}$	Chemical	Manufacturers' identification codes (according to list in table 22)		--	--		Cationic Surface-Active AgentsContinued			*Amines and amine oxides having amide linkagesContinued *Carboxylic acid - diamine and polyamine conden-			<pre>satesContinued Coconut oil acids - N, N-dimethyltrimethylenediamine condensate.</pre>	JRG, RCD, TXT.		Mixed fatty acids - polyalkylenepolyamine condensate	NLC.		*Oleic acid - diethylenetriamine condensate Oleic acid - diethylenetriamine condensate, acetic	APD, HDG, PCS, TXT. PCS.		<pre>acid salt. Oleic acid - N, N-dimethyltrimethylenediamine condensate.</pre>	CCW, SNW.		Pelargonic acid - tetraethylenepentamine condensate	ICI.		Stearic acid - diethylenetriamine condensate	APX, CST, DEP, HRT, ONX, PCS, S.		Stearic acid - N, N-diethylethylenediamine condensate Stearic acid - dipropylenetriamine condensate	CBP. JOR.		Stearic acid - dipropylenetifamine condensate Stearic acid - tetraethylenepentamine condensate	ICI, ONX, PCS.		Tall oil acids - diethylenetriamine condensate	NCW.		Tall oil acids - polvalkylenepolyamine condensate	TXT, UVC.		All other*Carboxylic acid - diamine and polyamine condensates,	EMR, VND, WM.		ethoxylated: Coconut oil acids - diethylenetriamine condensate,	TCC.		<pre>polyethoxylated. Coconut oil acids - ethylenediamine condensate, monoethoxylated.</pre>	ARL, NOP.		*Oleic acid - ethylenediamine condensate, mono- ethoxylated.	CLD, DEX, NOP, SOC, TNA.		Palm oil acids - ethylenediamine condensate, mono- ethoxylated.	APX.		Stearic acid - diethylenetriamine condensate, poly- ethoxylated. *Stearic acid - ethylenediamine condensate, mono-	AML, CLD, CMG, CST, DEP, DEX, ICI, MRA, NOP, S, SNW		ethoxylated. Stearic acid - ethylenediamine condensate, poly-	APD.		ethoxylated. *Other amines and amine oxides having amide linkages:	ara.		N, N-Bis(2-hydroxyethyl)-2-(stearamidomethoxy)-ethylamine.	CIB.		3-Lauramido-N, N-dimethylpropylamine oxide Polypeptide, ethyl ester	SNW.		Rosinpolyamidoimidazoline	GRD, UVC.		Stearic acid - N-(2-cyanoethyl)diethylene-	CIB.		triamine condensate. (amine/acid ratio = $1/2$).			*Amines, not containing oxygen (and salts thereof):			*Amine salts:			(Coconut oil alkyl)amine acetate	ADM, ARC, FOR.		N-(Coconut oil alkyl)trimethylenediamine acetate	ARC, PCS.		(Hydrogenated tallow alkyl)amine acetate(9-Octadecenyl)amine acetate	ADM, ARC.		Octadecenyl)amine acetate	ACY, ARC.		Octylamine acetate	ARC.		(Sowhean oil alkyl) amine acetate	ARC.		(Tallow alkyl)amine acetate	ADM, ARC, FOR.		N-(Tallow alkyl)trimethylenediamine acetate	ARC, FOR.		N-(Tallow alkyl)trimethylenediamine naphthenate	APD, FOR.		N-(Tallow alkyl)trimethylenediamine oleate	FOR.		All other	ADM.		*Diamines and polyamines: 1-(2-Aminoethyl)-2-(8-heptadecenyl)-2-imidazoline	NLC.		1-(2-Aminoethyl)-2-heptadecyl-2-imidazoline	PCS.		1-(2-Aminoethyl)-2-(mixed alkyl)-2-imidazoline	RTF.		1-(2-Aminoethyl)-2-nor(tall oil alkyl)-2-imidazoline	NLC.		*N-(Coconut oil alkyl)trimethylenediamine	ARC, FOR, GNM, HUM.			· PCS.		2-(8-Heptadecenyl)-2-imidazoline			2_Heptadecvl-2-imidazoline	SCO.		2-Heptadecyl-2-imidazoline N-(Mixed alkyl)polyethylenepolyamine	· CCW.		2_Heptadecvl-2-imidazoline	CCW.	${\it TABLE~19B.--Surface-active~agents~for~which~U.S.~production~or~sales~were~reported,~identified~by~manufacturer,~1966---Continued}$	Chemical	Manufacturers' identification codes (according to list in table 22)		--	---		Cationic Surface-Active AgentsContinued			*Amines, not containing oxygen (and salts thereof)			Continued *Primming and polyromings Continued			*Diamines and polyaminesContinued N-(Tallow alkyl)dipropylenetriamine	CARC		*N-(Tallow alkyl)trimethylenediamine			*Primary monoamines:	12toy 1 orby Grandy House		*(Coconut oil alkyl)amine			(Cottonseed oil alkyl)amine			*Dodecylamine Hexadecylamine	1200) 1 dity diame		*(Hydrogenated tallow alkyl)amine			(Mixed alkyl)amine			(Mixed tert-alkyl)amine	RH.		*9-Octadecenylamine	1210) 1 010) 0.1213		*OctadecylamineOctylamine	1200) 1000) 01000		(Soybean oil alkyl)amine	1 1		(Tall oil alkyl)amine			*(Tallow alkyl)amine	ADM, ARC, FOR, GNM, HUM.		*Secondary and tertiary monoamines:			Bis(coconut oil alkyl)amine	ARC.		Bis(hydrogenated tallow alkyl)amineN,N-Dimethyl(coconut oil alkyl)amine	ARC, FOR.		N, N-Dimethyldodecylamine	BRD, HUM, PG.		N, N-Dimethylhexadecylamine			N, N-Dimethyl(hydrogenated tallow alkyl)amine	ARC.		N, N-Dimethyl(mixed alkyl)amine	PG, RH.		*N, N-Dimethyloctadecylamine	1-10, 212, 11011, 141		N, N-Dimethyl(soybean oil alkyl)amineN, N-Dimethyltetradecylamine	ARC.		N-Methylbis(coconut oil alkyl)amine	ARC, BRD. FOR, GNM.		N-Methylbis(hydrogenated tallow alkyl)amine			N-Methylbis(mixed alkyl)amine	PG.		N-Methyldioctadecylamine			Trioctylamine Trioctylamine	GNM.		Tris(hydrogenated tallow alkyl)amine	GNM.		Oxygen-containing quaternary ammonium salts (except			those having amide linkages):			(2-Aminoethyl)ethyl(hydrogenated tallow alkyl)-	LUR.		(2-hydroxyethyl)ammonium ethyl sulfate. Benzyl(coconut oil alkyl)bis(2-hydroxyethyl)ammonium	CIB.		chloride.	OID.		Benzyl(coconut oil alkyl, ethoxylated)dimethylammonium	GAF.		chloride.			1-Benzyl-2-heptadecyl-1-(2-hydroxyethyl)-2-imidazolinium	PCS, UVC.		chloride. 1-Benzyl-1-(2-hydroxyethyl)-2-nor(tall oil alkyl)-2-	\mathrew{\pi}_0		imidazolinium chloride.	NLC.		Bis(2-hydroxyethyl, ethoxylated)methyl(9-octadecenyl)	ARC.		ammonium chloride.			Bis(2-hydroxyethyl, ethoxylated)methyloctadecylammonium	ARC.		chloride.			(Coconut oil alkyl)bis(2-hydroxyethyl, ethoxylated)- methylammonium chloride.	ARC, VAC.		(Ethoxybenzyl)dimethyl(octylphenoxy)ammonium chloride	RH.		(Ethoxybenzyl)dimethyl(octyltolyloxy)ammonium chloride	RH.		1-Ethyl-2-(8-heptadecenyl)-1-(2-hydroxyethyl)-	APD.		2-imidazolinium ethyl sulfate.			N-Ethyl-N-hexadecylmorpholinium ethyl sulfate	APD.		N-Ethyl-N-(soybean oil alkyl)morpholinium ethyl sulfate2-Hydroxytrimethylenebis[(coconut oil alkyl)dimethyl-	APD.		ammonium chloride].	CIB.		(Tridecylbenzyl)diethyl(2-hydroxyethyl)ammonium	SNW.		chloride.			Triethyl(octadecyloxymethyl)ammonium chloride	DAN.		All other	TCC.	TABLE 19B.--Surface-active agents																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																															
for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	Chemical	Manufacturers' identification codes (according to list in table 22)		--	---		Cationic Surface-Active AgentsContinued			*Quaternary ammonium salts having amide linkages:	CIP		Benzylbis(2-hydroxyethyl)(2-stearamidomethoxyethyl) ammonium chloride.	CIB.		2-Heptadecyl-1-methyl-1-(2-stearamidoethyl)-	CUL.		imidazolinium methyl sulfate. (2-Hydroxyethyl)dimethyl(3-stearamidopropyl)ammonium	ACY.		dihydrogen phosphate. (2-Hydroxyethyl)dimethyl(3-stearamidopropyl)ammonium	ACY.		nitrate.			(3-Lauramidopropyl)trimethylammonium methyl sulfate Trimethyl(3-oleamidopropyl)ammonium methyl sulfate	ACY.		All other	DUP, NLC, VAC.		*Quaternary ammonium salts, not containing oxygen:	,		*Acyclic:	ADO THE TOP ONE WAO		*His(coconut oil alkyl)dimethylammonium chloride *His(hydrogenated tallow alkyl)dimethylammonium	ARC, ENJ, FOR, GNM, VAC. ADM, ARC, FOR, GNM, VAC.		chloride.	120, 100, 100, 100		Bis(hydrogenated tallow alkyl)dimethylammonium	x.		methyl sulfate. (Coconut oil alkyl)trimethylammonium chloride	ARC, FOR, GNM.		(Cottonseed oil alkyl)trimethylammonium chloride	FOR.		Didodecyldimethylammonium bromide	ONX.		Dimethylbis(mixed alkyl) - and Trimethyl(mixed alkyl) - ammonium chloride.	GNM.		Dimethylbis(9-octadecenyl)ammonium chloride	GNIM.		Dimethylbis(soybean oil alkyl)ammonium chloride	ARC.		Dimethyldioctadecylammonium chlorideDimethyldioctadecylammonium methyl sulfate	FOR, PG.		*Dodecyltrimethylammonium bromide and chloride:	ONA.		Dodecyltrimethylammonium bromide	DUP.		Dodecyltrimethylammonium chloride	ARC, FOR, GNM.		Ethyldimethyl(mixed alkyl)ammonium ethyl sulfate Ethyldimethyl(9-octadecenyl)ammonium bromide	JOR. ONX.		Ethylhexadecyldimethylammonium bromide	FIN.		*Hexadecyltrimethylammonium bromide	DUP, FIN, ICI.		Hexadecyltrimethylammonium chloride	ARC.		(Hydrogenated tallow alkyl)trimethylammonium chloride.	ARC, FOR, HUM.		Methyltrioctylammonium chloride Methyltris(mixed alkyl)ammonium chloride	GNM. ADM, VAC.		*N, N, N', N'-Pentamethyl-N-(tallow alkyl)trimethylene-	ARC, GNM, ORO.		bis [ammonium chloride].			Trimethyloctadecylammonium chloride	ARC, GNM.		Trimethyl(soybean oil alkyl)ammonium chloride Trimethyl(tallow alkyl)ammonium chloride	ARC, VAC. ARC, FOR, GNM.		All other			*Benzenoid:	ADM DEED THE MAIN		*Benzyl(coconut oil alkyl)dimethylammonium chloride *Benzyldimethyl(mixed alkyl)ammonium chloride			*Benzyldimethyloctadecylammonium chloride			Benzyldimethyltetradecylammonium chloride	SNW, WSN.		*Benzyldodecyldimethylammonium chloride	FIN, ONX, SDH, WSN.		Benzylhexadecyldimethylammonium chloride Benzyl(hydrogenated tallow alkyl)dimethylammonium	HUM, PCS.		chloride			l-Benzylpyridinium chloride	DEP.		Benzyltrimethylammonium chloride	CUL, ONX, VAC, WSN.		(Dodecylbenzyl)triethylammonium chloride	PC.		*(Dodecylbenzyl)trimethylammonium chloride	· CUL, NLC, VAC.		2-Dodecylisoquinolinium bromide (Dodecylmethylbenzyl)trimethylammonium chloride	· CUL, ONX. · RH.		1-Dodecvlpyridinium chloride	HK.		(Ethylbenzyl)dimethyl(mixed alkyl)ammonium chloride	· ONX.		Phenyltrimethylammonium chloride	BKL.	TABLE 19B.--Surface-active agents for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	SSC, SET, STT, STT, TOC, TXC, UNN, UVC, VAD, WECKERS, CORP. CORP	**Carboxylic acid amides: **Carboxylic acid - alkanolamine condensates: **Diethanolamine condensates (amine/acid ratio = 2/1): **Capric acid	ONX, PCS, VAL. AMI, ARD, BSC, BSW, CIB, CLI, CRT, CTI, DEP, EFH, HAL, HLI, HRT, JOR, KNP, LUR, MOA, NOP, PC, PCS, PNX, RCD SBC, SEY, STP, SWT, TCC, TXC, UNN, UVC, VAC, VND, WIC, WTC. CSB. CLI, PG. ARD, CLI, DRW, NOP, ONX, PCS, PG, RCD, WTC. TXN. VND. CCW, CLI, HLI, UVC, VAC, STP, WTC. CMG. EMR, PCS. AMI, EMR, JOR, NOP, ONX, SCO, TXC, VAL, WTC. EFH, MRA, UVC, WTC. BSC, HLI. APX, ARD, CCL, CLI, CTL, DRW, EMK, GGY, HLI, MOA, MRV, NOP, ONX, PCS, PEK, QCP, RCD, RPC, RTF, SBC, SEY, STP, TXT, UVC, VAC. CTL, CUL, DRW, LEV, MOA, ONX, PCS, PG, RTF, SBC, STP,		--	---	---		### ### ##############################	*Carboxylic acid - alkanolamine condensates: *Diethanolamine condensates (amine/acid ratio = 2/1): *Capric acid	ONX, PCS, VAL. AMI, ARD, BSC, BSW, CIB, CLI, CRT, CTL, DEP, EFH, HAL, HLI, HRT, JOR, KNP, LUR, MOA, NOP, PC, PCS, PNX, RCD SBC, SEY, STP, SWT, TCC, TXC, UNN, UVC, VAC, VND, WIC, WTC. CSB. CLI, PG. ARD, CLI, DRW, NOP, ONX, PCS, PG, RCD, WTC. TXN. VND. CCW, CLI, HLI, UVC, VAC, STP, WTC. CMG. EMR, PCS. AMI, EMR, JOR, NOP, ONX, SCO, TXC, VAL, WTC. EFH, MRA, UVC, WTC. BSC, HLI. APX, ARD, CCL, CLI, CTL, DRW, EMK, GGY, HLI, MOA, MRV, NOP, ONX, PCS, PEK, QCP, RCD, RPC, RTF, SBC, SEY, STP, TXT, UVC, VAC. CTL, CUL, DRW, LEV, MOA, ONX, PCS, PG, RTF, SBC, STP,		### Coconst of a coids	Coconut oil acids	ONX, PCS, VAL. AMI, ARD, BSC, BSW, CIB, CLI, CRT, CTL, DEP, EFH, HAL, HLI, HRT, JOR, KNP, LUR, MOA, NOP, PC, PCS, PNX, RCD SBC, SEY, STP, SWT, TCC, TXC, UNN, UVC, VAC, VND, WIC, WTC. CSB. CLI, PG. ARD, CLI, DRW, NOP, ONX, PCS, PG, RCD, WTC. TXN. VND. CCW, CLI, HLI, UVC, VAC, STP, WTC. CMG. EMR, PCS. AMI, EMR, JOR, NOP, ONX, SCO, TXC, VAL, WTC. EFH, MRA, UVC, WTC. BSC, HLI. APX, ARD, CCL, CLI, CTL, DRW, EMK, GGY, HLI, MOA, MRV, NOP, ONX, PCS, PEK, QCP, RCD, RPC, RTF, SBC, SEY, STP, TXT, UVC, VAC. CTL, CUL, DRW, LEV, MOA, ONX, PCS, PG, RTF, SBC, STP,		#Coconut oil acids— Coconut oil and tall oil acids— Coconut oil and tall of acids— Coconut oil and tallow acids— Lauric and syristic acids— **Clauric acid —	*Coconut oil and tall oil acids	AML, ARD, BSC, BSW, CIB, CLI, CRT, CTL, DEP, EFH, HAL, HLI, HRT, JOR, KNP, LUR, MOA, NOP, PC, PCS, PNX, RCD, SBC, SEY, STP, SWT, TCC, TXC, UNN, UVC, VAC, VND, WIC, WTC. CSB. CLI, PG. ARD, CLI, DRW, NOP, ONX, PCS, PG, RCD, WTC. TXN. VND. CCW, CLI, HLI, UVC, VAC, STP, WTC. CMG. EMR, PCS. AML, EMR, JOR, NOP, ONX, SCO, TXC, VAL, WTC. EFH, MRA, UVC, WTC. BSC, HLI. APX, ARD, CCL, CLI, CTL, DRW, EMK, GGY, HLI, MOA, MRV, NOP, ONX, PCS, PEK, QCP, RCD, RPC, RTF, SBC, SEY, STP, TXT, UVC, VAC. CTL, CUL, DRW, LEV, MOA, ONX, PCS, PG, RTF, SBC, STP,		Cocomut cil end tall cil ecids	Coconut oil and tall oil acids	HLI, HRT, JOR, KNP, LUR, MOA, NOP, PC, PCS, PNX, RCD SBC, SEY, STP, SWT, TCC, TXC, UNN, UVC, VAC, VND, WIC, WTC. CSB. CLI, PG. ARD, CLI, DRW, NOP, ONX, PCS, PG, RCD, WTC. TXN. VND. CCW, CLI, HLI, UVC, VAC, STP, WTC. CMG. EMR, PCS. AML, EMR, JOR, NOP, ONX, SCO, TXC, VAL, WTC. EFTH, MRA, UVC, WTC. BSC, HLI. APX, ARD, CCL, CLI, CTL, DRW, EMK, GGY, HLI, MOA, MRV, NOP, ONX, PCS, PEK, QCP, RCD, RPC, RTF, SBC, SEY, STP, TXT, UVC, VAC. CTL, CUL, DRW, LEV, MOA, ONX, PCS, PG, RTF, SBC, STP,		Coconst oil and tallow soids Call FG.	Cocomut oil and tallow acids * Eauric acid	CLI, PG. ARD, CLI, DRW, NOP, ONX, PCS, PG, RCD, WTC. TXN. VND. CCW, CLI, HLI, UVC, VAC, STP,																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																			
WTC. CMG. EMR, PCS. AML, EMR, JOR, NOP, ONX, SCO, TXC, VAL, WTC. EFFI, MRA, UVC, WTC. BSC, HLI. APX, ARD, CCL, CLI, CTL, DRW, EMK, GGY, HLI, MOA, MRV, NOP, ONX, PCS, PEK, QCP, RCD, RPC, RTF, SBC, SEY, STP, TXT, UVC, VAC. CTL, CUL, DRW, LEV, MOA, ONX, PCS, PG, RTF, SBC, STP,		# Hauric and myristic acids— Lincleic acids— Co. Ci. Ci. DRW, NOF, ONX, PCS, PG, RCD, WTC.	*Lauric and myristic acids	ARD, CLI, DRW, NOP, ONX, PCS, PG, RCD, WTC. TXN. VND. CCW, CLI, HLI, UVC, VAC, STP, WTC. CMG. EMR, PCS. AML, EMR, JOR, NOP, ONX, SCO, TXC, VAL, WTC. EFH, MRA, UVC, WTC. BSC, HLI. APX, ARD, CCL, CLI, CTL, DRW, EMK, GGY, HLI, MOA, MRV, NOP, ONX, PCS, PEK, QCP, RCD, RPC, RTF, SBC, SEY, STP, TXT, UVC, VAC. CTL, CUL, DRW, LEV, MOA, ONX, PCS, PG, RTF, SBC, STP,		Limchele acid=	Lauric and myristic acids	TXN. VND. CCW, CLI, HLI, UVC, VAC, STP, WTC. CMG. EMR, PCS. AML, EMR, JOR, NOP, ONX, SCO, TXC, VAL, WTC. EFH, MRA, UVC, WTC. BSC, HLI. APX, ARD, CCL, CLI, CTL, DRW, EMK, GGY, HLI, MOA, MRV, NOP, ONX, PCS, PEK, QCP, RCD, RPC, RTF, SBC, SEY, STP, TXT, UVC, VAC. CTL, CUL, DRW, LEV, MOA, ONX, PCS, PG, RTF, SBC, STP,		Mindic acid Mindic Mindi	Linoleic acid	VND. CCW, CLI, HLI, UVC, VAC, STP, WTC. CMG. EMR, PCS. AMI, EMR, JOR, NOP, ONX, SCO, TXC, VAL, WTC. EFH, MRA, UVC, WTC. BSC, HLI. APX, ARD, CCL, CLI, CTL, DRW, EMK, GGY, HLI, MOA, MRV, NOP, ONX, PCS, PEK, QCP, RCD, RPC, RTF, SBC, SEY, STP, TXT, UVC, VAC. CTL, CUL, DRW, LEV, MOA, ONX, PCS, PG, RTF, SBC, STP,		Wilete acid	*Oleic acid	CCW, CLI, HLI, UVC, VAC, STP, WTC. CMG. EMR, PCS. AML, EMR, JOR, NOP, ONX, SCO, TXC, VAL, WTC. EFH, MRA, UVC, WTC. BSC, HLI. APX, ARD, CCL, CLI, CTL, DRW, EMK, GGY, HLI, MOA, MRV, NOP, ONX, PCS, PEK, QCP, RCD, RPC, RTF, SBC, SEY, STP, TXT, UVC, VAC. CTL, CUL, DRW, LEV, MOA, ONX, PCS, PG, RTF, SBC, STP,		Pelargino acid	Palmitic acid————————————————————————————————————	CMG. BMR, PCS. AML, EMR, JOR, NOP, ONX, SCO, TXC, VAL, WTC. EFFI, MRA, UVC, WTC. BSC, HLI. APX, ARD, CCL, CLI, CTL, DRW, EMK, GGY, HLI, MOA, MRV, NOP, ONX, PCS, PEK, QCP, RCD, RPC, RTF, SBC, SEY, STP, TXT, UVC, VAC. CTL, CUL, DRW, LEV, MOA, ONX, PCS, PG, RTF, SBC, STP,		# Stearic acid————————————————————————————————————	Pelargonic acid	EMR, PCS. AML, EMR, JOR, NOP, ONX, SCO, TXC, VAL, WTC. EFH, MRA, UVC, WTC. BSC, HLI. APX, ARD, CCL, CLI, CTL, DRW, EMK, GGY, HLI, MOA, MRV, NOP, ONX, PCS, PEK, QCP, RCD, RPC, RTF, SBC, SEY, STP, TXT, UVC, VAC. CTL, CUL, DRW, LEV, MOA, ONX, PCS, PG, RTF, SBC, STP,		#Stearic said————————————————————————————————————	*Stearic acid	AML, EMR, JOR, NOP, ONX, SCO, TXC, VAL, WTC. EFH, MRA, UVC, WTC. BSC, HLI. APX, ARD, CCL, CLI, CTL, DRW, EMK, GGY, HLI, MOA, MRV, NOP, ONX, PCS, PEK, QCP, RCD, RPC, RTF, SBC, SEY, STP, TXT, UVC, VAC. CTL, CUL, DRW, LEV, MOA, ONX, PCS, PG, RTF, SBC, STP,		#Stearic said————————————————————————————————————	*Stearic acid- *Tall oil acids- Unspecified mixed fatty acids *Diethanolamine condensates (amine/acid ratio = 1/1): *Coconut oil acids	AML, EMR, JOR, NOP, ONX, SCO, TXC, VAL, WTC. EFH, MRA, UVC, WTC. BSC, HLI. APX, ARD, CCL, CLI, CTL, DRW, EMK, GGY, HLI, MOA, MRV, NOP, ONX, PCS, PEK, QCP, RCD, RPC, RTF, SBC, SEY, STP, TXT, UVC, VAC. CTL, CUL, DRW, LEV, MOA, ONX, PCS, PG, RTF, SBC, STP,		##Ral of lacidas— Unspecified mixed fatty acids— **Niethanolamine condensates (amine/acid ratio = 1/1): **Coconut of lacids— **Film Mixed caid— **Taluric acid— **Stearic aci	*Tall oil acids————————————————————————————————————	EFH, MRA, UVC, WTC. BSC, HLI. APX, ARD, CCL, CLI, CTL, DRW, EMK, GGY, HLI, MOA, MRV, NOP, ONX, PCS, PEK, QCP, RCD, RPC, RTF, SBC, SEY, STP, TXT, UVC, VAC. CTL, CUL, DRW, LEV, MOA, ONX, PCS, PG, RTF, SBC, STP,		Unspecified mixed fatty acids————————————————————————————————————	Unspecified mixed fatty acids	BSC, HLI. APX, ARD, CCL, CLI, CTL, DRW, EMK, GGY, HLI, MOA, MRV, NOP, ONX, PCS, PEK, QCP, RCD, RPC, RTF, SBC, SEY, STP, TXT, UVC, VAC. CTL, CUL, DRW, LEV, MOA, ONX, PCS, PG, RTF, SBC, STP,		### ##################################	*Diethanolamine condensates (amine/acid ratio = 1/1): *Coconut oil acids	APX, ARD, CCL, CLI, CTL, DRW, EMK, GGY, HLI, MOA, MRV, NOP, ONX, PCS, PEK, QCP, RCD, RPC, RTF, SBC, SEY, STP, TXT, UVC, VAC. CTL, CUL, DRW, LEV, MOA, ONX, PCS, PG, RTF, SBC, STP,		#Kocomut oil acids————————————————————————————————————	*Lauric acid	NOP, ONX, PCS, PEK, QCP, RCD, RPC, RTF, SBC, SEY, STP, TXT, UVC, VAC. CTL, CUL, DRW, LEV, MOA, ONX, PCS, PG, RTF, SBC, STP,		#Lauric acid————————————————————————————————————	Lauric and myristic acids	CTL, CUL, DRW, LEV, MOA, ONX, PCS, PG, RTF, SBC, STP,		Lauric and myristic acids	*Oleic acid			#Cliefc acid	*Oleic acid			### RSC, MRA, PCS. ### Steards acid	Palmitic and stearic acids			*Stearic acid	*Stearic acid			Tall oil acids————————————————————————————————————	Tall oil acids			Tallow acids— The proceding mixed fatty acids— **Ethanolamine condensates (amine/acid ratio = 2/1): **Coconut oil acids————————————————————————————————————	Tallow acids	BSC, DEP, EMR, GGY, GLY, RPC, SEY, UVC.		### Withanolamine condensates (amine/acid ratio = 2/1): ###################################	Unspecified mixed fatty acids	MRV, PCS.		*Ethanolamine condensates (amine/soid ratio = 2/1): *Cocomut oil acids	*Ethanolamine condensates (amine/acid ratio = 2/1): *Coconut oil acids Hydrogenated castor oil acids Hydrogenated tallow acids	RPC.		### ### ##############################	*Coconut oil acids Hydrogenated castor oil acids Hydrogenated tallow acids	STP.		Hydrogenated castor oil acids————————————————————————————————————	Hydrogenated castor oil acids	CTL. PCS. RTF. STP. HVG. VND. WTC.		Hydrogenated tallow acids————————————————————————————————————	Hydrogenated tallow acids			Stearic acid————————————————————————————————————				**Ethanolamine condensates (other amine/acid ratios): Coconut oil acids (amine/acid ratio = 1/1)				#Ethanolamine condensates (other amine/acid ratios): Coconut oil acids (amine/acid ratio = 1/1)	Steeric ecid			Cocomut cil acids (amine/acid ratio = 1/1)	#Ftherelemine condensates (other smine/esid retics).	OLI.		Lauric and myristic acids (amine/acid ratio = 1/1)		TIDM NO. DO COD		Cleic acid (amine/acid ratio = 1/1)				Stearic acid (amine/acid ratio = 1/1)				**Isopropanolamine condensates: Coconut oil acids	Oleic acid (amine/acid ratio = 1/1)			*Isopropanolamine condensates: Cocomut oil acids	Stearic acid (amine/acid ratio = 1/1)	MOA, VND.		**Eauric acid	Stearic acid (amine/acid ratio = 1/2)	GLY, WTC.		#Lauric acid	*Isopropanolamine condensates:			#Lauric acid	Coconut oil acids	DSO, MOA, STP.		Lauric and myristic acids	*Lauric acid	ARD, CLI, MOA, PCS, WTC.		**Other alkanolamine condensates: Coconut oil acids - diethanolamine condensate (amine/acid ratio = 1.4/1). Coconut oil acids - diethanolamine condensate (amine/acid ratio = 1/2). Lauric acid - diethanolamine condensate (amine/acid ratio = 1.6/1). Stearic acid - methanolamine condensate, ethoxylated: Coconut oil acids - ethanolamine condensate, ethoxylated. Hydrogenated tallow acids - ethanolamine condensate, ethoxylated. Cleic acid - methanolamine condensate, ethoxylated	Lauric and myristic acids			*Other alkanolamine condensates: Cocomut oil acids - diethanolamine condensate (amine/acid ratio = 1.4/1). Cocomut oil acids - diethanolamine condensate (amine/acid ratio = 1/2). Lauric acid - diethanolamine condensate (amine/acid ratio = 1.6/1). Stearic acid - methanolamine condensates, ethoxylated: Cocomut oil acids - ethanolamine condensate, ethoxylated. Hydrogenated tallow acids - ethanolamine condensate, ethoxylated. Oleic acid - ethanolamine condensate, ethoxylated Tall oil acids - ethanolamine condensate, ethoxylated Tall oil acids - ethanolamine condensate, ethoxylated Tall oil acids - ethanolamine condensate, ethoxylated Tall oil acids - ethanolamine condensate, ethoxylated Tall oil acids - ethanolamine condensates (nonionic): Oleic acid - ethylenediamine condensate (amine/acid) CCW, GLY, HDG.	Oleic acid			Coconut oil acids - diethanolamine condensate (amine/acid ratio = 1.4/1). Coconut oil acids - diethanolamine condensate (amine/acid ratio = 1/2). Lauric acid - diethanolamine condensate (amine/acid ratio = 1.6/1). Stearic acid - methanolamine condensates, ethoxylated: Coconut oil acids - ethanolamine condensates, ethoxylated: Coconut oil acids - ethanolamine condensate, ethoxylated. Hydrogenated tallow acids - ethanolamine condensate, ethoxylated Oleic acid - methanolamine condensate, ethoxylated Tall oil acids - ethanolamine condensate, ethoxylated Tall oil acids - ethanolamine condensates (nonionic): Oleic acid - ethylenediamine condensate (amine/acid CCW, GLY, HDG.				(amine/acid ratio = 1.4/1). Coconut oil acids - diethanolamine condensate (amine/acid ratio = 1/2). Lauric acid - diethanolamine condensate (amine/acid ratio = 1.6/1). Stearic acid - methanolamine condensates, ethoxylated: Coconut oil acids - ethanolamine condensate, ethoxylated. Hydrogenated tallow acids - ethanolamine condensate, ethoxylated. Oleic acid - ethanolamine condensate, ethoxylated Tall oil acids - ethanolamine condensate, ethoxylated Tall oil acids - ethanolamine condensate, ethoxylated Tall oil acids - ethanolamine condensate, ethoxylated Tall oil acids - ethanolamine condensate, ethoxylated Tall oil acids - ethanolamine condensates (nonionic): Oleic acid - ethylenediamine condensate (amine/acid		TDC.		Coconut oil acids - diethanolamine condensate (amine/acid ratio = 1/2). Lauric acid - diethanolamine condensate (amine/acid ratio = 1.6/1). Stearic acid - methanolamine condensates, ethoxylated: Coconut oil acids - ethanolamine condensate, ethoxylated. Hydrogenated tallow acids - ethanolamine condensate, ethoxylated. Oleic acid - ethanolamine condensate, ethoxylated		J.M.		(amine/acid ratio =																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
1/2). Lauric acid - diethanolamine condensate (amine/acid ratio = 1.6/1). Stearic acid - methanolamine condensates, ethoxylated: Coconut oil acids - ethanolamine condensate, ethoxylated. Hydrogenated tallow acids - ethanolamine condensate, ethoxylated. Oleic acid - ethanolamine condensate, ethoxylated				Lauric acid - diethanolamine condensate (amine/acid ratio = 1.6/1). Stearic acid - methanolamine condensates, ethoxylated: Cocomut oil acids - ethanolamine condensate, ethoxylated. Hydrogenated tallow acids - ethanolamine condensate, ethoxylated. Cleic acid - ethanolamine condensate, ethoxylated Oleic acid - methanolamine condensate, ethoxylated Tall oil acids - ethanolamine condensate, ethoxylated Tall oil acids - ethanolamine condensates (nonionic): Cleic acid - ethylenediamine condensate (amine/acid WON. ARC, NOP. ARC, NOP. CAF JCC. CCW, GLY, HDG.		PCS.		ratio = 1.6/1). Stearic acid - methanolamine condensate		WOM		*Carboxylic acid - methanolamine condensates, ethoxylated: Cocomut oil acids - ethanolamine condensate, ethoxylated. Hydrogenated tallow acids - ethanolamine condensate, ethoxylated. Oleic acid - ethanolamine condensate, ethoxylated Oleic acid - methanolamine condensate, ethoxylated Tall oil acids - ethanolamine condensate, ethoxylated Tall oil acids - ethanolamine condensate, ethoxylated (nonionic): Oleic acid - ethylenediamine condensate (amine/acid) CCW, GLY, HDG.	=	110/110		*Carboxylic acid - alkanolamine condensates, ethoxylated: Coconut oil acids - ethanolamine condensate, ethoxylated. Hydrogenated tallow acids - ethanolamine condensate, ethoxylated. Oleic acid - ethanolamine condensate, ethoxylated Oleic acid - methanolamine condensate, ethoxylated Tall oil acids - ethanolamine condensate, ethoxylated *Carboxylic acid - diamine and polyamine condensates (nonionic): Oleic acid - ethylenediamine condensate (amine/acid		DUP, ICI.		Coconut oil acids - ethanolamine condensate, ethoxylated. Hydrogenated tallow acids - ethanolamine condensate, ethoxylated. Oleic acid - ethanolamine condensate, ethoxylated Tall oil acids - ethanolamine condensate, ethoxylated Tall oil acids - ethanolamine condensate, ethoxylated (arboxylic acid - diamine and polyamine condensates (nonionic): Oleic acid - ethylenediamine condensate (amine/acid)		, — == , — = == ,		ethoxylated. Hydrogenated tallow acids - ethanolamine condensate, ethoxylated. Oleic acid - ethanolamine condensate, ethoxylated Tall oil acids - ethanolamine condensate, ethoxylated Tall oil acids - ethanolamine condensate, ethoxylated (nonionic): Oleic acid - ethylenediamine condensate (amine/acid) CCW, GLY, HDG.		CTD .		Hydrogenated tallow acids - ethanolamine condensate, ethoxylated. Oleic acid - ethanolamine condensate, ethoxylated Tall oil acids - ethanolamine condensate, ethoxylated Tall oil acids - ethanolamine condensate, ethoxylated *Carboxylic acid - diamine and polyamine condensates (nonionic): Oleic acid - ethylenediamine condensate (amine/acid ARC, NOP. ARC, GAF. GAF JCC. *Carboxylic acid - diamine and polyamine condensates (nonionic):		511 •		Oleic acid - ethanolamine condensate, ethoxylated Oleic acid - methanolamine condensate, ethoxylated Tall oil acids - ethanolamine condensate, ethoxylated *Carboxylic acid - diamine and polyamine condensates (nonionic): Oleic acid - ethylenediamine condensate (amine/acid CCW, GLY, HDG.	Hydrogenated tallow acids - ethanolamine condensate,	ARC, NOP.		Oleic acid - methanolamine condensate, ethoxylated Tall oil acids - ethanolamine condensate, ethoxylated *Carboxylic acid - diamine and polyamine condensates (nonionic): Oleic acid - ethylenediamine condensate (amine/acid CCW, GLY, HDG.				Tall oil acids - ethanolamine condensate, ethoxylated *Carboxylic acid - diamine and polyamine condensates (nonionic): Oleic acid - ethylenediamine condensate (amine/acid		I ARC. GAF.		*Carboxylic acid - diamine and polyamine condensates (nonionic): Oleic acid - ethylenediamine condensate (amine/acid CCW, GLY, HDG.				Oleic acid - ethylenediamine condensate (amine/acid CCW, GLY, HDG.	*Carboxylic acid - diamine and polyamine condensates	GAF				GAF		ratio = $1/2$).		GAF JCC.	TABLE 19B. --Surface-active agents for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	Chemical	Manufacturers' identification codes (according to list in table 22)		---	---		Nonionic Surface-Active AgentsContinued			*Carboxylic acid amidesContinued	. •		*Carboxylic acid - diamine and polyamine condensates (nonionic)Continued			Stearic acid - N, N'-diethylethylenediamine condensate (amine/acid ratio = 1/2).	SNW.		*Stearic acid - ethylenediamine condensate (amine/acid ratio = 1/2). All other	CCW, CTN, GLY, ICI.		*Carboxylic acid esters:	NOP.		*Anhydrosorbitol esters:			Anhydrosorbitol dioleate	APD.		Anhydrosorbitol ester of mixed fatty acids *Anhydrosorbitol monoester of tall oil acids	GLY.		*Anhydrosorbitol monolaurate	APD, GLY, HDG, RTF, TCH. APD, GLY, HDG, PCS, TCH.		Anhydrosorbitol mono-oleate	AAC, APD, DRW, GLY, HAL, HDG, PCS, TCH.		Anhydrosorbitol monopalmitate	APD, GLY, PCS.		Anhydrosorbitol monostearate	AAC, APD, DRW, GLY, HDG, PCS.		Anhydrosorbitol sesquioleate	AAC, GLY.		Anhydrosorbitol tetrastearateAnhydrosorbitol triester of tall oil acids	APD.		*Anhydrosorbitol trioleate	GLY, TCH.		Anhydrosorbitol tristearate	APD, GLY, HDG, PCS, TCH. APD, GLY, HDG.		*Ethoxylated anhydrosorbitol esters:	in Dy (III) in de		Ethoxylated anhydrosorbitol monoester of tall oil acids.	TCH.		*Ethoxylated anhydrosorbitol monolaurate	AAC, APD, DRW, GLY, HDG, PCS, TCH.		*Ethoxylated anhydrosorbitol mono-oleate *Ethoxylated anhydrosorbitol monopalmitate	AAC, APD, ARC, DRW, GLD, GLY, HDG, PCS, TCH.		*Ethoxylated anhydrosorbitol monostearate	AAC, APD, GLY, PCS, TCH. AAC, APD, DRW, GLY, HDG, PCS, TCH.		Ethoxylated anhydrosorbitol triester of castor oil acids.	APD.		Ethoxylated anhydrosorbitol triester of tall oil acids.	APD, RTF.		*Ethoxylated anhydrosorbitol trioleate	AAC, APD, GLY, TCH.		*Ethoxylated anhydrosorbitol tristearate *Ethylene glycol and diethylene glycol esters:	AAC, APD, GLY, PCS, TCH.		Diethylene glycol dioleate	GLY.		Diethylene glycol distearate	ARC, GLY.		Diethylene glycol monoester of coconut oil acids	EMR.		Diethylene glycol monoester of tall oil acids	HDG.		*Diethylene glycol monolaurate	ARC, CCW, GLY, HAL, HDG, KAL, NOP, WTC.		*Diethylene glycol mono-oleate Diethylene glycol monoricinoleate	ARC, HAL, NOP, WTC.		*Diethylene glycol monostearate	ARC, CCW, CLI, HAL, NOP, PCS, QCP, SEY, UVC, VAL, VND,			WTC.		Diethylene glycol sesquiester of tall oil acids	QCP, WTC.		Diethylene glycol sesquilaurate	GLY.		Diethylene glycol sesquistearate	WM.		*Ethylene glycol distearate	ARC, EMR, HAL, HDG, PCS.		Ethylene glycol mono-oleate	HAL.		*Ethylene glycol monostearate Ethylene glycol sesquistearate	ARC, CCW, CLI, EFH, GLY, HAL, HDG, KNP, PCS, VND, WMM.		*Clycerol esters:	772/1.0		*Complex glycerol esters:			Glycerol diacetyltartrate monostearate	DRW, PCS, WTC.		Glycerol lactate palmitate	DRW, GLD.		Glycerol lactate stearate	APD, GLD.		Glycerol maleate mono-oleate	NOP, WTC.		Glycerol monoester of mixed fatty acids, acetylated-	EK. EFH, WTC.		Glycerol mono-oleate, acetylated	X.		*Glycerol esters of chemically defined acids:			Glycerol dioleate	ARC, HAL.		Glycerol distearate	APX, ARC.		Glycerol monocaprylate	ARC, DRW.		*Glycerol monolaurate	ARC, GLY, HAL, KNP.		*Clycerol mono-oleate	APD, ARC, CCW, DRW, KFH, KK, EMR, GLY, HAL, HDG, PCS, SWT, WM.	$\begin{tabular}{ll} \textbf{TABLE 19B.--Surface-active agents for which U.S. production or sales were reported, identified by \\ manufacturer, 1966-- Continued \\ \end{tabular}$	Chemical.	Manufacturers' identification codes (according to list in table 22)		--	--		Nonionic Surface-Active AgentsContinued			Carboxylic acid estersContinued			*Glycerol estersContinued			*Glycerol esters of chemically defined acidsContinued			*Glycerol monoricinoleate	BAC, CCW, HAL.		*Glycerol monostearate	ARC, CCW, CHL, CRT, DRW, EK, GLY, GRO, HAL, HDG, JRG, LUR, MRA, NOP, NW, PCS, PG, SNW, SWT, TCC, UVC, VND, WM, WTC, x.		*Glycerol esters of mixed acids:	mm, 110, X.		Glycerol monoester of coconut oil acids	DRW, GLY, HDG, SWT, WM.		Glycerol monoester of corn oil acids	GLD.		Glycerol monoester of cottonseed oil acids	DRW, EK, HDG, PCS.		Glycerol monoester of hydrogenated cottonseed oil acids.	GLD, LEV, PCS.		Glycerol monoester of hydrogenated soybean oil acids.	DRW, GLD.		Glycerol monoester of lard acids	EK, GLD, GLY, PCS.		Glycerol monoester of peanut oil acids	DRW.		Glycerol sesquiester of mixed fatty acids	APD.		All other	EK, LEV, PCS.		*Natural fats and oils, ethoxylated:	ADD DAG DOW THE GAT GIVE TOT AND DOG DOG		*Castor oil, ethoxylated	APD, BAG, DRW, EMR, GAF, GLY, ICI, NLC, NOP, PCS, RTF, TCH, VAC.		Hydrogenated castor oil, ethoxylated	APD, GAF, TCH, VAC.		Lanolin, ethoxylated	AAC, APD, DRW, PCS.		*Polyethylene glycol esters: *Polyethylene glycol esters of chemically defined			acids:	ADO DEV EDIT OLY HAL HED TOP NOD HITO WAS		*Polyethylene glycol dilaurate	ARC, DEX, EFH, GLY, HAL, HDG, JOR, NOP, UVC, WM.		*Polyethylene glycol dioleate	ARC,																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																										
CLD, EFH, ENJ, GGY, GLY, HAL, HDG, NOP, PCS, UVC. VND, x.		*Polyethylene glycol distearate	ARC, GLY, HAL, HDG, PCS, QCP.		Polyethylene glycol methylcarbitol maleate	CCA.		*Polyethylene glycol monolaurate	AAC, ARC, BSC, CCA, GGY, GLY, HAL, HDG, JOR, KNP, NOP		Alory entry tene grycor monoradia access	SYC, TCH, TXT, UVC.		*Polyethylene glycol mono-oleate	ARC, CCA, CLD, CRC, CRT, DEX, DRW, EMR, GAF, GGY, GLY, HAL, HDG, ICI, NOP, ONX, PCS, SWT, SYC, TCH, UVC,		7 3 . 13 3 3 3	VAC, WM, WTC, x.		Polyethylene glycol monopalmitate	APD, GLY.		Polyethylene glycol monopelargonate	EMR.		Polyethylene glycol monoricinoleate *Polyethylene glycol monostearate	AAC, ARC, BAC, HAL, NOP, TCH. AML, APD, ARC, CRT, DEP, DEX, DRW, EMR, GAF, GGY, GLY		*rolyemylene glycol monoscentace	HAL, HDG, ICI, KNP, NOP, ONX, PC, PCS, PD, RH, SEY, TCC, TCH, VND, WTC.		Polyethylene glycol sesquioleate	PCS.		*Polyethylene glycol esters of rosin and tall oil acids:			Polyethylene glycol diester of tall oil acids	GLY.		Polyethylene glycol monoester of rosin acids	NLC.		Polyethylene glycol monoester of tall oil acids	GLY, SOS.		Polyethylene glycol sesquiester of rosin acids	APD, HPC, QCP.		*Polyethylene glycol sesquiester of tall oil acids	AML, APD, APX, DRW, HDG, MON, NOP, OMC, RTF, TCH, WTO		Polyethylene glycol unspecified ester of tall oil	ARC.		acids.	•		*Polyethylene glycol esters of other mixed acids: Polyethylene glycol diester of trimerized castor oil	CIV		- 0 0	GLY.		acids. Polyothylene glysol estem of unspecified mixed fatty	ENJ.		Polyethylene glycol ester of unspecified mixed fatty	1410 ·		acids.	EMR, GLY, PCS.		Polyethylene glycol monoester of coconut oil acids Polyethylene glycol monoester of soybean oil acids	SYC.		Polyethylene glycol monoester of tallow acids	SOS.		Polyethylene glycol monoester of tailow acids Polyethylene glycol sesquiester of castor oil acids	GGY, WTC.		*Polyethylene glycol sesquiester of costor oil acids-	ARL, DRW, NOP, ONX, PCS, PG, VND.		acids.	LEWY DINITY HOLY CHARY I ONLY I'M, THU!		Polyethylene glycol sesquiester of tallow acids	ONX.		*Polyglycerol esters:			Polyglycerol distearate	PCS.		Polyglycerol lactate oleate	DRW.		Polyglycerol mono-oleate	HDG, VND, WTC.				TABLE 19B.--Surface-active agents for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	Chemical	Manufacturers' identification codes (according to list in table 22)		---	---		Nonionic Surface-Active AgentsContinued			*Carboxylic acid estersContinued			*Propanediol esters: 1,2-Propanediol distearate	HAL.		1,3-Propanediol monoester of coconut oil acids	DRW.		*1,2-Propanediol monolaurate	ARC, HAL, SBC, WM.		1,2-Propanediol mono-oleate	ARC, HAL.		*1,2-Propanediol monostearate	APD, ARC, CCW, EK, GLD, GLY, HAL, HDG, JRG, PCS, PG.		All other*Other carboxylic acid esters:	PCS.		Anhydrosorbitol glycerol monolaurate	APD, PCS.		Coconut oil acids, ethoxylated methanol ester	JOR.		Di-isobutylene maleate	RH.		Ethoxylated glycerol sesquiester of mixed fatty acids-	APD.		Ethoxylated 1,2-propanedic monostearateEthoxylated sorbitol beeswax ester	APD.		Ethoxylated sorbitol hexaester of tall oil acids	APD, TCH.		Ethoxylated sorbitol hexaoleate	APD, TCH.		Ethoxylated sorbitol lanolin ester	APD.		Ethoxylated sorbitol mono-oleate	APD.		Ethoxylated sorbitol monostearateEthoxylated sorbitol oleate, acetylated	SNW.		Ethoxylated sorbitol pentaester of tall oil acids	APD.		Ethoxylated sorbitol pentalaurate	APD.		Ethoxylated sorbitol stearate	APD.		Ethoxylated sorbitol tetraester of lauric and oleic acids.	APD.		Ethoxylated sorbitol tetraester of tall oil acids	APD.		Methylglucoside laurate Methylglucoside oleate	HDG.		Pentaerythritol distearate	HDG. VAL.		Polyalkylene glycol adipate	PFZ.		Polyalkylene glycol diglycolate	NLC, RTF.		Polyalkylene glycol naphthenate	APD.		Sucrose esters of fatty acidsAll other	SUG.		*Ethers:	CCW, STC, WM.		*Benzenoid ethers:			Alkylphenol - formaldehyde condensates, alkoxylated:			(Mixed alkyl)phenol - formaldehyde, alkoxylated	RTF.		Nonylphenol - formaldehyde, alkoxylatedtert-Octylphenol - formaldehyde, ethoxylated	NLC, RTF.		Pentylphenol - formaldehyde, alkoxylated	SDW.		Diisobutylphenol, ethoxylated	GAF, RH.		*Dinonylphenol, ethoxylated	GAF, JCC, STP.		*Dodecylphenol, ethoxylated	GAF, MON, PCS, UCC.		*Iso-octylphenol, ethoxylated(Mixed alkyl)phenol, ethoxylated	APX, CIB, DRW, NOP, OMC.		(Mixed alkyl)phenol, ethoxylated, butyl ether	GAF.		(Mixed alkyl)phenoxypoly(ethyleneoxy)ethyl chloride	GAF.		*Nonylphenol, ethoxylated	APD, CIB, CLY, DOW, DRW, GAF, HPC, JCC, MON, NLC, OMC,		Nontriphonol othorrioted and properties	PCS, RH, RTF, STP, TCH, UCC.		Nonylphenol, ethoxylated and propoxylated Nonylphenoxypoly(ethyleneoxy)ethyl iodide	RTF.		Pentylphenol, ethoxylated	RTF.		*Phenol, ethoxylated	APD, GAF, JCC, NOP, TCH, UCC.		Phenol, propoxylated	NLC.		Tetradecylphenol, ethoxylated	ORO, PCS.		Tridecylphenol, ethoxylatedXylenol, ethoxylated	PCS. NLC.		All other	RH, VPC.		*Nonbenzenoid ethers:			Linear alcohols, alkoxylated:	•		Decyl alcohol, ethoxylated	GAF, ICI, PCS.		Decyloxypoly(ethyleneoxy)ethyl chloride	GAF.		Decyl and octyl alcohols, ethoxylated	GAF.		*Dodecyl alcohol, ethoxyleted			*Dodecyl alcohol, ethoxylated* *Hexadecyl alcohol, ethoxylated	AAC, APD, DRW, DUP, GAF, GLY, JCC, OMC, PCS.		*Dodecyl alcohol, ethoxylated *Hexadecyl alcohol, ethoxylated *Mixed linear alcohols, ethoxylated	ADM, APD, CIB, ICI, NAC. ADM, CO, GAF, JCC, LAK, MON, NLC, PCS, RH, SHC, STP,	TABLE 19B.--Surface-active agents for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	Chemical	Manufacturers' identification codes (according to list in table 22)		--	--		Nonionic Surface-Active AgentsContinued			*EthersContinued *Nonbenzenoid ethersContinued Linear alcohols, alkoxylatedContinued Mixed linear alcohols, ethoxylated and propoxylated *9-Octadecenyl alcohol, ethoxylated	RTF, STP, WYN. AAC, ADM, APD, CIB, DUP, GAF, ICI, NOP, TCH, VAC, VPC. APD, CIB, DUP, HDG. DUP. AAC, ADM. AAC, MON.		Glucose, ethoxylated	RH. PCS. GAF. NLC, UCC. NLC, PCS, RTF, WYN. CIB, HPC. APD, TCH. APD. CUC. AAC, APD, DRW, EFH, GAF, GLY, ICI, JCC, MON, NLC, CMC,		Tridecyl alcohol, propoxylated and ethoxylated Trimethylheptanol, ethoxylated Trimethylolpropane, alkoxylated All other	PCS, RTF, TCH, UCC. JCC. UCC. JCC, RTF. SNW, VAC. CIB.		3,5-Dimethyl-1-hexyn-3-ol	CUC. CUC. MAH. NES. GLY.		Octyl phosphate, ethoxylated	DUP, SFA. CUC. GLY.	#### Pesticides and Related Products ${\it TABLE~20B.--Pesticides~and~related~products~for~which~U.S.~production~or~sales~were~reported,~identified~by~manufacturer,~1966}$ [Pesticides and related products for which separate statistics are given in table 20A are marked below with an asterisk (*); products not so marked do not appear in table 20A because the reported date are accepted in confidence and may not be published. Manufacturers' identification codes shown below are taken from table 22. An x signifies that the manufacturer did not consent to his identification with the designated product]	Chemical	Manufacturers' identification codes (according to list in table 22)		--	--		PESTICIDES AND RELATED PRODUCTS, CYCLIC			*Fungicides:			2,6-Bis(dimethylaminomethyl)cyclohexanone	MRK.		5-Chloro-2-benzothiazolethiol, laurylpyridium salt	VNC.		2,4-Dichloro-6-(o-chloroanilino)-s-triazine	CHG.		1,4-Dichloro-2,5-dimethoxybenzene	DUP.		2,3-Dichloro-1,4-naphthoquinone (Dichlone)	USR.		2,6-Dichloro-4-nitroaniline (DCNA)	CWN.		*3,5-Dimethyl-1,3,5,2H-tetrahydrothiadiazine-2-thione (DMTT).	MRK, OTC, SF, WRC.		Diphenylammonium propionate	MRK.		3,3'-Ethylenebis(tetrahydro-4,6-dimethyl-2H-1,3,5-	DUP.		thiadiazine-2-thione).	201.		2-Heptadecyl-2-imidazoline (Glyodin)	UCC.		2-Mercaptobenzothiazole, monoethanolamine salt	VNC.		*Mercury fungicides:			N-(Ethylmercuri)-p-toluene sulfonanilide	DUP.		Hydroxymercurichlorophenol	DUP.		Hydroxymercurinitrophenol	DUP.		Mercurial turf fungicides	MAL.		Methylmercury quinolinolate	MRK.		2-(Phenylmercuriamino)ethyl acetate	CLY.		Phenylmercuricammonium acetate	TRO.		Phenylmercuric borate	TRO.		Phenylmercuric hydroxide	MRK.		Phenylmercuric lactatePhenylmercuric naphthonate	MRK.		Phenylmercuric oleate	MRK. CLY, HNX, MRK, TRO.		Phenylmercuric propionate	MRK.		N-Phenylmercuriformamide	VIN.		Tris(2-hydroxyethyl)(phenylmercuri)ammonium lactate	CLY.		2-(1-Methyl-n-heptyl)-4,6-dinitrophenyl crotonate	RH.		(Dinocap).			3-(2-Methylpiperidino)propyl-3,4-dichlorobenzoate	LIL.		(Piperalin).			*Naphthenic acid, copper salt (DAND)	CCA, FER, HNX, MCI, MLD, SHP, SOC, SRR, TGL, TRO, WTC.		Pentachloronitrobenzene (PCNB)	OMC.		*Pentachlorophenol (PCP) Pentachlorophenol, sodium salt	BXT, DOW, FRO, MON, RCI,																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																			
SFD.		*8-Quinolinol (8-Hydroxyquinoline), copper salt	DOW, MON, RCI. GAM, HNX, MRK.		Tetrachloro-p-benzoquinone (Chloranil)	USR.		2,3,4,6-Tetrachlorophenol and sodium salt	DOW.		N-Trichloromethylthio-4-cyclohexene-1,2-dicarboximide	CHO.		(Captan).			N-Trichloromethylthiophthalimide (Folpet)	CHO.		*2,4,5-Trichlorophenol	DA, DOW, HK, HPC.		*2,4,5-Trichlorophenol, ethanolamine salt	BKL, GAF.		*2,4,5-Trichlorophenol, sodium salt	DOW.		2,4,6-Trichlorophenol	DOW, RBC.		Other fungicides	MRK.		*Herbicides and plant hormones: 4-Amino-3,5,6-trichloropicolinic acid (Picloram)	DOW.		5-Bromo-3-sec-butyl-6-methyluracil (Bromacil)	DUP.		3-tert-Butyl-5-chloro-6-methyluracil	DUP.		N-Butyl-N-ethyl-α,α,α-trifluoro-2,6-dinitro-p-	LIL.		toluidine (Benefin).			2-Butynyl-4-chloro-m-chlorocarbanilate (Barban)	SPN.		2-Chloro-4-ethylamino-6-isopropylamino-s-triazine	GGY.		(Atrazine).			3'-Chloro-2-methyl-p-valerotoluidide (Solan)	FMN.		3-(p-Chlorophenyl)-1,1-dimethylurea (Monuron)	DUP.		3-(p-Chlorophenyl)-1,1-dimethylurea trichloroacetate	ACN.		3-Cyclohexyl-5,6-trimethyleneuracil	DUP.	${\tt TABLE~20B.--Pesticides~and~related~products~for~which~U.S.~production~or~sales~were~reported,~identified~by~manufacturer,~1966--Continued}$	Chemical	Manufacturers' identification codes (according to list in table 22)		--	--		PESTICIDES AND RELATED PRODUCTS, CYCLICContinued			*Herbicides and plant hormonesContinued			2,6-Di-tert-butyl-p-tolylmethylcarbamate	HPC.		2,5-Dichloro-3-aminobenzoic acid, ammonium salt	GAF.		3,6-Dichloro-o-anisic acid (Dicamba)	VEL.		2,4-Dichlorobenzyltributylphosphonium chloride	SM.		<pre>2-(2,4-Dichlorophenoxy)ethyl sulfate, sodium salt (Sesone).</pre>	GAF.		2-(2,4-Dichlorophenoxy)propionic acid (Dichlorprop)	HPC.		3-(3,4-Dichlorophenyl)-1,1-dimethylurea (Diuron)	DUP.		3-(3,4-Dichlorophenyl)-1-methoxy-1-methylurea (Linuron)	DUP.		3-(3,4-Dichlorophenyl)-1-methyl-1-n-butylurea (Neburon)	DUP.		2,4-Dichlorophenyl-4-nitrophenyl ether	RH.		3',4'-Dichloropropionanilide (Propanil)	CIS, MON, RH. ACY, USR.		N-(beta-0,0-Diisopropyl-dithiophosphcrylethyl)-benzene	SF.		sulfonamide (Bensulide).			N, N-Dimethyl-2, 2-diphenylacetamide (Diphenamid)	CWN, LIL, x.		1,1-Dimethyl-3-phenylurea (Fenuron)	DUP.		l,1-Dimethy1-3-phenylurea trichloroacetate Dimethy1-tetrachloroterephthalate	ACN. DA.		*Dinitrobutylphenol (DNBP)	CIS, DOW, FMN.		*Dinitrobutylphenol, ammonium salt	CIS, DOW, FMN.		Dinitrobutyl phenol, triethanolamine salt	CIS, DOW, FMN.		Dinitrocresol (DNOC)	CIS, FMN.		Dinitrocresol, sodium salt	CIS, FMN.		Diphenylacetonitrile (Diphenatrile)	GGY.		triazine (Ametryne).	441		S-Ethyl hexahydro-lH-azepine-l-carbothicate (Molinate)-	SF.		Gibberellic acid	ABB, MRK.		3-(Hexahydro-4,7-methanoindan-5-yl)-1,1-dimethylurea	HPC.		(Norea). 3-Indolebutyric acid	ARA.		Isopropyl N-phenylcarbamate (IPC)	PPG.		Isopropyl N-(3-chlorophenyl)carbamate (CIPC)	PPG.		1-(2-Methylcyclohexyl)-3-phenylurea (Siduron)	DUP.		2-Methylmercapto-4,6-bis-(isopropylamino)-s-triazine	GGY.		(Prometryne). 1-Naphthaleneacetic acid and derivatives:			1-Naphthaleneacetamide	AMC.		*1-Naphthaleneacetic acid (NAA)	AMC, COK, THM.		*1-Naphthaleneacetic acid, methyl ester	AMC.		*1-Naphthaleneacetic acid, sodium salt N-1-Naphthylphthalamic acid (NPA)	AMC, BKL.		7-Oxabicyclo[2.2.1]heptane-2,3-dicarboxylic acid,	PAS.		disodium salt (Endothal).			Phenoxyacetic acid derivatives:			4-Chloro-2-methylphenoxyacetic acid (MCPA)	CHC, CLY, RIV.		4-Chlorophenoxyacetic acid, potassium salt *2,4-Dichlorophenoxyacetic acid (2,4-D)	CTH. CHC, DA, DOW, HPC, MON, THM, TMH.		*2,4-Dichlorophenoxyacetic acid esters and salts:	0.00, 221, 2011, 12 0, 12011, 12011		2,4-Dichlorophenoxyacetic acid, 2-butoxyethyl ester	AMC.		2,4-Dichlorophenoxyacetic acid, butoxypoly-	DOW.		propyleneglycol ester.	ANG DA DOW UDG TAIR NON PTV		*2,4-Dichlorophenoxyacetic acid, n-butyl ester 2,4-Dichlorophenoxyacetic acid, sec-butyl ester	AMC, DA, DOW, HPC, IMR, MON, RIV.		*2,4-Dichlorophenoxyacetic acid, dimethylamine salt-	ALC, AMC, CHC, DA, DOW, HPC, RIV, TMH.		2,4-Dichlorophenoxyacetic acid, ethanolamine and	DOW.		isopropanolamine salt.			2,4-Dichlorophenoxyacetic acid, ethyl ester	AMC.		2,4-Dichlorophenoxyacetic acid, 2-ethylhexyl ester- *2,4-Dichlorophenoxyacetic acid, iso-octyl ester	DA, HPC. CHC, DOW, MON, RIV.		*2,4-Dichlorophenoxyacetic acid, isopropyl ester	AMC, CHC, DA, DOW, HPC, MON.		2,4-Dichlorophenoxyacetic acid, lithium salt	GTH, RIV.		2,4-Dichlorophenoxyacetic acid, sodium salt	DOW.		*2,4,5-Trichlorophenoxyacetic acid (2,4,5-T)	DA, DOW, HPC, MON, THM.		<pre>*2,4,5-Trichlorophenoxyacetic acid esters and salts: 2,4,5-Trichlorophenoxyacetic acid, amyl esters</pre>	HPC.		2,4,5-Trichlorophenoxyacetic acid, 2-butoxyethyl	AMC.		ester.			2,4,5-Trichlorophenoxyacetic acid, butoxy-	DOW.		polypropyleneglycol ester.	l ·	TABLE 20B. --Pesticides and related products for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	Chemical	Manufacturers' identification codes (according to list in table 22)		--	---		PESTICIDES AND RELATED PRODUCTS, CYCLICContinued			*Herbicides and plant hormonesContinued Phenoxyacetic acid derivativesContinued *2,4,5-Trichlorophenoxyacetic acid esters and			<pre>saltsContinued *2,4,5-Trichlorophenoxyacetic acid, n-butyl ester 2,4,5-Trichlorophenoxyacetic acid, 2-ethylhexyl ester.</pre>	DA, DOW, HPC, MON, RIV. DA, HPC.		*2,4,5-Trichlorophenoxyacetic acid, iso-octyl ester- 2,4,5-Trichlorophenoxyacetic acid, triethyl amine salt.	DOW, MON, RIV, TMH. DOW, HPC, RIV.		*Phenylmercury acetate (PMA) Polychloro-tetrahydro-methanoindene (Polychlorodi- cyclopentadiene) isomers.	BKM, CLY, MRK, TRO, WRC.		N-m-Tolyl phthalamic acid	USR.		2-(2,4,5-Trichlorophenoxy)propionic acid (Silvex) 2-(2,4,5-Trichlorophenoxy)propionic acid, 2-ethylhexyl ester.	DOW, HPC. HPC.		<pre>2-(2,4,5-Trichlorophenoxy)propionic acid, isooctyl ester.</pre>	RIV.		α,α,α-Trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine (Trifluralin). Tris-(2,4-dichlorophenoxyethyl)phosphite (2,4-DEP)	LIL. USR.		Insect attractants: tert-Butyl 4(or 5)-chloro-2- methylcyclohexanecarboxylate (Trimedlure). *Insecticides:	TBK.		Allethrin (allyl homolog of Cinerin I)	BPC.		3-sec-Amylphenyl-N-methylcarbamate Benzyl thiocyanate	OTC, x.		2-sec-Butyl-4,6-dinitrophenyl-3,3-dimethylacrylate	FMN, FMP.		(Binapacryl). Chlorinated insecticides:			*Aldrin-toxaphene group:			Heptachloro-tetrahydro-endo-methanoindene (Heptachlor).	VEL.		Hexachloro-epoxy-octahydro-endo-endo-di- methanonaphthalene (Endrin).	SHC, VEL.		Hexachloro-epoxy-octahydro-endo-exo-di-	SHC.		methanonaphthalene (Dieldrin). Hexachloro-hexahydro-endo-exo-dimethanonaphthalene- (Aldrin).	SHC.		Octachloro-hexahydro-methanoindene (Chlordan)	VEL.		Terpene polychlorinates Toxaphene (Chlorinated camphene)	HPC.		2,2-Bis(p-chloropheny1)-1,1-dichloroethane(DDD) (TDE)	ACN, RH.		1,1-Bis(p-chlorophenyl)-2-nitrobutane	COM.		1,1-Bis(p-chlorophenyl)-2-nitropropane	COM.		*α-Bis(p-chlorophenyl)β,β,β-trichloroethane (DDT) 2-(p-tert-Butylphenoxy)isopropyl-2'-chloroethyl sulfite.	ACN, DA, LEB, MTO, OMC. USR.		2-(2-(p-tert-Butylphenoxy)-1-methylethoxy)-1- methylethyl-2-chloroethyl sulfite. Chlorobenzilate	USR. GGY.		p-Chlorophenyl p-chlorobenzenesulfonate (Ovex)	AMP, CIS, DOW.		o-Chlorophenyl-N-methylcarbamate p-Chlorophenyl 2,4,5-trichlorophenyl sulfone (Tetradifon).	OTC. FMN.		Decachlorooctahydro-1,3,4-metheno-2H-cyclobuta [cd] pentalene-2-one.	NAC.		1,1-Dichloro-2,2-bis(p-ethylphenyl)ethane	RH.		<pre>Dodecachlorooctahydro-1,3,4-metheno-2H-cyclobuta [cd] pentalene (Mirex).</pre>	RH. NAC.		*Hexachlorocyclohexane (Benzene hexachloride) (BHC)	DA, HK, PPG.		*Hexachlorocyclohexane, 100% \gamma-isomer (Lindane) Hexachloro-hexahydro-methano-benzodioxathiepine 3-oxide (Endosulfan).	HK. HK.		<pre>1,1,1-Trichloro-2,2-bis(p-methoxyphenyl)ethane (Methoxychlor).</pre>	CHF, DUP.		N, N-Diethyl-m-toluamide (DEET)	HPC, PFZ.		Di-n-propyl isocinchomeronate	MGK. CIS, HPC. UCC.		carbamoyl oxime. 1-Naphthyl N-methylcarbamate (Carbaryl)	ucc.			· · · · · ·	TABLE 20B. --Pesticides and related products for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	Chemical	Manufacturers' identification codes (according to list in table 22)		---	--		PESTICIDES AND RELATED PRODUCTS, CYCLICContinued			*InsecticidesContinued			*Organophosphorus insecticides:			4-tert-Butyl-2-chlorophenyl methyl methylphos-	DOW.		phoramidite.	SF.		S-[[(p-Chlorophenyl)thio]methyl] 0,0-diethyl phosphorodithioate (Carbophenothion).			0,0-Diethyl 0-3-chloro-4-methyl-1-oxo-2H-1-	CHG.		benzopyran-7-yl phosphorothicate (Coumaphos).			Diethyl-1-(2,4-dichlorophenyl)-2-chlorovinyl	SHC.		phosphate.	GGY.		0,0-Diethyl 0-(2-isopropyl-4-methyl-6-pyrimidinyl)	uui.		phosphorothicate																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																				
(Diazinon). 0,0-Diethyl 0-p-(methylsulfinyl)phenyl phos-	CHG.		phorothicate.			*0,0-Diethyl 0-p-nitrophenyl phosphorothicate	AMP, MON, SF, SHC.		(Parathion).	OF.		0,0-Dimethyl S-(p-chlorophenylthio)methyl phos-	SF.		phorodithicate. 0,0-Dimethyl 0-[4-(methylthic)-m-tolyl]phos-	CHG.		phorothioate (Fenthion).			*0,0-Dimethyl 0-p-nitrophenyl phosphorothicate	AMP, MON, SF, SHC.		(Methyl parathion).	272		0,0-Dimethyl S-[4-oxo-1,2,3-benzotriazin-3(4H)-	CHG.		ylmethyl] phosphorodithicate. 0,0-Dimethyl S-phthalimidomethyl phosphorodithicate-	SF.		Dimethyl 2,4,5-trichlorophenyl phosphorothionate	DOW.		(Ronnel).			2,3-p-Dioxane S,S-bis(0,0-diethylphosphorodithioate)	HPC.		(Dioxathion).	G.P.		0-Ethyl 0-p-nitrophenyl phenylphosphonothicate (EPN)	SF. SHC.		α-Methylbenzyl 3-(dimethoxyphosphinyloxy)-cis-	5110•		crotonate. 0,0,0',0'-Tetramethyl 0,0'-Thiodi-p-phenylene	ACY.		phosphorothicate.			All other organophosphorus insecticides	SF.		Nematocides:	COV.		0,0-Diethyl 0-(2,4-dichlorophenyl) phosphorothioate	SM. ACY.		0,0-Diethyl 0-2-pyrazinyl phosphorothicate (Thionazin)	NOI.		*Rodenticides: 3-(α-Acetonylbenzyl)-4-hydroxycoumarin (Warfarin)	MOT, PEN.		2-Pivalov1-1.3-indandione (Pindone)	MOT, PIC.		Other rodenticides	AMC, NES.		Synergists:	FIM FIE		α -[2-(2-n-Butoxyethoxy)-ethoxy]-4,5-methylenedioxy-2-	FMN, FMP.		propyltoluene (Piperonyl butoxide). N-(2-Ethylhexyl)bicyclo(2.2.1)-5-heptene-2,3-	MGK.		dicarboximide.			Other synergists	CTN.					PESTICIDES AND RELATED PRODUCTS, ACYCLIC			*Fungicides:			Bis=1.4-bromoacetoxy-2-butene	VIN.		Cadmium succinate	MAL. FMN, FMP.		1-Chloro-2-nitropropane (Korax) Disodium cyanodithioimidocarbonate	BKM.		Dithiocarbamic acid fungicides:			*Dimethyldithiocarbamic acid, ferric salt (Ferbam)	DUP, FMN, RBC, WRC.		Dimethyldithiocarbamic acid, manganese salt	FMN.		Ethylene bis(dithiocarbamic acid), diammonium salt	CIS, RBC.		*Ethylene bis(dithiocarbamic acid), disodium salt	CIS, DUP, FMN, RH.		(Nabam).	CIS, DUP, RH.		Ethylene bis(dithiocarbamic acid), manganese salt (Maneb).	,,		*Ethylene bis(dithiocarbamic acid), zinc salt	CIS, DUP, FMN, RH.		(Zineb).	l		Polyethylenethiuram disulfide (PETD)	FMN.		Other dithiocarbamic acid fungicides	VNC. ACY.		n-Dodecylguanidine acetate (Dodine)	DOI:		Chloromethoxypropylmercuric acetate	TRO.		Ethylmercuric chloride	DUP.		Ethylmercuric phosphate	DUP.	${\it TABLE~20B.--Pesticides~and~related~products~for~which~U.S.~production~or~sales~were~reported,~identified~by~manufacturer,~1966--Continued}$	Chemical	Manufacturers' identification codes (according to list in table 22)		--	--		PESTICIDES AND RELATED PRODUCTS, ACYCLIC Continued			*FungicidesContinued			Mercury fungicidesContinued			3-Methyl(mercurithio)-1,2-propanediol	DUP		Methylmercuric acetate	DUP.		Methylmercuric hydroxide	MRT.		All other acyclic fungicides:			Dimethyl thiocarbonyl disulfide	CLY.		2-Propene-1,1-diol diacetate	SHC.		Other	BFG.		Herbicides and plant hormones:			Cacodylic acid	ASL.		2-Chloroallyl diethyldithiocarbamate (CDEC)	MON.		2-Chloro-N, N-diallylacetamide (CDAA)	MON.		2,3-Dichloroallyl diisopropylthiolcarbamate (Diallate)-	MON.		2,2-Dichloropropionic acid, sodium salt (Dalapon)	DOW.		N-Dimethylamino succinamic acid	USR.		S-Ethyl di-N,N-propylthiocarbamate (EPTC)Ethyl xanthogen disulfide	SF. RBC.		Methanearsonic acid, disodium salt (DSMA)	ASL, CLY.		Methanearsonic acid, dodecyl- and octylammonium salts	CLY, VIN.		Methanearsonic acid, sodium salt (MSMA)	VIN.		S-Propyl butylethylthiocarbamate (Pebulate)	SF.		S-Propyl dipropylthiocarbamate (Vernolate)	SF.		S,S,S-Tributyl phosphorotrithioate	CHG.		Tributyl phosphorotrithioate	SW.		Trichloroacetic acid, sodium salt (TCA)	DOW.		S-2,3,3-Trichloroallyl N,N-diisopropylthiolcarbamate	MON.		(Tri-allate).			Insecticides:			2-(2-Butoxyethoxy)ethyl thiocyanate	RH.		Butoxy polypropylene glycol	UCC.		Metaldehyde	COM.		*Organophosphorus insecticides:			S-[1,2-Bis(ethoxycarbonyl)ethyl] 0,0-dimethyl	ACY.		phosphorodithioate (Malathion).			2-Carbomethoxy-1-propen-2yl dimethyl phosphate	SHC.		1,2-Dibromo-2,2-dichloroethyl dimethyl phosphate	SHC		(Naled). 0,0-Diethyl S-2-(ethylthio)ethyl phosphorodithioate	CUC		(Disulfoton).	CHG.		0,0-Diethyl 0-2-(ethylthio)ethyl phosphorothicate	CHG.		(Demeton 0).	Ond.		0,0-Diethyl S-2-(ethylthio)ethyl phosphorothicate	CHG.		(Demeton S).			0,0-Diethyl S-(ethylthio)methyl phosphorodithicate	ACY.		(Phorate).			3-(Dimethoxyphosphinyloxy)-N,N-dimethyl-cis-	SHC.		crotonamide.			0,0-Dimethy1-0-2,2-dichlorovinyl phosphate (DDVP)	SHC.		0,0-Dimethyl S-(N-methylcarbamoylmethyl) phos-	ACY.		phorodithioate (Dimethoate).			Dimethyl phosphate of 3-hydroxy-N-methyl-cis-	SHC.		crotonamide.			S-[2-(Ethylsulfinyl)ethyl] 0,0-dimethyl phos-	CHG.		phorodithicate (Oxydemetonmethyl).			0,0,0',0'-Tetraethyl S,S'-methylene bis-phos-	FMN, FMP.		phorodithioate (Ethion).			*Tetraethyl pyrophosphate (TEPP)	ALC, AMP, OTH.		Tetra-n-propyl dithiopyrophosphate	SF.		2-Thiocyanoethyl dodecanoate	RH.			UV **		Other acyclic insecticides	нк, х.		Rodenticides: Sodium fluoracetateSoil conditioners: Polyacrylonitrile, hydrolyzed,	RBC. ACY.	TABLE 20B. --Pesticides and related products for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	Chemical	Manufacturers' identification codes (according to list in table 22)		---	---		PESTICIDES AND RELATED PRODUCTS, ACYCLICContinued			*Soil fumigants: 2-Aminobutane carbonate *1,2-Dibromo-3-chloropropane (DBCP) 1,3-Dichloropropene	LIL. AMP, BST, DOW, SHC. DOW. DOW, SHC. AMP, DOW, FRO, GTL, MCH. DUP, SF. DOW, IMC. SF.	### Miscellaneous Chemicals ${\it TABLE~21B.--Miscellaneous~chemicals~for~which~U.S.~production~or~sales~were~reported,~identified~by~manufacturer,~1966}$ [Miscellaneous chemicals for which separate statistics are given in table 21A are marked with an asterisk (*); chemicals not so marked do not appear in table 21A because the reported data are accepted in confidence and may not be published. Manufacturers' identification codes shown below are taken from table 22. An x signifies that the manufacturer did not consent to his identification with the designated product]	Chemical	Manufacturers' identification codes (according to list in table 22)								--	--	--	--	--	--	--	--		MISCELLANEOUS CHEMICALS, CYCLIC									6-Acetoxy-2,4-dimethyl-m-dioxane	GIV.								Adenosine phosphates	PLB.								2-Aminobenzothiazole	FMT.								2-Amino-4,6-dimercapto-1,3,5-triazine	ACY.								l-(2-Aminoethyl)piperazine	JCC.								l-(3-Aminopropyl)morpholine	JCC.								Anisaldehyde bisulfite	GIV.								Arylalkyl phosphites	WES.								Barium octylphenate	CCA.								Benzoic acid salts:									Aluminum benzoate	GAF.								Cobalt benzoate	SHP.								*Sodium benzoate, tech	HN.								*Sodium benzoate, U.S.P	HK, HN, MON, PFZ, VEL.								p-Benzoquinone (p-Quinone)	EKT.								Benzothiazole	ACY.								Benzoyl peroxide	AZT, CAD, NOC, RCI, SDH, UPR, WTL.								Biological stains	HLC, NAC.								Bis(2,4-dichlorobenzoyl) peroxide	CAD.								2,4-Bis(4-hydroxy-3,5-di-tert-butyl-phenoxy)-6-(n-octyl-	GGY.								thio)-1,3,5-triazine.									Bis(2-hydroxypropoxyphenyl)methane	JCC.								2,4-Bis(n-octylthio)-6-(4'-hydroxy-3',5'-di-tert-butyl-	GGY								anilino)-1,3,5-triazine.									Boron fluoride-phenol complex	ACG.								Butyl benzoate	FRO, TCC, VEL.								p-tert-Butylbenzoic acid, barium bis-salt	CCA.								n-Butylferrocene	ARA.								2(and 3)-tert-Butyl-4-methoxyphenol	EKT.								o-tert-Butyl-α-methylcinnamaldehyde	GIV.								tert-Butyl peroxybenzoate	WTL.								-tert-Butylphenyl salicylate	DOW.								Camphene	BKL, DOW.								Cellulose acetate phthalate	GLD, HPC.								Centralite-1 (N, N'-Diethyl-N, N'-diphenylurea)	X.								Themical indicators	OTC, PAS.								Chemical reagents	EK, HLC, LAM, NAC.								Chloramine B (Sodium derivative of N-chlorobenzene sul-	ACG, CLB, EK, GFS, HLC, LAM, NAC, PIC.								fonamide).	MED.								Chlorinated terphenyls	KPS.								2-Chloroacetophenone	GAM.								-(3-Chloroallyl)-3,5,7-triaza-l-azon iaadamantane chlo-	DOW.								ride.	2011								o-Chlorobenzylidene)malononitrile	GAM.								-Chloro-2-hydroxybenzophenone	DOW.								Chlorophyllin, sodium-potassium-copper	KCH.								bobalt phthalocyaninedisulfonic acid	NAC.									HPC, RCI.								Numene hydroperoxide	CAD, WTL.								Dyclohexene-1,2-dicarboxylic acid (Tetrahydrophthalic	RCI.								acid)																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																					
disubstituted, polyester salts: Barium and									cadmium salts.									,4-Cyclohexylenedimethanol	EKT.								yclopropane	MAL, OH, OMS, TAE.								bytidine and derivatives	PIB.								Decahydronaphthalene (Decalin)	DUP.								Decyl diphenyl phosphite	HK, x.																	ehydroacetic acid. and sodium salt	LTAN .								Sehydroacetic acid, and sodium salt	GAN. EKT.							TABLE 21B. -- Miscellaneous chemicals for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	Chemical		M					ication n table		_		---	--------------	--------	-------	-------	-------	------	--------------------	--	---		MISCELLANEOUS CHEMICALS, CYCLIC Continued												DOM										2,4-Dibenzoylresorcinol	DOW. ARA.										2,6-Di-tert-butyl-p-cresol: *Food grade	CAT.	EKT,	HPC,	KPT,	SHC.						*Tech		EKT,				SHC.					Di_n_butyl ferrocene	ARA.										2 5_Di_tert_butylhydroguinone	EKT.										Di_tert_butvl peroxyphthalate	WTL.										2,4-Dichlorobenzoyl peroxide	GLY.										1,3-Dichloro-5,5-dimethylhydantoin	MON.										cyanuric acid), potassium and sodium salts.											Dicyclohexylammonium nitrite	OMC.										Didecyl phenyl phosphite	HK.										N. N-Diethyl-p-phenylenediamine	FMT.										Digitonin	PEN.										2,5-Dihydroxybenzenesulfonic acid	NES.										2,2'-Dihydroxy-4,4'-dimethoxybenzophenone	GAF.										2,6-Dihydroxyisonicotinic acid (2,6-Dihydroxy-4-carboxy-	1111.										pyridine). 2,2'-Dihydroxy-4-methoxybenzophenone	ACY.										2,2'-Dihydroxy-4-(octadecyloxy)benzophenone	ACY.										3 5-Diiodosalicylic acid	MRT.										Discorropylbenzene hydroperoxide	HPC.										Diisopropyl-m.p-cresols	GIV.			T.00	mp.r.						*n-Dimethoxybenzene (Dimethyl ether of hydroquinone)	ASL,	EKT,	GAF,	TCO	, TBK	•					α,α-Dimethylbenzyl hydroperoxide	WTL.										2,5-Dimethyl-2,5-di(peroxyphenyl)hexane2,5-Dimethylhexane-2,5-diperoxybenzoate	UPR.										2,6-Dimethylmorpholine	DOW.										4,4-Dinitrocarbanilide-4,6-dimethyl-2-pyrimidinol	MRK.										Di-n-octadecyl 3,5-di-tert-butyl-4-hydroxyphenyl phospho-	GGY.										nete											Dioxane (1,4-Diethylene oxide)	·	UCC.									2.5-Diphenvl-p-benzoquinone	EKT.										Dithioammilide, monoethanolamine salt	ACY.	EKT.									Enzymes:	201,										Hydrolytic:	1										Amy] 2565		CRN,				WBC.					Protesses		, PFZ,		, RH,	WBC.						Other		, RH,									Nonhydrolytic		, WBC	•								1,2-Epoxy-3-phenoxypropane (Glycidyl phenyl ether)	ICO.										6-Ethoxy-m-anol (Propenylmethylguaethol)Ethyl cellulose phthalate		•									2-Ethylhexyl octylphenyl phosphite	x.										Fthyl hydrocaffeate	TCO										#/ Wthylmorpholine	1 JCC	, UCC									Ferrocene	ARA	•									*Flotation reagents:	1										Dicresylphosphorodithioic acid (Dicresylthiophosphoric	ACY	•									acid).	ACY										Dicresylphosphorodithioic acid, ammonium salt	KCU										Dicresylphosphorodithicic acid, sodium salt2,2'-Dimethylthicarbanilide (Di-o-tolylthicurea)	DIIP	, RBC									Rosin amines	· HPC										Thiocarbanilide (Diphenylthiourea)	· ACY	, NAC									Fluorinated benzenoid chemicals	PIC										Firmer destroctives:	1										2-Bureldehyde (Furfural)	QKO										Tetrehydrofurfuryl alcohol	- I QKO										Gallic acid	. MAI										*Gasoline additives: N,N'-Bis(1,4-dimethylpentyl)-p-phenylenediamine	- EKT	١.									2 6 Dd text hutyl phenol	- I SHC	, TNA									N N-Di-sec-butyl-o-phenylenediamine	- שטען	, EKT									*N.N'-Di-sec-butyl-p-phenylenediamine	בטען -	, ekt	, UPM	ſ.		,					N, N'-Diisopropyl-p-phenylenediamine	- DUF	, EKI	·•									ı									TABLE 21B. --Miscellaneous chemicals for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	Chemical	Manufacturers' identification codes (according to list in table 22)		---	---		MISCELLANEOUS CHEMICALS, CYCLIC Continued			*Gasoline additivesContinued			*N, N'-Disalicylidene-1,2-propanediamine			Methylcyclopentadienylmanganese tricarbonyl	- TNA.		4,4'-Methylenebis(2,6-di-tert-butylphenol)	- ENJ, SHC, TNA.		2,2'-Thiobis[6-tert-butyl-4-methylphenol]			Glyceryl tribenzoate	1		Guanosine phosphates			5,6,7,8,9,9-Hexachloro-1,2,3,4,4a,5,8,8a-octahydro-5,8-methano-2,3-naphthalic anhydride (Cloran).	WSN.		Hexamethylenetetramine, tech	BOR, DUP, HKD, HMP, HN, PLS, UCC.		o-(2-Hydroxy-p-anisoyl)benzoic acid	-I ACY.		N-(2-Hydroxyethyl)gentisamide			2-Hydroxy-4-methoxybenzophenone	- ACY, GAF.		2-Hydroxy-4-methoxy-5-sulfobenzophenone trihydrate	- ACY.		2-(2'-Hydroxy-5'-methylphenyl)benzotriazole2-Hydroxy-4-n-octoxybenzophenone			Hydroxyphenylbenzotriazole derivative	1 777 7		2-(2-Hydroxyphenyl)-4(3)-quinazolone	- GGY. - x.		1-Hydroxy-2-pyridine (Omadine)	OMC.		2-Imidazolidinethione (1,3-Ethylene-2-thiourea)			Inosine and phosphates			Isoamyl p-dimethylaminobenzoate			Isocyanuric acid			IsophoroneIsopropyl-o-cresol			p-Isopropyl-α-methylcinnamaldehyde			Isopropylmorpholine			Ketene, dimer	EKT.		Lubricating oil and grease additives:			Chlorosulfurized and sulfurized compounds:			Liquid disulfide			Tall oil ester, sulfurized			Terpenes, sulfurizedAll other			Oil-soluble petroleum sulfonates:	LUB.		Oil-soluble petroleum sulfonate, ammonium salt	SIN.		*Oil-soluble petroleum sulfonate, barium salt	CO. LUB. TX. x.		*Oil-soluble petroleum sulfonate, calcium salt	CO, ENJ, LUB, ORO, SHO, SON, TX.		*Oil-soluble petroleum sulfonate, sodium salt	CO, ENJ, MOR, NOP, PAR, SHO, SOC, SOI, SON, TX.		All otherPhenol salts:	co.		Barium salt of dodecylphenol	mv		Barium salt of nonylphenol	TX.		Calcium salt of octylphenol-formaldehyde			Calcium salt of polypropylphenol	ORO.		All other phenol salts	ENJ, LUB, MON, ORO, SIN, x.		All other	ENJ, LUB, MON, ORO, TNA, TX, x.		Maleic anhydride half esters, vinyl ether copolymers	GAF.		p-MenthaneB-p-Menthyl hydroperoxide	HPC.		-Methoxybenzylidenemalonic acid, dimethyl ester	HNW, HPC.		-Methoxyphenol	ACY. ASL, EKT.		-Methylaziridine	ICO.		,2'-Methylenebis[4-chlorophenol] (Dichlorophene)	GIV.		<pre>fethylenebis[5,5-dimethylhydantoin]</pre>	GLY.		2,2'-Methylenebis[3,4,6-trichlorophenol] (Hexachlor	GIV.		<pre>2,2'-Methylendi-p-cresol (Bis(5-methyl-2-hydroxyphenyl)- methane).</pre>	GIV.		Methyl gallate	нен		ethylglucoside	HSH. CRN.		-Methylmorpholine	JCC, UCC.		-Methyl-5-norbornene-2,3-dicarboxylic anhydride (Methyl-	100.		bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic anhydride).			lethyl phenyl phosphates	TNA.		-Methyl-2-pyrrolidone, monomer	GAF.		ethyl triphenyl phosphonium bromide	AID.		ethyl vinyl ether-toluene polymer	GAF.		Tower Tower - Torone Dordmer.	GAF.	${\it TABLE~21B.--Miscellaneous~chemicals~for~which~U.S.~production~or~sales~were~reported,~identified~by~manufacturer,~1966--Continued}$	Chemical	Manufacturers' identification codes (according to list in table 22)		--	--		MISCELLANEOUS CHEMICALS, CYCLICContinued			*Morpholine	DOW, JCC, UCC.		Morpholine salt of p-toluenesulfonic acid *Napthenic acid salts:	AMB.		Aluminum naphthenate	HSH, WTC.		Barium naphthenate	CCA.		Cadmium naphthenate* *Calcium naphthenate	CCA. CCC, FER, HNX, HSH, MCI, MID, SHP, SOC, SRR, SW,		Cobalt lead manganese naphthenate	TRO, WTC, x, x. HNX, HSH.		*Cobalt naphthenate	CCA, CCC, FER, HNX, HSH, MCI, MID, MON, SHP, SOC, SRR, SW, TRO, WTC, x, x.		*Iron naphthenate	CCA, CCC, HNX, HSH, MCI, MID, SOC, WTC.		Lead manganese naphthenate	CCA.		*Lead naphthenate	CCA, CCC, CCW, FER, HNX, HSH, MCI, MLD, SHP, SOC, SRR, SW, TRO, WTC, x, x.		Lithium naphthenate	CCA.		*Manganese naphthenate	CCA, CCC, FER, HNX, HSH, MID, SHP, SOC, SRR, SW, TRO, WTC, x.		Nickel naphthenate	CCA.		Rare earths naphthenateSodium naphthenate	CCA, HNX.		Sodium naphthenateStrontium naphthenate	CCA.		*Zinc naphthenate	CCA, CCC, FER, HNX, HSH, MCI, MID, SHP, SOC, SRR, SW,			TRO, WTC.		o-Nitrobenzoic acid and sodium salt	WAY.		Norbornane-2-methanol (Bicyclo(2,2,1)-heptane-2-methanol)- 5-Norbornen-2-ylmethyl acrylate (Bicylo[2.2.1]-hept-5-	100.		ene-2-methylol acrylate).	100.		1-Octadecenyl-2-naphthenyltetrahydropyrimidine	x.		Octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)-propionate	GGY.		Octylphenol cyclotetrasiloxane	x.		Organic mercury compounds:			Phenyl mercuric borate	TRO.		Other	X.																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
1,10-Phenanthrolinep-Phenolsulfonic acid	COK.		Phenolthiosulfonic acid	GAF.		2-Phenoxyethanol (Ethylene glycol monophenyl ether) 2-(2-Phenoxyethoxy)ethanol (Diethylene glycol phenyl ether).	DOW, JCC.		2,2'-(p-Phenylene)diethanol	EKT.		Phenyl hydrogen phosphate	x.		5-Phosphonylribose 1-pyrophosphate	PLB.		Photographic chemicals:			N-(o-Acetamidophenethyl)-l-hydroxy-2-naphthamide	EKT.		2-(4-Amino-N-ethyl-m-toluidino)ethanol	EKT.		*Benzotriazole	EK, FMT, MEE, MRT.		p-Benzylaminophenol hydrochloride	EK.		Catechol (Pyrocatechin) 3-Chloro-4-diethylaminobenzenediazonium chloride (p- Diazo-2-chloro-N,N-diethylaniline) - zinc chloride.	FMT, IDC.		Chlorohydroquinone	EK.		2,4-Diaminophenol dihydrochloride (Amidol)	VPC.		2[N-(2,4-Di-tert-amylphenoxyacetyl) amido]-4,6-dichloro- 5-methylphenol.	IDC.		2,5-Dibutoxy-4-morpholinobenzenediazonium chlorozincate-	ESA, FMT, IDC.		4-Diazo-1-morpholinobenzene	FMT.		*2,5-Diethoxy-4-morpholinobenzenediazonium chlorozincate-	ESA, FMT, GAF, IDC.		*p-Diethylaminobenzenediazonium chloride (p-Diazo-N, N-diethylaniline) - zinc chloride.	FMT, GAF, IDC, MRT.		p-Diethylaminobenzenediazonium (p-Diazo-N, N-diethyl-	IDC.		aniline) fluoroborate.			N, N-Diethyl-p-phenylenediamine hydrochloride	EKT, FMT.		*N, N-Diethyltoluene-2,5-diamine, monohydrochloride	EKT, FMT, IDC.		2,5-Dihydroxybenzenesulfonic acid	EK.		2,7-Dihydroxy-3,6-naphthalene sulfonate	FMT.		p-Dimethylaminobenzenediazonium chloride (p-Diazo-N,N-	FMT, IDC.		dimethylaniline) - zinc chloride. 4-(2',6'-Dimethylmorpholinyl)benzenediazonium chloride -	IDC.	TABLE 21B. --Miscellaneous chemicals for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	Chemical	Manufacturers' identification codes (according to list in table 22)		---	---		MISCELLANEOUS CHEMICALS, CYCLICContinued			Photographic chemicalsContinued p-Diphenylaminediazonium sulfate p-(N-Ethylbenzimido)benzenediazonium chloride (p-Diazo-	FMT. FMT, MRT.		N-benzyl-N-ethylaniline) - zinc chloride. p-[Ethyl(2-hydroxyethyl)amino]benzenediazonium chloride (p-Dlazo-N-ethyl-N-hydroxyethylaniline) - zinc chloride.	FMT, IDC.		N-Ethyl-N-hydroxyethyl-p-phenylenediamine sulfate N-Ethyl-N-(β-methanesulfonamidoethyl)toluene-2,5-diamine sulfate.	IDC. EKT.		Hydroquinone (Hydroquinol) p-[(2-Hydroxyethyl)methylamino] benzenediazonium chloride (p-Diazo-N-hydroxyethyl-N-methylaniline) - zinc chloride.	EKT. FM.		1-Hydroxy-N-(2-hydroxyethyl)-2-naphthamide (2,3-0xynaph- thoic-mono-ethanolamide). 1-(3-Hydroxyphenyl)urea	FMT.		4-Methoxy-1-naphtholp-Methylaminophenol sulfate (Metol)	FMT, IDC. x. EK.		5-Methylbenzotriazole	EK. FMT. WAY.		4-Morpholinylbenzenediazonium chloride - zinc chloride salt. 4-Morpholinylbenzenediazonium fluoroborate	IDC.		6-Nitrobenzimidazole	EK, FMT. EKT. GFC, FMT.		1-Phenyl-3-pyrazolidinone4-Phenylpyrocatechol	GGY, WAY. x. WAY.		2-Resorcylic monoethanolamide	FMT. BKC. EKT.		All other Phthalic acid, lead salt, dibasic *Pinene (α- and β-)	EK, EKT, IDC, WAY. NTL.		Poly-4-(2-acryloxy ethoxy)-2-hydroxybenzophenonePolyethylene terephthalate	ARZ, CBY, GLD, HNW, HPC. ACY. DUP, EK.		*Propyl gallate	EKT, HN, HSH. HSH, MAL. EKT.		Aluminum resinate	JMS, MAL. JMS, SW.		Copper resinate	JMS. JMS. HSH, JMS.		Manganese resinateZinc resinate	JMS. JMS. JMS, SW.		Salicylanilide, nonmedicinal————————————————————————————————————	DUP, FIN, MEE, PCW. NTL. DCC.		Sodium cresoxide (Cresylic acid, sodium salt)	DEX, GOC. GGY. VEL. MON, MRK.		Tall oil fatty acid chlorideTall oil salts (Linoleic-rosin acid salts): *Calcium tallate	GAF. CCA, CCC, DYS, HNX, HSH, MCI, MID, SRR, TRO, WTC.		*Cobalt tallate Copper tallate Iron tallate	CCA, CCC, FER, HNX, MCI, MID, SHP, SRR, TRO, WTC. CCA, MID, SHP. CCA, MCI, MID, SRR, WTC.		Lead manganese tallate* *Lead tallate*	HSH, MCI. CCA, CCC, FER, HNX, HSH, MCI, MID, SHP, SRR, TRO, WTC, x.		*Manganese tallate Zinc tallate Tannic acid	CCA, CCC, FER, HNX. HSH, MCI, MID, SRR, TRO, WTC. CCA, HSH, MCI. HSH, MAL.	TABLE 21B. -- Miscellaneous chemicals for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	manufacturer, 1966Continued								---	--	--	--	--	--	--		Chemical	Manufacturers' identification codes (according to list in table 22)							MISCELLANEOUS CHEMICALS, CYCLIC Continued								Tanning materials, synthetic:								Hydroxytoluenesulfonic acid, formaldehyde condensate	GGY.							(Cresol-formaldehyde sulfonate), sodium salt.	AVC CED NOD NVC DU							*2-Naphthalenesulfonic acid, formaldehyde condensate and salts.	AKS, GRD, NOP, NYC, RH.							1-Phenol-2-sulfonic acid, formaldehyde condensate	NAC, NOP, RH.							(Phenol-formaldehyde, sulfonated).	1,							1-Phenol-4-sulfonic acid, formaldehyde condensate	AKS.							Styrene maleic anhydride interpolymer, partial sodium	DUP.							Salt.	GAF.							Sulfonyldiphenolsulfonic acid, formaldehyde condensate All other	GGY.							Tetra(n-butyl)ammonium picrate	MED.							3,3',4,4'-Tetrachlorophenylurea	OTC.							Tetrahydromethylthiophene-1,l-dioxide	PLC.							1,2,3,4-Tetrahydronaphthalene (Tetralin)	DUP.							Tetrahydrothiophene	ORO, PAS.							Tetrakis[methylene-3-(3',5'-di-tert-butyl-4'-hydroxyphenol)	GGY.							propionatel methane.								Tetramethylaminoethylpiperazine	JCC.							Tetraphenyltin	x.							Freatile chemicals, other than surface-active agents: *1,3-Bis(hydroxymethyl)-2-imidazolidone (Dimethylol	ACY, AKS, DEX.							ethylene urea).	noi, Alb, Dir.							N', N'-Diphenyl-1,2-propanediamine	SNW.							1-[(Octadecyloxy)methyl] pyridinium chloride	DUP.							Phenol, sulfurated	GAF.							Tetrahydro-3,5-bis(methoxymethyl)-4H-1,3,5-oxadiazine-4-	DEX.							one (1,3-Bis(methoxymethyl)uron). 2,2',4,4'-Tetrahydroxybenzophenone	GAF.							All other	AKS, x, x.							2.2'-Thiobis[4-chlorophenol]	GIV.							2,2'-Thiobis[4,6-dichlorophenol]	SDH.							[2,2'-Thiobis(4-octylphenolate)]-n-butylamine nickel Thiophene	ACY. PAS.							o-Toluidine formaldehyde hydrochloride	RBC.							o-Tolylbiguanide	MON.							Triaryl phosphites	WES.							3,4',5-Tribromosalicylanilide								3,4',5-Tribromosalicylanilide and dibromosalicylanilide mixtures.	FIN.							3,4,4'-Trichlorocarbanilide	MON.							Trichloromelamine	WTH.							1,3,5-Trichloro-s-triazine-2,4,6(1H,3H,5H)trione (Tri-	MON.							chloroisocyanuric acid).	TICE							Tri-(m,p)-cresyl borate3-Trifluoromethyl-4,4'-dichlorocarbonalide	USB.							α,α,α-Trifluoro-p-toluidine (p-Aminobenzotrifluoride)	PIC.							2,4,6-Trinitroresorcinol, lead derivative	x.							s-Trioxane	CEL.							Triphenylphosphine	CCW. HK, MON.							Triphenyltin acetate	x.							Triphenyltin chloride	x.							Tris(1-aziridinyl)phosphine oxide	DOW.							Uridine derivatives	PIB.							1-Vinyl-2-pyrrolidinone, monomer and polymer	GAF.							1-Viny1-2-pyrrolidinone - acrylamide copolymer 1-Viny1-2-pyrrolidinone - ethyl - acrylamide copolymer								1-Vinyl-2-pyrrolidinone - vinyl acetate copolymer	GAF.							MISCELLANEOUS CHEMICALS, ACYCLIC																Cellulose Esters and Ethers																*Cellulose Esters and Ethers *Cellulose esters: *Cellulose acetate	AV, CEL, DUP, EKT.						${\it TABLE~21B.--Miscellaneous~chemicals~for~which~U.S.~production~or~sales~were~reported, identified~by~manufacturer,~1966--Continued}$	Chemical	Manufacturers' identification codes (according to list in table 22)		---	--		MISCELLANEOUS CHEMICALS, ACYCLIC Continued			Cellulose Esters and EthersContinued			Cellulose estersContinued			Cellulose acetate propionate	EKT.		Cellulose propionate	CEL.		Nitrocellulose (Cellulose nitrate)	DUP, HPC.		Cellulose ethers: Ethylcellulose	DOW I'm		Ethylhydroxyethylcellulose	DOW, HPC.		Hydroxyethylcellulose	HPC, UCC.		Methylcellulose	DOW.		*Sodium carboxymethylcellulose, 100%	BUK, DUP, HPC, KON, WMP, WYN.		Sodium carboxymethylhydroxyethylcellulose	HPC.		Lubricating Oil Additives			Chlorosulfurized hydrocarbon	ENJ.		Chlorosulfurized lard oil	CCW.		Chlorosulfurized sperm oil	CCW.		Phosphorodithicates (Dithiophosphates):	ALX.		Zinc di(butylhexyl) phosphorodithioate	ORO.		Zinc dihexyl phosphorodithioate	MON.		Zinc diisopropyl phosphorodithioate	SIN.		All other	ENJ, LUB, MON, SIN, x.		Sulfurized butenesSulfurized lard oil	IUB.		Sulfurized sperm oil	CCW, GOC, NIC, SIN, WBG.		All other	CCW, ENJ, HK, LUB, MON, ORO, SIN, SOI, TX.		Nitrogenous Compounds			Acetaldehyde, 1,1-dimethyl hydrazone	DIX.		Acetamide	ACG.		Acetamidine hydrochlorideAcetamidoethanol (n-Acetyl-ethanolamine)	MRK.																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																			
Acetone semicarbazone	RBC.		Acetonitrile	EKX, SOH, UCC.		Acrylonitrile	ACY, BFG, DUP, MON, SOH, UCC.		AdiponitrileAllyl-sec-butylcyanoacetic acid, ethyl ester	DUP, MON.		l-Allyl-3-(2-hydroxyethyl)-2-thiourea	SDW. FMT, IDC.		Allyl isocyanate	CTN.		Allyl isothiocyanate, non-perfume grade	ICO.		Amidinourea (Granylurea) phosphate	ACY.		Amines: Allylamines	SUC		*n-Butylamine, mono	SHC. EKT, PAS, UCC, VGC.		tert-Butylamine, mono	MON, RH.		n-Butylethylamine	PAS.		n-Butylmethylamine	PAS.		*Di-n-butylamine Di-n-butylmethylamine	PAS, UCC, VGC.		Diethylamine hydrochloride	CFC, x.		Diethylenetriamine	DOW, JCC, UCC.		N, N-Diethylethylenediamine	CBP, COK.		N ¹ ,N ¹ -Diethyl-1,4-pentanediamine (Novoldiamine)	SDH.		Diethylaminopropylamine Dihexylamine	UCC.		Diisobutylamine	VGC.		Dimethylamine hydrochloride	EK, GAM.		Dimethylamine sulfate	RH.		N, N-Dimethyl-1, 3-propanediamine	JCC.		Dimethylaminopropylamine Dipentylamine (Diamylamine)	UCC.		*Dipropylamine	PAS, VGC. ENJ, PAS, UCC, VGC.		Dipropylenetriamine	UCC.		*Ethylamines:				DID 700		DiethylamineEthylamine, mono	DUP, ESC, PAS, UCC, VGC. ESC, PAS, UCC, VGC.	TABLE 21B. --Miscellaneous chemicals for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	Chemical	Manufacturers' identification codes (according to list in table 22)									---	--	--	--	--	--	--	--	--		MISCELLANEOUS CHEMICALS, ACYCLIC Continued										Nitrogenous CompoundsContinued										AminesContinued										Fthylenediamine	DOW, JCC, UCC.									Ethylenediamine sulfate	EK.									1.6-Hexanediamine (Hexamethylenediamine)	CEL, DUP, ELP, MON.									3,3'-Iminobispropylamine										Isobutylemine	PAS.									*Isopropylamines: Diisopropylamine	ESC, PAS, UCC, VGC.									Isopropylamine, mono	ESC, PAS, UCC, VGC.									*Methylamines:										Dimethylamine	CFC, COM, DUP, ESC, PAS, RH.									Methylamine, mono	COM, DUP, ESC, GAF, PAS, RH.									Trimethylamine	COM, DUP, ESC, PAS, RH.									Methylamine hydrochloride	EK, RBC.									Methyltriethylenediamine Pentaethylenehexamine	JCC.									Pentylamine (Monoamylamine)	EK, PAS.									1.2-Propanediamine (Propylenediamine)	JCC, UCC.									1.3-Propanediamine (1.3-Diaminopropane)	UCC.									Propulatine mono	PAS, UCC.									Tetraethylenepentemine	DOW, UCC.									N, N, N', N'-Tetramethyl-1,3-butanediamine	UCC.									Tetramethylethylenediamine Tributylamine	PAS.									Triethylenetetramine	DOW, UCC.									Tripentylamine	PAS.									Other	AIB, AID, DUP, EK, NLC, ONX, SNW, VGC.									2-Amino-1-butano1	ACY, COM.									2-Aminoethanethiol (2-Mercaptoethylamine) hydrochloride	EVN.									1-Aminoethanol (Acetaldehyde ammonia)	PAS.									2-Aminoethanol (Monoethanolamine) hydrochloride	WSN.									2-Aminoethanol (Monoethanolamine) sulfiteAminoethoxyethanol	· EVN, SUM. · JCC.									Aminoethoxyethanoi	DOW, JCC, UCC.									2-Aminoethyl mercaptoacetate (Monoethanolamine thio-	EVN, HAB.									glycolate). 2-Amino-2-ethyl-1,3-propanediol	- COM.									2-Aminoethyl vinyl ether	MEE.									Aminoguanidine bicarbonate	- TRJ.									2-Amino-2-(hydroxymethyl)-1,3-propanediol (Tris-(hydroxy-	COM.									methyl)aminomethane).										2-Amino-2-methyl-1,3-propanediol	- COM.									2-Mmino-2-methyl-1-propanol	- COM. - LIL.									2-Amino-1-propano1	- UCC.									1,1'-Azobisformamide	- FMT, NPI, USR.									2,2'-Azobis[2-methylpropionitrile] (Azobisisobutyronitrile)	DUP.									1 3-Bis(2-hydroxyethyl)-2-thiourea	- IDC.									1.3-Bis(hydroxymethyl)urea (Dimethylolurea)	- GLY, x.									N.O-Bis(trimethylsilyl)acetamide	- PIC.									Biuret	- SW.									N-Bromoacetamide	- ARA. - ARA, SDW.									2,3-Butanedione monoxime	- EK.									2_Butenone orime	- I AIB. CCA, MID, NAC, TRO.									tert-Butvl carbazate	- ALD.									n_Butvl cvanoacetate	- KF.									1_Buty1_3_ethy1_2_thiourea	- PAS.									2,2'-(Butylimino)diethanol (N, N-Bis(2-hydroxyethyl)-butyl-	PAS.									amine).	CHAIL LIDT									Butyl isocyanate	- CWN, UPJ. - NAC.									Butyraldehyde oxime	- NAC. - EKX.									n-Butyronitrile	DBC, DUP, NAC.									Chloroscetamide	- BPC, DOW.									Chloroacetonitrile	- BPC.									Chlorocholine chloride									${\it TABLE~21B. --Miscellaneous~chemicals~for~which~U.S.~production~or~sales~were~reported,~identified~by~manufacturer,~1966--Continued}$	Chemical	Manufacturers' identification codes (according to list in table 22)		--	---		MISCELLANEOUS CHEMICALS, ACYCLICContinued			Nitrogenous CompoundsContinued			2-Chloro-N, N-dimethylethylamine (Dimethylaminoethyl chloride) hydrochloride.	ABB, GAM, HEX, MCH, NES, PAS.		3-Chloro-N, N-dimethylpropylamine	SK.		2-Chloro-N, N-dimethylpropylamine hydrochloride3-Chloro-N, N-dimethylpropylamine hydrochloride	MCH.		2-Chloroethylamine	ICI.		β -Chloroally1-N-methylamine	LIL.		N-Chlorosuccinimide (Succinichlorimide)	ARA, NAC.		2-Chlorotriethylamine hydrochloride	HEX, MCH, x.		2-Chloro-N, N-diethylethylamine hydrochloride Choline base	PAS.		Coco nitrile	FOR.		Coconut oil amide	ARC, PG.		Cottonseed oil nitrile	FOR.		Creatine & creatinine	PFN.		Crotononitrile	KF.		2-Cyanoacetamide	KF.		2-Cyanoacethydrazide	KF.		Cyanogen bromide	KF.		2-Dibutylaminoethanol	AAC, PAS.		1,3-Dibuty1-2-thiourea	PAS, RBC.		1,4-Dicyanobutene	x. ,		Diethyl acetamidomalonate	SDW.		Diethylaminoethanethiol hydrochloride	EVN.		2-Diethylaminoethanol	AAC, PAS, UCC.		2-(2-Diethylaminoethoxy)ethanol2-Diethylaminoethyl methacrylate	PAS.		Diethylcarbamoyl chloride	DUP.		Diethyldithiocarbamic acid, sodium salt	EK.		N, N-Diethyldodecanamide	EK.		Diethylhydroxylamine	PAS.		1,3-Diethyl-2-thiourea	PAS, RBC.		2-Diisopropylaminoethanol (N-Diisopropylethanolamine) Diisopropylammonium nitrite	PAS, UCC.		1,3-Diisopropyl-2-thiourea	OMC.		Di (methoxyethyl)amine	VGC.		N, N-Dimethylacetamide	DUP.		2-Dimethylaminoethanethiol hydrochloride	EVN.		2-Dimethylaminoethanol	AAC, JCC, PAS, RH, UCC.		3-DimethylaminopropionitrileDimethylaminoethyl methacrylate	ACY.		2-Dimethylamino-2-methyl-1-propanol	AAC. COM.		Dimethylcarbamoyl chloride	CTN, OTC.		N-(3-Dimethylaminopropyl)oleamide	DUP.		N, N-Dimethylformamide	DUP.		1,1-Dimethylhydrazine	FMP.		Dithiooxamide	MAL.		2,5-Dithiobiureatert-Dodecyldisuccinamide	ACY.		Erucamide	ADM, FIN.		Ethanolamines:	ADM, FIN.		*2-Aminoethanol (Monoethanolamine)	ACP, DOW, JCC, UCC.		*2,2'-Aminodiethanol (Diethanolamine)	ACP, DOW, JCC, UCC.		*2,2',2''-Nitrilotriethanol (Triethanolamine)	ACP, DOW, JCC, UCC.		Ethoxymethylenemalononitrile	KF.		3-Ethoxypropionitrile	ACY.		Ethyl acetamidocyanoacetateEthyl allyl(1-methyl-2-pentynyl)cyanoacetate	SDW.		2-Ethylaminoethanol (Ethylmonoethanolamine)	PAS.		Ethyl carbamate	BKL, FMP.		Ethyl carbodiimide hydrochloride	OTC.		Ethyl cyanoacetate	KF.		Ethyl diazoacetate	AID.		2-Ethylhexyl cyanoacetate	GAF, KF.		N-Ethyl-N-hydroxyethyl-1,4-pentanediamine	SDW.		Ethyl isocyanate	SDW.	${\it TABLE~21B.--Miscellaneous~chemicals~for~which~U.S.~production~or~sales~were~reported,~identified~by~manufacturer,~1966--Continued}$	Chemical	Manufacturers' identification codes (according to list in table 22)																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																		
--	--		MISCELLANEOUS CHEMICALS, ACYCLIC Continued			Nitrogenous CompoundsContinued			Formand de			Formamidine disulfide dihydrochloride	DUP.		Glycine (Aminoacetic acid), non-medicinal	WAY. BPC, CHT.		Glycine ethyl ester hydrochloride	BPC.		Glycine salts:			Cupric glycinate	BPC.		Potassium glycinate	BPC.		Sodium glycinate	BPC.		Guanidine hydrochloride	ACY.		Hexamethylenediammonium adipate (Nylon salt)	CEL, MON.		Hydracrylonitrile (Ethylene cyanohydrin)	UCC.		2-Hydrazinoethanol (2-Hydroxyethylhydrazine)	NOR.		N-2-Hydroxyethylacetamide	USR.		Hydroxyethyl carbamate	JCC.		2-(Hydroxymethyl)-2-nitro-1,3-propanediol (Tris-(hydroxy-methyl)nitromethane).	COM.		Isobutyronitrile	EKX.		Isopropanolamines:			1-Amino-2-propanol (Monoisopropanolamine)	DOW, UCC.		1,1'-Iminodi-2-propanol (Diisopropanolamine)	DOW, UCC.		1,1', 1" -Nitrilotri-2-propanol (Triisopropanolamine)	DOW, UCC.		3-Isopropoxypropionitrile	ACY, DUP.		2-Isopropylaminoethanol	PAS.		Isopropyl carbamate	BKL.		Isopropyl ethylthionocarbamate	DOW.		Lactonitrile	MON.		Malonamide	FOR.		Malononitrile	KF.		Methacrylamide	BFG, RH, x.		Methacrylonitrile	SOH.		Methoxyamine hydrochloride	EK.		3-Methoxypropionitrile	DUP.		3-Methoxypropylamine	DUP, EKT, JCC.		2-Methylaminoethanol (N-Methylethanolamine)	ACI, EK.		Methylamino dimethyl acetal	LIL.		Methyl carbamate	BKL, FMP.		Methyl cyanoacetate	KF.		Methyl α-cyanoacrylateN,N'-Methylenebis(acrylamide)	EKT.		N, N'-Methylenebis(octadecanamide)	ACY.		N-Methylglucamine	DUP.		Methyl isocyanate	CTN, OTC.		2,2'-(Methylimino)diethanol (Methyldiethanolamine)	UCC.		2-Methyllactonitrile (Acetone cyanohydrin)	ACY, RH, x.		2-Methyl-2-nitro-1,3-propanediol2-Methyl-2-nitro-1-propanol	COM.		Methylpolyethanolamine	GAF.		N-Methyltaurine	GAF.		N-Methyltaurine, sodium salt	TNA.		N-Methylurea	III.		Nitriloacids and salts:	1		(Diethylenetrinitrilo)pentaacetic acid, monosodium hydrogen ferric salt.	HMP. GGY.		(Diethylenetrinitrilo)pentaacetic acid, pentasodium salt	GGY.		(Diethylenetrinitrilo)pentaacetic acid, sodium salt	CWL, DOW, GGY, HMP, RPC, TCC.		N, N-Dihydroxyethylglycine, sodium salt	CWL, DOW, HMP.		Ethanoldiglycine, disodium salt	HMP.		(Ethylenedinitrilo)tetraacetic acid (Ethylenediamine- tetraacetic acid).	DOW, GGY, HMP.		(Ethylenedinitrilo)tetrascetic acid, calcium disodium	DOW, GGY.		salt. (Ethylenedinitrilo)tetraacetic acid, diammonium salt	DOW.		the contract of o	·	${\it TABLE~21B.--Miscellaneous~chemicals~for~which~U.S.~production~or~sales~were~reported,~identified~by~manufacturer,~1966--Continued}$	Chemical	Manufacturers' identification codes (according to list in table 22)		---	---		MISCELLANEOUS CHEMICALS, ACYCLICContinued			Nitrogenous CompoundsContinued			*Nitriloacids and saltsContinued			*(Ethylenedinitrilo)tetraacetic acid, disodium salt (Ethylenedinitrilo)tetraacetic acid, disodium copper salt, dihydrate.	DOW, EK, GGY, HMP, BPC.		(Ethylenedinitrilo)tetraacetic acid, disodium zinc salt, dihydrate.	GGY.		(Ethylenedinitrilo)tetraacetic acid, manganese salt (Ethylenedinitrilo)tetraacetic acid, monosodium iron salt.	GGY, HMP, RPC.		(Ethylenedinitrilo)tetraacetic acid, tetrapotassium salt	GGY.		*(Ethylenedinitrilo)tetraacetic acid, tetrasodium salt *(Ethylenedinitrilo)tetraacetic acid, trisodium salt	CRT, CWL, DOW, GGY, HMP, HRT, RPC, TCC.		(N-Hydroxyethylethylenedinitrilo)triacetic acid	GGY, NOF.		*(N-Hydroxyethylethylenedinitrilo)triacetic acid, tri- sodium salt.	CRT, CWL, DOW, GGY, HMP, RPC, TCC.		Nitrilotriacetic acid, trisodium salt	GGY, HMP.		Other	EK, HMP.		2-Nitro-1-butanol	COM.		Nitroethane	COM.		1-Nitropropane	COM.		2-Nitropropane	COM.		Nylon, 6 and 6/6 polymer for fiber	DUP, MON, NAC.		Octadecyl isocyanate	CWN, MOB.		Oleonitrile (Octodecene nitrile)	ADM, ARC, FIN, HUM. ARC, FOR.		Oleoylhydroxamic acid	WAY, WOB.		Oleoylpalmitamide	FIN.		Pentaerythritol tetranitrate	DUP, HPC, TRJ.		Pentyl nitrate (Amyl nitrate)	TNA.		PolyacrylamidePolyacrylonitrile	ACY, NLC.		n-Propyl carbamate	BKL.		Propyl isocyanate	CWN, OTC.		Propyl nitrate	TNA.		Quaternary ammonium compoundsRicinolamide	EK, PAS, RSA.		Sarcosine (N-Methylaminoacetic acid)	GAF, GGY, HMP, VPC.		Semicarbazide base	FMT.		Semicarbazide hydrochloride	FMT.		Semioxamazide	NOR.		Stearonitrile (Octadecanenitrile)	ADM, ARC, DUP, FIN, HUM.		Succinimide	NAC.		Tallow amide, hydrogenated	ADM, ARC.		Tall oil nitrileTallow nitrile	FOR.		Tallow nitrile, hydrogenated	ADM, FOR.		N, N, N', N'-Tetrakis(2-hydroxypropyl)ethylenediamine	WYN.		Tetramethylguanidine	ACY.		Tetramethylurea	OTC.		Thioacetamide3,3'-Thiodipropionitrile	BKC.		Thiosemicarbazide	ACY, HAB.		Triallyl cyanurate	ACY.		Triisopropanolamine borate	USB.		N-Trimethylsilylacetamide Urea in compounds or mixtures, 100% basis:	EK, PIC.		*In feed compounds	ACN, ACY, DUP, GSC, JDC, KET, MON, MSC, SOH, VIN.		*In liquid fertilizer	ACN, CFC, CNC, DUP, ESC, FCA, FTX, GCC, GOC, HKY, HPC JDC, KET, MON, MSC, NIT, OMC, PLC, PPC, SHC, SNI,		*In solid fertilizer	SOH, VIN, WYC, x. ACN, ACY, CNC, DUP, GCC, GOC, HPC, JDC, MON, MSC, PPC SHC, SNO, SOH, VIN.		In plastics	DUP, MON.		Tr. Drap 1700		TABLE 21B. -- Miscellaneous chemicals for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	Chemical	Manufacturers' identification codes (according to list in table 22)		--	--		MISCELLANEOUS CHEMICALS, ACYCLIC Continued			Nitrogenous CompoundsContinued			Urea - urethane copolymer	DUP.		Y-ValeronitrileAll other nitrogenous compounds	SEL. ADM, CFC, x.		Acids, Acid Anhydrides, and Acyl Halides			*Acetic acid, synthetic, 100%	BOR, CEL, EKT, HPC, PUB, UCC.		From acetaldehydeFrom acetic acid, other than recovered, by the vapor-phase process.	HPC. CEL, EKT.		From acetic acid, recovered, by the vapor-phase process- From ethylene	CEL. UCC.		Acetyl chlorideAconitic acid	TBK. PCW.		*Acrylic acid*Adipic acid	BFG, GEL, DBC, MAM, UCC. GEL, DUP, ELP, MON, NAC, RH.		Adipoyl chloride	CFC, EK.		Behenic acid α-Bromo(lauric-stearic) acid	ADM, HUM. DUP.		Butylstannoic acid*Butyric acid	CCW. CEL, EKT, UCC. EKT.		Butyryl chloride	HK. BAC, SF.		*Chloroacetic acid, monoChloroacetyl chloride	BUK, DA, DOW, HPC, MON.		Citric acid	MLS, PFZ. EKT.		*Decanoyl chloride Diglycolic acid	CAD, TBK, UPR, WTL. DUP.		Di-n-propylacetic acid Di-n-propylacetyl chloride	X. CTN.		Dodecenvisuccinic anhydride Dodecylsuccinic anhydride	HMY, MON, NAC.		Erucic acid	ARC. UCC. EKT, UCC.		2-Ethylhexanoic acid (α-Ethylcaproic acid)	WTL. DUP, HN, SF, UCC.		*Fumaric acid,	HN, MON, NAC, PCC, PFZ PTT. CWL, DLI, IBI, PFZ.		Glutaric anhydride	UCC.		n-Hexadecenylsuccinic anhydride	HMY. GAF.		Isoascorbic acid	BAX, MRK, PFZ. EKT.		Isobutyric anhydrideIsodecanoic acid mixed isomers	EKT.		Iso-octanoic acid	UCC. PFZ.		Lactic acid: Edible, 100%	CIN, MON.		Technical, 100%	CIN, MON. DOW. CAD, GAF, ONX, TBK, THC,																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																															
UPR, WTL.		Maleic acid	CRZ. NAC, PFN, PFZ.		Malier acid	HN, KPS, MON, NAC, PCC, PTT, RCI. EK, NAC, PFN,		Malonic acid	KF. EVN, HAB, RET.		Mercaptosuccinic acid (Thiomalic acid)	EVN.		Methacrylic acid	DUP, RH.	TABLE 21B. --Miscellaneous chemicals for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	Chemical	Manufacturers' identification codes (according to list in table 22)		---	--		MISCELLANEOUS CHEMICALS, ACYCLIC Continued			Acids, Acid Anhydrides, and Acyl HalidesContinued			Methanesulfonic acid	EK, PAS.		2-Methylvaleric acid (2-Methylpentanoic acid)	UCC.		Mucochloric acid (2,3-Dichloro-3-formylacrylic acid)	EKT.		Nonanoic acid (Pelargonic acid) Nonenylsuccinic anhydride	EMR, GIV.		Octanoyl chloride	HMY.		Octenylsuccinic anhydride	HMY.		Oleoyl chloride	DEP, GAF, TBK.		*Oxalic acid	ACG, HK, MAL, PFZ, SF.		*Palmitoyl chloride	GAF, HAL, OPC, TBK.		Pelargonyl chloride	WTL.		Peroxyacetic acid Pivaloyl chloride	FMB.		Polyacrylic acid	RH.		Polygalacturonic acid	SKG.		*Propionic acid	CEL, COM, EKT, UCC.		Propionic anhydride	CEL, EKT, UCC.		Propionyl chloride	ABB, TBK.		Sebacic acid	BPC. RH, WTH.		Sorbic acid (2,4-Hexadienoic acid)	UCC.		Stearyl-2-lactic acid	x.		Succinic acid	BKC, NAC.		Succinic anhydride	NAC.		Tallow fatty acyl chlorided-Tartaric acid	GAF.		Tetrahydroxysuccinic acid (Dioxytartic acid)	BKC.		Thioacetic acid	EK, EVN.		Thiolactic acid	EVN.		3,3'-Thiodipropionic acid	EVN.		Trichloroacetic acid Trichloroacetyl chloride	DOW.		(Trichloromethyl)phosphonic acid	EK.		Trifluoroacetic anhydride	CLB, EK.		Valeric acid	UCC.		All other	ABB, ALB, DUP, EK, KF, PIC, RH, UCC.		Salts of Organic Acids	•		*Acetic acid salts:			Aluminum acetate	ACY, UCC.		Aluminum subacetate* *Ammonium acetate	MAI.		Barium acetate	ACG, BKC, MAL, WSN. ACG, BKC, MAL.		Cadmium acetate	BKC, HSH, MAL, SHP.		Calcium acetate	ACG, BKC, MAL.		Chromium acetate	ACY.		Cobalt acetate*Copper acetate	BKC, HSH, SHP.		Lead acetate	ACC, BKC, UCC.		Lead subacetate	ACG BKC, MAI, SW.		Lead tetraacetate	ACG, BKC, MAL.		Magnesium acetate	ACG, BKC.		Manganese acetate	HSH, SHP.		Methylmercury acetate	ACG, MAL.		Mickel acetate	DUP. BKC, HSH, SHP.		*Potassium acetate	ACG, BKC, CWL, MAL, UCC, WSN.		Silver acetate	MAL.		*Sodium acetate	ACG, BKC, CEL, DAN, EKT, MAL, UCC, WSN.		Sodium diacetate	UCC.		Uranyl acetate	BKC.		*Zinc acetate	ACG, BKC, HSH, MAL, SNW, UCC.		*Zirconium acetate	HSH, NTL, SNW, TZC.		Chloroacetic acid, sodium salt	DOW.		3-Chloro-2-butene-1-sulfonic acid, sodium salt	x.		Chlorohydroxylactic acid, aluminum, sedium salt	REH.	TABLE 21B. --Miscellaneous chemicals for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	Chemical	Manufacturers' identification codes (according to list in table 22)										--	---	--	--	--	--	--	--	--	--		MISCELLANEOUS CHEMICALS, ACYCLIC Continued											Salts of Organic AcidsContinued											Citric acid salts:											Ammonium citrate	MAL, PFZ.										Calcium citrate	PFZ.										Ferric ammonium citrate	MAL, PFZ.										Ferric citrate	MAL.										Ferrous calcium citrate Potassium citrate	X.										Sodium citrate	MIS, PFZ.										2-Ethylhexanoic acid (\alpha-Ethylcaproic acid) salts:	112.										Aluminum 2-ethylhexanoate	WTC.										Barium 2-ethylhexanoate	CCA.										Cadmium 2-ethylhexanoate	CCA.										*Calcium 2-ethylhexanoate *Cobalt 2-ethylhexanoate	CCA, FER, HNX, HSH, MCI, SRR, SW, WTC.										Copper 2-ethylhexanoate	CCA, FER, HNX, HSH, MCI, MID, SHP, SRR, SW, WTC.										Dibutyltin di-2-ethylhexanoate	X.										Iron 2-ethylhexanoate	CCA, SRR.										*Lead 2-ethylhexanoate	CCA, HNX, HSH, MCI, SHP, SRR, SW, WTC.										Lithium 2-ethylhexanoate	SRR.										Manganese 2-ethylhexanoate Nickel 2-ethylhexanoate	CCA, HNX.										Potassium 2-ethylhexanoate	MCI. CCA, SRR.										Rare earths 2-ethylhexanoate	CCA.										Stannous 2-ethylhexanoate	WTC.										Strontium 2-ethylhexanoate	CCA.										*Zinc 2-ethylhexanoate	CCA, HNX, HSH, MCI, SRR, WTC.										*Zirconium 2-ethylhexanoate	CCA, HNX, WTC.										ormic acid salts: *Aluminum formate	CEO CE HOO WON										Ammonium formate	CFC, SF, UCC, WSN. ACG, WSN.										Calcium formate	TRJ.										Chromic formate	GAF.										Copper formate	CTN.										Lead formate	NTL.										Nickel formate Potassium formate	HSH.										Sodium formate, refined	CFC. ACG, BKC.										Sodium formate, tech	HPC, TRJ.										Aumaric acid, lead salt	NTL.										Hucoheptonic acid, zinc salt	PFN.										fluconic acid salts:											Ammonium gluconate	PFZ.										*Sodium gluconate	CWL, DLI, IBI, PFZ, PMP.										Aluminum glycolate	CIB.										Sodium glycolate	CFC, MED.										H-Hexadecafluorononanoic acid, ammonium salt	DUP.										lumic acids, sodium salts	NLC.										soascorbic acid, sodium saltactic acid salts:	MRK, PFZ.										Aluminum sodium lactate	TZC.										Calcium lactate	SHF.										inoleic acid salts:											*Calcium linoleate	CCA, LEF, SHP, SRR.										*Cobalt linoleate	HSH, SHP, SRR.										Copper linoleate Lead linoleate	WTC.										Lead manganese linoleate	SHP, SRR.										Manganese linoleate	SHP.										Maleic acid, tribasic lead salt	NTL.										ercaptoacetic acid (Thioglycolic acid) salts:											Ammonium mercaptoacetate	EVN, HAB. TNI.										Antimony mercaptoacetate	CCA.										Calcium mercaptoacetate	EVN.										Dibutyltin bis(iso-octyl mercaptoacetate) Dibutyltin mercaptoacetate	CCA.										Potassium mercaptoacetate	EVN.											EVN. MED.									TABLE 21B. --Miscellaneous chemicals for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	Chemical	Manufacturers' identification codes (according to list in table 22)											---	--	-------	--------------	--------------	------	------	------	------	------	------		MISCELLANEOUS CHEMICALS, ACYCLIC Continued												Salts of Organic AcidsContinued												Mercaptopropionic acid, dibutyltin salt	CCA,	x.										Methylsuccinic acid, disodium salt	SDW.											Neodecanonoic acid salts	CCA.											Octanoic acid (Caprylic acid) salts: Aluminum octanoate	NOP.											Stannous octanoate	CCW,	x.										Zinc octanoate	BKC.											*Oleic acid salts:	WAT	wmo										Aluminum oleateAmmonium oleate	BCN.	WTC.										Barium zinc oleate	WTC.											Copper oleate		WIC.										Stannous oleate* *Oxalic acid salts:	CCW,	x.										Ammonium oxalate	ACG.	BKC,	PFZ.									Calcium oxalate	SF.	,	_									Copper oxalate	CFC.											Ferric ammonium oxalateFerric oxalate	PFZ.											Ferric sodium oxalate	PFZ.											Ferrous oxalate	BKL.											Potassium binoxalate		BKC,										Sodium binoxalateOther	DUP.	BKC,	MAL,	Sr.								Palmitic acid salts:	Dor.											*Aluminum palmitate	ACY,	NOP,	WTC.									Zinc palmitate	ACY,	NOP,	WTC.									Phosphorodithioic acid salts (Dithiophosphates): Potassium dihexyl phosphorodithioate	ACY.											Sodium di-sec-butyl diethyl phosphorodithioate	ACY.											Sodium di-sec-butyl phosphorodithioate	ACY.											Sodium diethyl phosphorodithioate	ACY.											Sodium dihexyl phosphorodithioateSodium diisopropyl phosphorodithioate	ACY.											Other	ACY.											*Polyacrylic acid salts:	1											Ammonium polyacrylate	BFG.											Potassium polyacrylateSodium polyacrylate	BFG.		JOR,	RH.								Polymethacrylic acid, sodium salt	GRD.	,	,									*Propionic acid salts:		*****	-	****	mar							*Calcium propionate* *Sodium propionate			PFZ, UCC,		WSN.							Zinc propionate	BKC.	,	000,	""								Ricinoleic acid salts:	1											Calcium ricinoleate	BAC.											Sodium ethyl oxalacetate	FMP.											Sodium polypectate	SKG.											Sodium sorbitol borate	APD.											Sorbic acid salts: Potassium																																																																																																																																																																																																																																																																																																																																													
sorbate	UCC.											Sodium sorbate	UCC.											*Stearic acid salts:	1											*Aluminum stearates:	ACT	TMO	מיסין	1/4 T	MOG	MOD	יימט	מעים	wma			*Aluminum distearate* *Aluminum monostearate			LEF, MAL,			NUP,	rnr,	oir,	WIU.			*Aluminum tristearate			LEF,			NOP.	PRP,	SYP.				Ammonium stearate	LEF,	NOP.		·	. •	•						Barium stearate			NOC,		PRP,	SYP,	WTC.					*Calcium stearate*			SYP, JTC,		MAT.	NOC.	NOP.	PRP	SYP.	WTC.			WTC.	,	- 10,	, ۔۔۔۔		,	,	,	,			Cobalt stearate												Copper stearate		WTC.										Copper stearate	WTC.	WTC.							-		${\tt TABLE~21B.--Miscellaneous~chemicals~for~which~U.S.~production~or~sales~were~reported,~identified~by~manufacturer,~1966--Continued}$	manujacturer, 19	66Continued		---	--		Chemical	Manufacturers' identification codes (according to list in table 22)		MISCELLANEOUS CHEMICALS, ACYCLIC Continued			Salts of Organic AcidsContinued			Stearic acid saltsContinued Lead stearate, dibasic	NTL.		*Lithium stearate	LEF, NOP, PRP, SYP, WTC.		*Magnesium stearate	ACY, LEF, MAL, NOC, NOP, PRP, SYP, WTC.		Manganese stearate	NOC.		Nickel stearate	WTC.		*Zinc stearate	ACY, BCN, CCA, HNX, JTC, LEF, MAL, NOC, NOP, PRP, SYP, WTC.		All other	APD.		Succinic acid, sodium salt	MAL.		Sugar acids, sodium salt	PFN.		Tartaric acid salts: Antimony potassium tartrate	קישת		Potassium bitartrate	PFZ.		Potassium sodium tartrate	ATC.		Sodium bitartrate	PFZ.		Valeric acid, ammonium salt	RSA, UCC.		Xanthic acid salts:	Table, 600.		Potassium n-butylxanthate	USR.		Potassium ethylxanthate	ACY, DOW.		Potassium hexylxanthate	DOW.		Potassium isopropylxanthate	DOW.		Potassium pentylxanthate	ACY, DOW.		Potassium sec-pentylxanthate	DOW.		Sodium n-butylxanthate	KCC, USR.		Sodium sec-butylxanthate	ACY, DOW.		Sodium ethylxanthate	ACY, DOW.		Sodium isobutylxanthate	DOW.		Sodium isopropylxanthateAll other salts of organic acids	ACY, DOW.		Aldehydes and Ketones	DUP, EK, GIY, x.		·			*Acetaldehyde	CEL, COM, DUP, EKT, EKX, HPC, MON, PUB, SHC, UCC.		*Acetone:			From cumene*From isopropyl alcohol	ACP, CLK, HPC, MON, SHC, SKO, SOC.		Other	EKT, ENJ, SHC, UCC.		Acrolein (Acrylaldehyde)	CEL, DIX, HPC.		Aldol (Acetaldol)	UCC.		*2-Butanone (Methyl ethyl ketone)	CEL, DIX, ENJ, SHC, SPI, UCC.		Butyraldehyde	CEL, EKX, UCC.		*Chloral (Trichloroacetaldehyde)	DA, FMB, GGY, MTO.		5-Chloro-2-pentanone	SDW.		1-Chloro-1-penten-3-one (β-Chlorovinyl ethyl ketone)	ABB.		Chloro-2-propanone (Chloroacetone)	EK, MRK.		Crotonaldehyde	CEL, EKT, UCC.		Dihydropseudoionone	GIV.		1,3-Dihydroxy-2-propanone (Dihydroxyacetone)	BAX, PFZ.		2-Ethylbutryaldehyde2-Ethylhexanal (α-Ethylcaproaldehyde)	UCC.		*Formaldehyde (37% by weight)	EKX, UCC. ACP, BOR, CBC, CEI, COM, DUP, GAF, GOC, HKD, HN, HPC,		whormerder (21% ph. MerBur)	MON, RCI, RH, ThJ, UCC.		Glutaraldehyde	UCC.		Glyoxal	UCC.		2-Heptanone (Methyl amyl ketone)	UCC.		Hexaldehyde	EKX, GIV.		2,5-Hexanedione (Acetonylacetone)	RBC.		*4-Hydroxy-4-methyl-2-pentanone (Diacetone alcohol)	CEL, SHC, UCC.		Isobutyraldehyde	EKX, UCC.		Isodecaldehyde, mixed isomers	UCC.		Isovalerone (Diisobutyl ketone)	EKT, UCC.		Lactide (3,6-Dimethyl-2,5-p-dioxanedione)	CIN.		4-Methoxy-4-methyl-2-pentanone	SHC.		5-Methyl-2-hexanone (Methyl isoamyl ketone)	EKT, UCC.		4-Methyl-3-penten-2-one (Mesityl oxide)	EKT, ENJ, SHC, UCC.		Person & one (uppty) - cutte.	, 0001	TABLE 21B.--Miscellaneous chemicals for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	managacturer, 19			--	--		Chemical	Manufacturers' identification codes (according to list in table 22)		MISCELLANEOUS CHEMICALS, ACYCLICContinued			Aldehydes and KetonesContinued	•		Methylpseudoionone	GIV. UCC. IFF. TBK, WTH. TBK. CEL, HN, HPC. UCC. UCC. UCC. UCC. UCC. GIV. UCC. GIV. UCC. CEL, EK, GIV.		Alcohols, Monohydric, Unsubstituted			*Alcohols C, or lower: Allyl alcohol	DOW, SHC. UCC. SHC. UCC. UCC. UCC. EK. PUB. CEL, UCC. DBC, EKX, ENJ, SHC, UCC. CEL, CO, DBC, EKX, ENJ, SHC, UCC. ENJ, SHC. SHC. SHC. DBC, EKX. UCC. CEL, DUP, EKX, ENJ, HPC, SHC, UCC, USI.		2-Ethyl-1-butanol *2-Ethyl-1-hexanol 2-Ethyl-4-methyl-1-pentanol 4-Ethyl-1-octyn-3-ol Heptyl alcohol Hexynol *Iso-octyl alcohols *Isopropyl alcohols *Methanol, synthetic 2-Methyl-3-buten-2-ol 2-Methyl-3-butyn-2-ol 4-Methyl-2-pentanol (1-Methylisobutyl carbinol) 1-Octanol 2-Octanol (sec-Capryl alcohol) 0-Ctanols, other Propyl alcohol (Propanol) 2-Propyn-1-ol All other (Including mixtures) *Alcohols C10 or higher: 1-Decanol	UCC. CEL, EKX, ENJ, SHC, UCC. EKX. CUC. EKX. EXX, ENJ, UCC. CUC, LIL. ENJ, GOC, HOU, OXO, TID, UCC. ENJ, SHC, UCC. ACN, BOR, CEL, COM, DUP, ENJ, ESC, GOC, HN, HPC, MON, RCI, RH, TCC, UCC. CUC. CUC. SHC, UCC. CUC. SHC, UCC. CUC. BHY, WTH. EXX, PG. CEL, UCC. CAF. CEL, CO, PG, TNA. DUP, TNA.		1-Decanol	UCC. DUP, PG, RH. UCC.	${\it TABLE~21B.--Miscellaneous~chemicals~for~which~U.S.~production~or~sales~were~reported,~identified~by~manufacturer,~1966--Continued}$	Chemical	Manufacturers' identification codes (according to list in table 22)		---	---		MISCELLANEOUS CHEMICALS, ACYCLIC Continued			Alcohols, Monohydric, UnsubstitutedContinued			*Alcohols C ₁₀ or higherContinued			1-Hexadecanol (Cetyl alcohol) (95%)	ADM, DUP, GIV, RH.		Hexadecyl alcohols*Isodecyl alcohol	ENJ, PG.		1-Octadecanol (Stearyl alcohol) (95%)	ENJ, GOC, HOU, OXO, TID, UCC. ADM, DUP, PG, RH.		cis-9-Octadecen-1-ol (Oleyl alcohol)	ADM, DUP.		Tetradecvl alcohols	PG.		Tridecanol mixed isomers	ENJ, GOC, HOU, TID, UCC.		2,6,8-Trimethyl-4-nonanol	UCC.		All other (Including mixtures)	ADM, CO, EKX, GYR, PG, RH, SHC, TNA, x, x.		Polyhydric Alcohols and Their Esters and Ethers			*Polyhydric alcohols:	CAT		1,4-Butanediol 1,2(and 1,3)-Butanediol (Butylene glycol)	GAF. CEL.		2-Butene-1,4-diol	GAF.		2-Butyne-1,4-diol	GAF.		3-Chloro-1,2-propanediol (Glycerol α-chlorohydrin)	EVN, OTC.		1,10-Decamediol	NEP.		2,5-Dimethyl-2,5-hexanediol	CUC.		2,5-Dimethyl-3-hexyne-2,5-diol	CUC.		*Ethylene glycol	ACP, APD, CAU, CEL, DOW, DUP, EKX, GAF, HCH, JCC, OMC,		2007 2000 827 402	UCC, WYN.		2-Ethyl-1,3-hexanediol	UCC.		2-Ethyl-2-(hydroxymethyl)-1,3-propanediol (Trimethylol-	CEL.		propane).	1 mm married		Glycerol, synthetic	APD, DOW, SHC.		1,2,6-Hexanetriol	CEL.		2-(Hydroxymethyl)-2-methyl-1,3-propanediol (Trimethylol- ethane).	TRJ.		Mannitol	APD.																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																		
3-Mercapto-1,2-propanediol (Thioglycerol) Methylglycerol	EVN.		2-Methyl-2,4-pentanediol (Hexylene glycol)	CEL, SHC, UCC.		2-Methyl-2-propyl-1,3-propanediol	ABB, BKL, ICO.		1,9-Nonanediol	ADM.		*Pentaerythritol	UEL, COM, HN, HPC, RCI, TRJ.		*Propylene glycol (1,2-Propanediol)	APD, CEL, DOW, DUP, JCC, OMC, UCC, WYN.		*Sorbitol	APD, BRD, MRK, PFZ.		*Polyhydric alcohol esters:	ERA.		1.3-Butanediol dimethacrylate	SAR.		2-(2-Butoxyethoxy)ethyl acetate	UCC.		2-Butoxyethyl acetate	UCC.		Diethylene glycol chloroformate	PPG.		Ethylene glycol diacetate	DOW, EKT, UCC.		Ethylene glycol dimercaptoacetate	EVN.		Ethylene glycol dimethacrylate	SAR.		Ethylene glycol hydroxyacetate	CCA.		2-Ethyl-1,3-hexanediol titanate	DUP.		2-Ethyl-2(hydroxymethyl)-1,3-propanediol trimethacrylate Glyceryl monoacetate (Monoacetin)	SAR.		Glyceryl monoacetate (Monoacetin)	ARC, HAL. EKT, UCC.		Glycol adipate	x.		Hexanetriol octoate	ARC.		Hydroxyethyl methacrylate	AAC.		Hydroxypropyl methacrylate	JCC.		2-Methoxyethyl acetate	UCC.		Methoxytriethyleneglycol acetate	RBC.		Pentaerythritol caprylate	DRW.		Pentaerythritol pelargonate	DRW.		Polyethylene glycol dimethacrylate	SAR.		Propylene glycol diacetate	l x.	${\it TABLE~21B. --Miscellaneous~chemicals~for~which~U.S.~production~or~sales~were~reported,~identified~by~manufacturer,~1966--Continued}$	Chemical					ers' .ng to				codes 22)				--	--------------	-------	------	------	----------------	--------	-------	------	--------------	------	---		MISCELLANEOUS CHEMICALS, ACYCLICContinued													Polyhydric Alcohols and Their Esters and EthersContinued													olyhydric alcohol estersContinued	777												Sucrose octa-acetate	PD.												Tetraethylene glycol dimethacrylate Triethylene glycol dimethacrylate	SAR.												Tri(hexylene glycol) biborate	USB.												2,2,4-Trimethyl-1,3-pentanediol monoisobutyrate	EKX.												All other	EK,	CNI.											olyhydric alcohol ethers:													3-(Allyloxy)-1,2-propanediol (Allyl glyceryl ether) Bis(2-butoxyethyl) ether (Diethylene glycol di-n-butyl	SHC. UCC.												ether). Bis(2-ethoxyethyl) ether (Diethylene glycol diethyl	UCC.												ether). Bis(hydroxyethyl) ether butynediol	GAF.												Bis[2-(2-methoxyethoxy)ethyl] ether (Tetraethylene glycol dimethyl ether).	ASL.												Bis(2-methoxyethyl) ether (Diethylene glycol dimethyl ether).	ASL,	OMC.											*2-Butoxyethanol (Ethylene glycol monobutyl ether)			OMC,										*2-(2-Butoxyethoxy)ethanol (Diethylene glycol monobutyl ether).			OMC,	SHU,	ucc.								2-[2-(2-Butoxyethoxy)ethoxy]ethanol (Triethylene glycol monobutyl ether). 1-Butoxyethoxy-2-propanol	UCC.	OMC,	000.										1,2-Dibutoxyethane (Ethylene glycol di-n-butyl ether)	UCC.												*Diethylene glycol	ACP,	CAU,	DIX,	DOW,	EKX,	GAF,	HCH,	JCC,	OMC,	UCC,	W		Diethylene glycol, borated	GLY.			-	Ţ.	-		_	-				Dimethoxyethane (Ethylene glycol dimethyl ether)	ASL.												*Dipropylene glycol					UCC,	WYN.							*2-Ethoxyethanol (Ethylene glycol monoethyl ether)			OMC,										*2-(2-Ethoxyethoxy)ethanol (Diethylene glycol monoethyl	DOW,	J (()	OMC,	000.									ether). *2-[2-(2-Ethoxyethoxy)ethoxy]ethanol (Triethylene glycol monoethyl ether).	DOW,	OMC,	UCC.										Ethoxypropanol	UCC.												*Glycerol tri(polyoxypropylene) ether	JCC,	OMC,	UCC,	WYN.									2-[2-(Hexyloxy)ethoxy]ethanol	UCC.												1-Isobutoxy-2-propanol (Propylene glycol isobutyl ether).	DOW.												Isobutoxyethanol	UCC.	TOO	OMC	HCC									*2-Methoxyethanol (Ethylene glycol monomethyl ether) *2-(2-Methoxyethoxy)ethanol (Diethylene glycol monomethyl			OMC,										ether).		-	-										<pre>*2-[2-(2-Methoxyethoxy)ethoxy]ethanol (Triethylene glycol monomethyl ether).</pre>	DOW,	OMC,	UCC.										2-(2-Methoxyethoxy)ethyl 2-methoxyethyl ether (Triethy- lene glycol dimethyl ether).	ASL.												Methoxypolyethylene glycol		UCC.											*1-Methoxy-2-propanol			UCC.										3-(3-Methoxypropoxy)propanol		UCC.											3-[3-(3-Methoxypropoxy)propoxy]propanol	DOW.												Polyethoxyethylglycerol	GLY.												Polyethoxyethylsorbitol	GLY.												*Polyethylene glycol		DOW,	DUP,	GAF,	JCC,	OMC,	UCC,	WYN.					Polypropoxy ethers	,		WYN.		•		•						*Polypropylene glycol					UCC,	WYN.							Polytetramethylene ether glycol	QKO,	x.	,	ŕ	,								Tetraethylene glycol		UCC.											1.1.3.3-Tetramethoxypropane	KF.	***											2,2'-Thiodiethanol (Thiodiglycol)		UCC.	DOM	CAT	поп	TOO	ONTO	IICC					*Triethylene glycol				uar,	HCH,	ونان د	UMIU,	uuu.					Tripropylene glycol		UCC.	WYN.										All other													Esters of Monohydric Alcohols:		Í										${\tt TABLE~21B.--Miscellaneous~chemicals~for~which~U.S.~production~or~sales~were~reported,~identified~by~manufacturer,~1966--Continued}$	Chemical	Manufacturers' identification codes (according to list in table 22)		---	--		MISCELLANEOUS CHEMICALS, ACYCLIC Continued			Esters of Monohydric AlcoholsContinued			Amyl acetates, 90%:			Amyl acetate (n-Pentyl acetate)	PUB.		Isopentyl acetate (Isoamyl acetate)	NW, TBK.		*Butyl acetates:	OEL, EN, OOO,		Iso	EKT, ENJ, UCC.		*Normal	CEL, EKT, ENJ, PUB, SHC, UCC.		Secondary	ENJ, HPC, PUB, SHC.		Tertiary	ENJ.		Mixed	CEL.		Butyl acrylate	CEL, DBC, UCC.		n-Butyl α-hydroxy-α-methylbutyrate	MON. BPC.		Butyl lactate	COM.		tert-Butyl peroxyacetate	WTL.		tert-Butyl peroxy-2-ethylhexanoate	WTL.		tert-Butyl peroxyisobutyrate	WTL.		tert-Butyl peroxyisopropylcarbonate	PPG.		tert-Butyl peroxypivalate	WTL.		Cetyl lactate	VND.		Diallyl maleate	FMP.		Dibutyl fumarate	MON, PFZ, RCI, RUB.		*Dibutyl maleate Diethyl sec-butylethylmalonate	CUC, DUP, MON, RCI, RUB.		Diethyl butylmalonate	ABB. BPC.		Diethyl sec-butylmalonate	ABB.		Diethyl carbonate (Ethyl carbonate)			Diethyl diethylmalonate (Diethyl malonic ester)	BPC, LIL.		Diethyl (ethoxymethylene)malonate			Diethyl ethylisopentylmalonate			Diethyl ethylmalonate (Ethyl malonic ester)			Diethyl ethyl(1-methylbutyl)malonate (Ethyl 1-methyl butyl	ABB, BPC.		malonic ester).	779		Diethyl ethyl(1-methylpropyl)malonate	BPC. RUB.		Di(2-ethyl-1-hexyl) fumarate Di(2-ethyl-1-hexyl) maleate	RUB.		Diethyl maleate	ACY, UCC.		Diethyl malonate (Malonic ester)	ABB, KF, LIL.		Diethyl (1-methylbutyl)malonate	ABB, LIL.		Diethyl methylmalonate	BPC.		Diethyl (1-methylpropyl)malonate	BPC.		Diethyl oxalate (Ethyl oxalate)	FMP.		Diethyl succinate			Di-iso-nonyl maleate			Diiso-octyl fumarate	RUB.		*Dilauryl 3,3'-thiodipropionate	ACY, CCW, EVN, HAB.		Dimethyl acetylenedicarboxylate	EK.		Dimethyl carbonate	CTN.		2,5-Dimethylhexane 2,5-diperoctoate			Dimethyl malonate	KF.		Di(4-methyl-2-pentyl) maleate	RUB.		Dioctyl maleate	HRT, MON, PCC.		Distearyl 3,3'-thiodipropionate			Dithiobis(stearyl propionate)	EVN.		Ditridecyl maleate			Di(tridecyl) 3,3'-thiodipropionate	ACY, EVN.		2-(2-Ethoxyethoxy)ethyl acetate*Ethyl acetate (85%)	UCC. CEL, EKT, ENJ, HPC, MON, PUB, UCC.			EKT, UCC.		Ethyl acetoacetate	CEL, DBC, RH, UCC.		Ethyl acetoacetate			Ethyl acetoacetate*Ethyl acrylate	DOW. KF. MON.		Ethyl acetoacetate *Ethyl acrylate Ethyl chloroacetate	DOW, KF, MON.		Ethyl acrtoacetate	DOW, KF, MON. CTN, FMP. DOW. JCC. UCC.		Ethyl acrtoacetate	DOW, KF, MON. CTN, FMP. DOW, JCC, UCC. COM.		Ethyl acrylate	DOW, KF, MON. CTN, FMP. DOW, JCC, UCC. COM. EKT, UCC.	TABLE 21B. -- Miscellaneous chemicals for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	manufacturer, 19			---	--		Chemical	Manufacturers' identification codes (according to list in table 22)		MISCELLANEOUS CHEMICALS, ACYCLIC Continued			Esters of Monohydric AlcoholsContinued			2-Ethyl-1-hexyl methacrylate	X.		Ethyl 2-hydroxy-3-methylbutyrate (Ethyl hydroxyisovalerate)	RH.		Ethylidene diacetate	CEL.		Ethyl propionate	NW, TBK.		Ethyl silicate (Tetraethoxysilane)Ethyl sulfate (Diethyl sulfate)	MTR, SFA, UCC.		Ethyl thioglycolate	UCC.		Fatty acid esters, not included with plasticizers or sur-	EVN.					face-active agents: Butyl palmitate	PCS.		Dimethyl brassylate	EMR.		Ethyl stearate	ICO.		Hexadecyl stearate	ARC, ICI.		Isopropyl linoleate	VND.		Methyl esters of coconut oil	HUM, PG.		Methyl esters of cottonseed oil	BFR.		Methyl esters of tallow	BFR, CHL, HUM.		Methyl 12-hydroxystearate	BAC, HUM.		Methyl																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																													
myristate	HUM.		All other	EMR, GLY, GRO, PCS, RT, SUG.		Isobutyl acrylate	DBC.		Isobutyl isobutyrate	EKX.		Isobutyl undecylenate	GIV.		Isodecyl acrylate	UCC.		*Iso-octyl mercaptoacetate	CCW, EVN, HAB.		Iso-octyl 3-mercaptopropionate	EVN.		*Isopropyl acetate	EKT, ENJ, HPC, UCC.		Isopropyl chloroformate	CTN, PPG.		Methallylidine diacetate	VND.		*Methyl acetate	BOR, EK, MON, UCC.		Methyl acetoacetate	EKT, UCC.		Methyl acrylate, monomer	CEL, DBC, RH.		Methyl borate	CAL, MHI, SFA.		Methyl chloroscetate	DOW, KF.		Methyl chloroformate	CTN.		Methyl dichloroacetate	KF, PD.		Methyl formate	DUP.		Methyl methacrylate, monomer	ACY, DUP, RH.		4-Methyl-2-pentyl acetate	PUB, SHC, UCC.		Methyl sulfate (Dimethyl sulfate)	DUP.		Methyl vinyl acetate	UCC.		Myristyl lactate	VND.		Octadecyl 3-mercaptopropionate	EVN.		*Phosphorus acid esters: Bis(2-ethylhexyl) hydrogen phosphate	UCC.		Butyl phosphates	SF, x.		Chloropropyl phosphorothicate	TNA.		Dibutyl butylphosphonate	x.		Dibutyl hydrogen phosphate	x.		Didodecvl hydrogen phosphate	DUP.		Diethyl phosphorochloridothionate	SF.		Dimethyl methylphosphonate	x.		Dimethyl phosphorochloridothionate	SF.		Ethyl phosphates	SF, x.		Iso-octyl hydrogen phosphate	X.		Isopentyl octyl hydrogen phosphate	X.		Methyl phosphates	HK, SF, x.		Pentyl phosphates (Amyl phosphates)	SF.		Tributyl phosphite	COM, FMP.		Tridecyl phosphite	X. HK.		Triethyl phosphite	x.					Triso-octal phosphite	l X.		Triiso-octyl phosphite	X. TNA.		Triiso-octyl phosphite Trimethyl phosphite Trimethyl phosphite			Triiso-octvl phosphite	TNA.	TABLE 21B. --Miscellaneous chemicals for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	Chemical	Manufacturers' identification codes (according to list in table 22)		---	--		MISCELLANEOUS CHEMICALS, ACYCLICContinued			Esters of Monohydric AlcoholsContinued			Phosphorus acid estersContinued	W		Tris(2-ethylhexyl) phosphite	HK. x.		Tris(octadecyl) phosphiteAll other	DUP, ENJ, MON, x.		All otherPropyl acetate	CEL, EKT, ENJ, PUB, UCC.		Propylene carbonate	DOW, JCC.		Propylene carbonate	MON.		Tetraoctyl orthosilicate	110.11		Titanic acid esters: Tetrabutyl titanate	DUP.		Tetraisopropyl titanate	DUP.		Tetrakis(2-ethylhexyl) titanate	DUP.		Other	DUP.		Triethyl borate	USB.		Triethyl orthoacetate	EK, KF.		Triethyl orthoformate	KF.		Triethyl orthopropionate	KF.		Triisodecyl orthoformate	KF.		Trinsodecyl orthoformate Trimethyl orthoformate	KF.		*Vinyl acetate monomer	BOR, CEL, CUC, DUP, MON, NSC, UCC.		*Vinyl acetate monomerAll other	DUP, EK, HAB, PCC, RH, SAR.		ATT Office.			Halogenated Hydrocarbons			1-Bromobutane (n-Butyl bromide)	BPC, CLB, MCH.		2 Promobutene (sec_Butyl bromide)	ABB, BPC.		Bromochloromethane	DOW.		1_Brown_3_chloropropage (Trimethylenechloropromide)	DOW, MCH.		2 Brown 2 chloro 1 1 1-trifluoroethane	ICI.		1 Promododocope	DUP.		Promoethane (Fthyl bromide)	DOW, MCH.		Promohevene (n_Hexyl bromide)	BPC.		1_Bromo_3_methylbutane (Isoamyl bromide)	BPC, LIL.		1 Bromo_octodecane	DUP, GAF.		1 Bromopentane (n_Amyl bromide)	BPC, CIB.		2_Bromopentane (1_Methylbutyl bromide)	ABB, LIL.		1 Bromonropene (n-Propyl bromide)	BPC, CIB, EK.		2 Promongone (Igonropy) bromide)	BPC.		2 Promonone (Allyl bromide)	CIB, DOW.		Bromotrichloromethane	MCH.		Bromotrifluoromethane	DUP.		*Carbon tetrachloride	ACS, DA, DOW, FMB, FRO, PPG, SF.		*Chlorinated paraffins:	THE STATE OF S		less than 35% chlorine	HK.		25d 6/d ablaring	CCH, DA, DVC, HK, HPC, KEI, KPS, WOI.		65d or more chloring	DA, DVC, WOI.		1-Chlorobutane (n-Butyl chloride)	PUB, UCC.		2 Chlorobutane (sec_Butyl chloride)	PLC.		1.Chloro-1 1-difluoroethane	ACG, DUP.		ACDI amodifiuaromethane	ACG, DUP, KAI, PAS, UCC.		*Chloroethane (Ethyl chloride)	AME, DOW, DUP, HPC, PPG, SHC, TNA, USI.		#(h) anofam	ACS, DA, DOW, DUP, FRO, SF.		2_Chloro_3_hexvne	LIL.		*Chloromethane (Methyl chloride)	ACS, ANM, DCC, DOW, DUP, FRO, TNA, UCC.		2_Chloro-2-methylpropane (tert-Butyl-chloride)	CIB, EK.		3_Chloro-2-methylpropene (Methallyl chloride)	FMP.		Chloropentafluoroethane	DUP.		3_Chloropropene (Allyl chloride)	DOW, SHC.		Chlorotrifluoroethylene (Trifluorovinyl chloride)	ACG, MMM.		Chlorotrifluoroethylene, polymerized	HK, MM.		Chlorotri fluoromethane	ACG, DUP, PAS.		1 2_Dibromo_1 l_dichloroethane	DOW.		Dibromodifluoromethane	DOW.		1 2-Dibromoethane (Ethylene dibromide)	DOW, ETD, HCH, MCH.		Dibnomosthone (Methylene browide)	DOW.		1 4.Dibromonentene	SDW.		1 2 Dibromo_1 1 2 2_tetrefluoroethane	DUP.		Nahlamahiitadiana	DUP.		1,4-Dichlorobutene	DUP.	TABLE 21B. --Miscellaneous chemicals for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	Chemical	Manufacturers' identification codes (according to list in table 22)		---	--		MISCELLANEOUS CHEMICALS, ACYCLIC Continued			Halogenated HydrocarbonsContinued			*Dichlorodifluoromethane	ACG, DUP, KAI, PAS, UCC.		1,2-Dichloroethane (Ethylene dichloride)	AME, BFG, DA, DOW, DUP, JCC, MON, OMC, PPG, TNA, UCC.		Dichloromethane (Methylene chloride)	ACS, DA, DOW, DUP, FRO, HK, SF.		1,2-Dichloropropane (Propylene dichloride)	DOW, JCC, UCC.		2,3-Dichloropropane	DOW, UCC.		Dichlorotetrafluoroethane	ACG, DUP, PAS, UCC.		1,1-Difluoroethane	ACG, DUP.		Difluorotetrachloroethane	DUP.		Diiodomethane (Methylene iodide)	NTB, SDW.		Hexachloroethane	NES.		Hexafluoropropylene, monomer	DUP.		Iodoethane (Ethyl iodide), tech	CLB, EK, FMT.		Iodoform (Triiodomethane), nonmedicinal	NTB.		Iodomethane (Methyl iodide)	CLB, EK, FMT, RSA.		1-Iodoperfluorohexane	x.		Lauryl chlorides	HK.		Octafluorocyclobutane	DUP.		1,1,2,2-Tetrabromoethane (Acetylene tetrabromide)	DOW.		Tetrabromoethane	DOW.		1,1,2,2-Tetrachloroethane (Acetylene tetrachloride)	DUP.		Tetrachloroethylene (Perchloroethylene)	DA, DOW, DUP, FRO, HK, PPG, SF, TTX.		Tetrafluoroethylene, monomer	DUP.		Tetrafluoroethylene, polymer	DUP.		Tetrafluoromethane (Nothwell shloroform)	DUP.		fl,l,l-Trichloroethane (Methyl chloroform)	DOW, HK, PPG, TNA.		1,1,2-Trichloroethane (Vinyl trichloride)	DOW, UCC.		Trichlorofluoromethane	DOW, DUP, HK, PPG, TTX.		1,2,3-Trichloropropane	ACG, DUP, KAI, PAS, UCC.		1,2,3-Trichloropropene	DOW.		Trichlorotrifluoroethane	ACG, DUP, PAS, UCC.		Winyl chloride, monomer (Chloroethylene)	ACS, AME, BFG, CUC, DA, DOW, GNT, GYR, HN, MNO, MON,		Vinyl fluoride	TNA, UCC.		Vinylidene chloride, monomer (1,1-Dichloroethylene)	DOW, TNA.		Vinylidene fluoride	x.		All other	BFG, CLB, DUP, EK, KPS.		All Other Miscellaneous Acyclic Chemicals			Acetyl peroxide	WTL.		Alkyl sulfides, mixed	ORO.		Aluminum isopropoxide (Aluminum isopropylate)	CHT.		2-Butanone peroxide	AZT, CAD, NOC, RCI, UPR, WTL.		tert-Butyl hydroperoxide	AZT, CAD, UPR, WTL.		tert-Butyl peroxide (Di-tert-butyl peroxide)	AZT, CAD, RCI, SHC, UPR, WTL.		Butyrolactone	GAF.		Caprolactone	UCC.		Carbon disulfide	BKT, FMB, PAS,																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																										
PPG, SF.		Carbonyl sulfide	TKL.		2-Chloroethanol (Ethylene chlorohydrin)	OMC, TKL, UCC.		1-Chloro-2-propanolDecanoyl peroxide	EK.			CAD, UPR, WTL.		Dextran	PHR.		Dialdehyde starchDichloropropanol	MIS.			EK, ICO.		Diethylithiophogphows ablanta	ACY.		Diethylthiophosphoryl chloride			2,4-Dihydroxy-3,3-dimethylbutyric acid, gammalactone	CKL.		2,4-Dihydroxy-3,3-dimethylbutyric acid, gammalactone (Pantolactone).			2,4-Dihydroxy-3,3-dimethylbutyric acid, gammalactone (Pantolactone). 2,5-Dimethyl-2,5-di(tert-butylperoxy)hexane	WTL.		2,4-Dihydroxy-3,3-dimethylbutyric acid, gammalactone (Pantolactone). 2,5-Dimethyl-2,5-di(tert-butylperoxy)hexane			2,4-Dihydroxy-3,3-dimethylbutyric acid, gammalactone (Pantolactone). 2,5-Dimethyl-2,5-di(tert-butylperoxy)hexane	WTL.		2,4-Dihydroxy-3,3-dimethylbutyric acid, gammalactone (Pantolactone). 2,5-Dimethyl-2,5-di(tert-butylperoxy)hexane 2,5-Dimethyl-2,5-di(tert-butylperoxy)hexyne-3 Epoxides, ethers, and acetals: Acetone dimethylacetal (2,2-Dimethoxypropane)	WTL. WTL. DOW.		2,4-Dihydroxy-3,3-dimethylbutyric acid, gammalactone (Pantolactone). 2,5-Dimethyl-2,5-di(tert-butylperoxy)hexane	WTL.	TABLE 21B. --Miscellaneous chemicals for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	Chemical	Manufacturers' identification codes		---	---		Olemical	(according to list in table 22)		MISCELIANEOUS CHEMICALS, ACYCLICContinued			All Other Miscellaneous Acyclic ChemicalsContinued			*Epoxides, ethers, and acetalsContinued Bis(2-chloro-1-methylethyl) ether (Dichloroisopropyl	DOW.		ether). 1-Butoxy-2,3-epoxypropane (Butyl glycidyl ether)	SHC.		Butylene oxide	DOW, UCC.		Butyl vinyl ether	UCC.		2-Chloroethyl vinyl ether	UCC.		Chloromethyl methyl ether	HK, RH.		Epichlorohydrin	CBA, DOW, SHC. ACP, CAU, DOW, EKX, GAF, HCH, JCC, CMC, SNO, UCC, WYN.		*Ethyl ether: Absolute	MAL.		Tech	ENJ, HPC, UCC, USI.		Rthyl vinyl ether	UCC. DIX.		Glycidol (2,3-Epoxy-1-propanol)	FIN.		Isobutyl vinyl ether*Isopropyl ether	GAF. ENJ, SHC, UCC.		Methylal (Dimethoxymethane)	CEL. COM, DUP, UCC.		Methyl vinyl ether	GAF, UCC.		Polychlorinated propyl ether*	JCC. CEL, DOW, JCC, OMC, UCC, WYN.		OtherEthanedithiol	EK, EVN, JCC, PIC.		Ethanethiol2-(Ethylmercapto)ethanol2	EK. PAS.		Fets and oils, chemically modified	ABB, BCN, CHL, DOM, RT, x.		Glucono-delta-lactoneGlucoheptonolactone	PFN.		Glutaraldehyde bis(sodium bisulfite)Glyoxal, sodium bisulfite	IDC. CFC.		Hexachlorodimethyl sulfonen-Hexadecyl disulfide	PAS.		Hydrocarbons:	cuc.		n-Dodecane	HMY.		Hexadecane	HMY.		n-Octane	HMY.		1-Octadecene 1(and 2)-Octene	WTH.		Propyne (Methylacetylene)	CUC. CUC, GOC, HMY.		*Iauroyl peroxide	AZT, CAD, UPR, WTL. MRT, SFA.		Methanesulfanol	PAS. CRZ.		Methyl sulfide (Dimethyl sulfide) Methyl sulfoxide	CRZ, PAS. CRZ.		n-Octadecyl mercaptan	HMY.		Omeans sluminum compounds:			Ethylaluminum chlorides	TNA, TSA.		Methylaluminum chlorides	I TNA. TSA.		Organo-lead compounds:	ACG, CAL, SFA.		*Tetraethyllead	DUP, HCH, NLC, TNA.		Tetra(methyl-ethyl)lead	DUP, TNA.	TABLE 21B. --Miscellaneous chemicals for which U.S. production or sales were reported, identified by manufacturer, 1966--Continued	Chemical	Manufacturers' identification codes (according to list in table 22)		---	---		MISCELIANEOUS CHEMICALS, ACYCLICContinued All Other Miscellaneous Acyclic ChemicalsContinued Organo-lithium compounds	Manufacturers' identification codes (according to list in table 22) FTE. ARA, x. LIL, NTB. DCC, ORO, SF, SPD, UCS. CCW, x. CCW, x. CCW, x. TNA. CHO. WTL. CTN, DUP, MOB, NAC, OMC, OTC, PPG, RUC, UCC, UPJ, VDM. CBY. BFG. SDH. WTL. PFN. FMP. EK, IDC. HSH, NOP, RH, ROY. BFR, DA, DUP, HSH, KF, OMC, RBC, SFA. FIN. WTL. HK. CCW, x. PAS.		Trioctylphosphine oxide	EK. NOP, RH, ROY. ACY, AID, ALX, ARA, CCA, CCW, CWN, DCC, DUP, EK, EKX, ENJ, FER, ICO, KF, LIL, PFN, PRN, SF, SNW, SYP, TNA, UCC, x, x, x, x.	### Directory of Manufacturers The Directory of Manufacturers lists the companies that report their production of synthetic organic chemicals to the U.S. Tariff Commission. The name of each manufacturer is preceded by an alphabetical identification symbol. These identification symbols consist of not more than three capital letters, and usually bear a relation to the company name. For 1966, the Directory of Manufacturers lists approximately 825 primary manufacturers (see table 22). Some of the companies that report production of synthetic organic chemicals do not sell the materials, but consume their entire output in further manufacturing. The Directory of Manufacturers lists the reporting companies in two ways: Section 1 lists them in alphabetical order by identification symbols; section 2 lists the reporting companies in alphabetical order by company name, and gives the corresponding identification symbol and the company address. Company divisions are usually listed under the parent company's name. ### TABLE 22. -- Synthetic organic chemicals: Directory of manufacturers, 1966 #### SECTION 1. ALPHABETICAL DIRECTORY BY CODE [Names of synthetic organic chemical manufacturers that reported production or sales to the U.S. Tariff Commission for 1966 are listed below in the order of their identification codes as used in tables in pt. III. Section 2 of this table lists these manufacturers alphabetically and gives their office addresses.]	Code identi- fication	Name of company	Code identi- fication	Name of company		-----------------------------	---	-----------------------------	---		AAC	Alcolac Chemical Corp.	ARG	Argus Chemical Corp.		AAE	American Aniline & Extract Co., Inc.	ARK	Armstrong Cork Co.		AAI	American Alkyd Industries	ARL	Arol Chemical Products Co.		AAP	American Aniline Products, Inc.	ARM	Armour Agricultural Chemical Co.		ABB	Abbott Laboratories	ARN	Arenol Chemical Corp.		ABS	Abex Corp., American Brakeblok Div.	ARP	Armour Pharmaceutical Co.		ACB	Allied Chemical Corp., Barrett Div.	ARZ	Arizona Chemical Co.		ACC	Amoco Chemicals Corp.	ASH	Ashland Oil & Refining Co.		ACE	Acme Chemical Co.	ASL	Ansul Chemical Co.		ACG	Allied Chemical Corp., General Chemical Div.	AST	Astra Pharmaceutical Products, Inc.		ACI	Aceto Industrial Chemical Corp.	ASY	American Synthetic Rubber Corp.		ACN	Allied Chemical Corp., Agricultural Div.	ATC	American Tartars Corp.		ACP	Allied Chemical Corp., Plastics Div.	ATL	Atlantic Chemical Corp.		ACR	Acme Resin Corp.	ATP	Atco Chemical-Industrial Products, Inc., Fine		ACS	Allied Chemical Corp., Solvay Process Div.		Chemicals Div.		ACT	Arthur C. Trask Co.	ATR	Atlantic Richfield Co., ARCO Chemical Co. Di		ACU	Allied Chemical Corp., Union Texas Petroleum	ATU	Atlantic Tubing & Rubber Co.			Div.	AUG	Augusta Chemical Co.		ACY	American Cyanamid Co.	AV	FMC Corp., American Viscose Div.		ADM	ADM Co.	AVS	Avisun Corp.		AFP	Air Products & Chemical, Inc., Apache Foam Products Div.	AZT	Aztec Chemicals, Inc.		AKS	Arkansas Co., Inc.	BAC	Baker Castor Oil Co.		ALB	Ames Laboratories, Inc.	BAL	Baltimore Paint & Chemical Corp.		ALC	Alco Chemical Corp.	BAR	American Rubber & Chemical Co.		ALD	Aldrich Chemical Co., Inc.	BAX	Baxter Laboratories, Inc.		ALF	Allied Chemical Corp., Fibers Div.	BCM	Belding Chemical Industries		ALL	Alliance Color & Chemical Co.	BCN	Lehn & Fink Products Corp., Beacon Div.		ALO	Alamo Industries, Inc.	BDO	Benzenoid Organics, Inc.		ALT	Crompton & Knowles Corp., Chemicals Group, Althouse & Bates Div.	BEN BFG	Bennett's B. F. Goodrich Co., B. F. Goodrich Chemical		ALX	Alox Corp.		Co. Div.		AMB	American Bio-Synthetics Corp.	BFR	Branchflower Co.		AMC	Amchem Products, Inc.	BJL	Burdick & Jackson Laboratories, Inc.		AME	American Chemical Corp.	BKC	J. T. Baker Chemical Co.		AMIL	Amalgamated Chemical Corp.	BKL	Millmaster Onyx Corp., Berkeley Chemical Div		AMO	American Oil Co. (Texas)	BKM	Buckman Laboratories, Inc.		AMP	American Potash & Chemical Corp.	BKS	Tenneco Chemicals, Inc., Berkshire Color Div		AMR	Pacific Resins & Chemical Co.	BKT	J. T. Baker Chemical Co., Taylor Div.		AMS	Martin-Marietta Corp., Ridgway Color &	BL	Belle Chemical Co., Inc.			Chemical Div.	BLA	Blue Arrow, Inc.		ANM	Ancon Chemical Corp.	BLN	Brooklyn Color Works, Inc.		APD	Atlas Chemical Industries, Inc.	BLS	Beech-Nut Life Savers, Inc.		APR	Atlas Processing Co.	BME	Bendix Corp., Marshall-Eclipse Div.		APT	American Petrochemical Corp.	BOR	Borden Co., Borden Chemical Co. Div.		APV	Armstrong Paint & Varnish Works, Inc.	BOY	Walter N. Boysen Co.		APX	Apex Chemical Co., Inc.	BPC	Cowles Chemical Co., Benzol Products Div.		ARA	Arapahoe Chemicals, Div. of Syntex Corp.	BPL	Brand Plastics Co.		ARC	Armour																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																													
Industrial Chemical Co.	BRD	Baird Chemical Industries, Inc.		ARD	Ardmore Chemical Co.	BRS	Bristol-Meyers Co., Bristol Laboratories Di	TABLE 22.--Synthetic organic chemicals: Directory of manufacturers, 1966--Continued			-			-----------------------------	--	-----------------------------	--		Code identi- fication	Name of company	Code identi- fication	Name of company		BRU	M. A. Bruder & Sons, Inc.	COR	Commonwealth Oil Refining Co., Inc.		BRY	Bryant Chemical Corp.	CP	Colgate-Palmolive Co.			· -	CPC			BSC	Burkart-Schier Chemical Co.	1 (Childs Pulp Colors, Inc.		BST	Best Fertilizers Co.	CPD	Chemical Products Corp.		BSW	Original Bradford Soap Works, Inc.	CPV	Cook Paint & Varnish Co.		BUC	Blackman-Uhler Chemical Co.	CPY	Copolymer Rubber & Chemical Corp.		BUK	Buckeye Cellulose Corp.	CRC	Crown Chemical Corp.		BUR	Burroughs-Wellcome & Co. (U.S.A.), Inc.	CRN	Corn Products Co.		BXT	J. H. Baxter & Co.	CRS	Carus Chemical Co., Inc.				CRT	Crest Chemical Corp.		CAD	Cadet Chemical Corp.	CRY	Tenneco Manufacturing Co., Tenneco Plastics		CAL	Callery Chemical Co.		Div.		CAT	Ashland Oil & Refining Co., Catalin Corp. Div.	CRZ	Crown Zellerbach Corp., Chemical Products Div.		CAU	Calcasieu Chemical Corp.	CSB	Chemical Services of Baltimore, Inc.		CBA		CSD	Cosden Oil & Chemical Co.			Ciba Corp., Ciba Products Co.	CSO			CBC	Georgia-Pacific Corp., Coos Bay Div.		Cities Service Oil Co.		CBD	Chembond Corp.	CST	Charles S. Tanner Co.		CBM	Carborundum Co., Coated Abrasives Div.	CTA	Conestoga Chemical Corp.		CBN	Columbian Carbon Co., Inc. and Chemicals Div.	CTL	Continental Chemical Co.		CBP	Ciba Corp., Ciba Pharmaceutical Co. Div.	CTN	Chemetron Corp., Chemetron Chemicals Div.,		CBR	Colab Resin Corp.		Organic Chemical Dept.		CBT	Samuel Cabot, Inc.	CUC	Cumberland Chemical Corp., a Subsidiary of		CBY	Crosby Chemicals, Inc.		Air Reduction Co., Inc.		CCA	Carlisle Chemical Works, Inc., Advance Div.	CUL	Culver Chemical Co.		CCC		CUT	Cutter Laboratories, Inc.			Chase Chemical Corp.	1			CCH	Pearsall Chemical Co.	CW	General Mills, Inc., Chemical Div.		CCL	Charlotte Chemical Laboratories	CWL	Cowles Chemical Co.		CCO	Chemico, Inc.	CWIN	Upjohn Co., Carwin Organic Chemicals		CCP	Crown Central Petroleum Corp.	CWTP	Consolidated Papers, Inc.		CCW	Carlisle Chemical Works, Inc.	CYC	Cyclamate Corp. of America		CD	Budd Co., Polychem Div.				CEL	Celanese Corp. of America:	DA.	Diamond Alkali Co., and Western Div.			Celanese Chemical Co. Div.	DAN	Dan River Mills, Inc.			Celanese Coatings Co.	DAV	Conchemco, Inc., H. B. Davis Co. Div.			Celanese Plastics Co.	DBC	Dow Badische Co.			and the second s	DCC	Dow Corning Corp.		CEA	Fibers Co. Div.	DEG			CFA	Cooperative Farm Chemicals Association	1	Degen Oil & Chemical Co.		CFC	Sun Chemical CorpKearny	DEP	DePaul Chemical Co., Inc.		CGL	Cargill, Inc.	DEX	Dexter Chemical Corp.		CHC	Chipman Chemical Co., Inc.	DIX	Dixie Chemical Co.		CHF	Chemical Formulators, Inc.	DLH	Hess Oil & Chemical Corp.		CHG	Chemagro Corp.	DLI	Dawe's Laboratories, Inc.		CHL	Chemol, Inc.	DOM:	Dominion Products, Inc.		CHO	Stauffer Chemical Co., Calhio Chemicals,	DOW	Dow Chemical Co.			Inc. Div.	DPP	Dixie Pine Products Co., Inc.		CHT	Chattem Drug & Chemical Co., Chattem	DRW	Drew Chemical Corp.			Chemicals Div.	DSC	Dye Specialties, Inc.		CIB	Ciba Chemical & Dye Co.	DSO	DeSoto Chemical Coatings, Inc.			Torress Chemicals Tra Col/Ink Div	DUN			CIK	Tenneco Chemicals, Inc., Cal/Ink Div.	DUP	Frank W. Dunne Co.		CIS	Chemical Insecticide Corp.		E. I. duPont de Nemours & Co., Inc.		CKL	Chemlek Laboratories, Inc.	DVC	Dover Chemical Corp.		CLB	Columbia Organic Chemicals Co., Inc.	DXS	Sunray DX Oil Co.		CLC	Charles L. Huisking & Co., Inc., Clintbrook	DYS	Davies-Young Soap Co.			Chemical Co. Div.		•		CLD	Colloids, Inc.	EAK	J. S. & W. R. Eakins, Inc.		CLI	Clintwood Chemical Co.	ECC	Eastern Color & Chemical Co.		CLK	Clark Oil & Refining Corp.	EDC	Edcan Laboratories		CLN	Standard Brands, Inc., Clinton Corn Proces-	EFH	E. F. Houghton & Co.		T	sing Co. Div.	EK	Eastman Kodak Co.		CLV	Clover Chemical Co.	EKT					1	Eastman Kodak Co., Tennessee Eastman Co. Div.		CLY	W. A. Cleary Corp.	EKX	Eastman Kodak Co., Texas Eastman Co. Div.		CM	Carpenter-Morton Co.	ELP	El Paso Products Co.		CMG	Nyanza, Inc.	EMIK	Emkay Chemical Co.		CMAP	Commercial Products Co., Inc.	EMR	Emery Industries, Inc.		CNC	Columbian Nitrogen Corp.	EN	Endo Laboratories, Inc.		co	Continental Oil Co.	ENJ	Enjay Chemical Co.		COK	Cockerille Chemicals, Inc.	EPC	Epoxylite Corp.		COL	Collier Carbon & Chemical Corp.	ESA	East Shore Chemical Co., Inc.		COW	Commercial Solvents Corp.	ESC			CON		ETD	Escambia Chemical Corp.			Concord Chemical Co., Inc.	1	Ethyl-Dow Chemical Co.		COP	Coopers Creek Chemical Corp.	EVN	Evens Chemetics, Inc.	TABLE 22. -- Synthetic organic chemicals: Directory of manufacturers, 1966--Continued	Code Identi- Cication	Name of company	Code identi- fication	Name of company		-----------------------------	--	-----------------------------	--		EW	Westinghouse Electric Corp., Insulating	GRC	W. R. Grace & Co., Dubois Chemicals Div.		DW.	Materials Div Benolite	GRD	W. R. Grace & Co., Dewey & Almy Chemical Div			Har bel land bitt a bollow to	GRG	P. D. George Co.		FAB	Fabricolor Manufacturing Corp.	CERLH	W. R. Grace & Co., Hatco Chemical Div.				GRL	W. R. Grace & Co., Vestal Laboratories Div.		FAR	Farnow, Inc.	GRO	A. Gross & Co., Inc.		FB	Fritzsche Bros., Inc.	GRS	Pontiac Refining Corp.		FBF	Rexall Chemical Co., Fiberfil Div.	GRV			FBR	Fibreboard Corp.		Guardsman Chemical Coatings, Inc.		FC	Franklin Chemical Co.	GRW	Great Western Sugar Co.		FCA	Farmers Chemical Association, Inc.	GTH	Guth Chemical Co.		FCD	France, Campbell & Darling, Inc.	GTL	Great Lakes Chemical Corp.		FCL	Federal Color Laboratories, Inc.	GYR	Goodyear Tire & Rubber Co.		FEL	Felton Chemical Co., Inc.	i			FER	Ferro Corp., Ferro Chemical Div.	HAB	Halby Products Co., Inc.		FG	Foster Grant Co., Inc.	HAL	C. P. Hall Co. of Illinois		FH	Foster-Heaton Co.	HAM	Hampden Color & Chemical Co.		FIN	Fine Organics, Inc.	HAN	Hanna Paint Manufacturing Co., Inc.		FIR	Firestone Tire & Rubber Co., Firestone	HAP	Applied Plastics Co., Inc.			Plastics Co. Div.	HCH	Houston Chemical Corp.		PTC	1	HCO	Nyanza, Inc., Hamilton Chemical Div.		FIS FLH	Fisher Melamine Corp. H. B. Fuller Co.	HDG	Hodag Chemical Corp.				HER	Heresite & Chemical Co.		FLM	Fleming Laboratories, Inc.	HET	Heterochemical Corp.		FLO	Florasynth, Inc.	HEX	Hexagon Laboratories, Inc.		FLW	W. P. Fuller Paint Co.	1	1		FMB	FMC Corp., Inorganic Chemicals Div.	HFT	Hoffman-Taff, Inc.		FMN	FMC Corp., Niagara Chemical Div.	HK	Hooker Chemical Corp.		FMP	FMC Corp., Organic Chemicals Div.	HKD	Hooker Chemical Corp., Durez Plastics Div.		FMT	Fairmount Chemical Co., Inc.	HKY	Hawkeye Chemical Co.		FOC	Farac Oil & Chemical Co., Div. of Handschy	HLC	Hartman-Leddon Co.			Chemical Co.	HLI	Haag																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																				
Laboratories, Inc.		FOM	Formica Corp.	HMP	W. R. Grace & Co., Hampshire Chemical Div.		FOR	Foremost Chemical Products Co.	HMY	Humphrey Chemical Co.		FRE	Freeman Chemical Corp.	HN	Tenneco Chemicals, Inc.		FRL	Firestone Tire & Rubber Co., Firestone	HNC	H & N Chemical Co.		1 1423	Rubber & Latex Products Co. Div.	HNT	Huntington Laboratories, Inc.		FRM	Farmer's Chemical Co.	HNW	Tenneco Chemicals, Inc., Newport Div.		FRO	Vulcan Materials Co., Chemicals Div.	HNX	Tenneco Chemicals, Inc., Nuodex Div.				HOF	Hoffmann-LaRoche, Inc.		FRP	Filtered Rosin Products Co.	HOU	Air Products & Chemicals, Inc., Houdry		FRS	Firestone Tire & Rubber Co., Firestone	1	Process & Chemical Div.			Synthetic Rubber & Latex Co. Div.	HPC	Hercules, Inc.		FSH	Frisch & Co., Inc.	HRS	Grow Chemical Corp., Harris Paint Co. Div.		FTE	Foote Mineral Co.				FTX	Fel-Tex, Inc.	HRT	Hart Products Corp.				HSC	Holland-Suco Color Co.		GAF	General Aniline & Film Corp., Dyestuff &	HSH	Harshaw Chemical Co., Div. of Kewanee Oil C			Chemical Div.	HST	American Hoechst Corp.		GAM	Gamma Chemical Corp.	HUM	National Dairy Products Corp:, Humko Produc		GAN	Gane's Chemical Works, Inc.	1	Chemical Div.		GCC	W. R. Grace & Co., Agricultural Products Div.	HUS	Husky Briquetting, Inc.		GDN	Lancaster Chemical Corp., Gordon Chemicals	HVG	Haveg Industries, Inc., Resin & Compound Di			Co. Div.	HYC	Hysol Corp.		GE	General Electric Co., Chemical Materials Dept.	HYN	Hynson, Westcott & Dunning, Inc.		GEI	General Electric Co., Insulating Materials] ' '		CLL		IBI	Industrial Biochemicals		OPC	Dept.	icc	Interchemical Corp., Color & Chemicals Div.		CFS	G. Frederick Smith Chemical Co.	ICF	Interchemical Corp., Finishes Div.		GGC	Goodrich-Gulf Chemicals, Inc.	ICI	I. C. I. (Organics), Inc.		GGY	Geigy Chemical Corp.	ICO	Interchemical Corp., Organic Chemicals Dept		GIL	Gilman Paint & Varnish Co.				GIV	Givaudan Corp.	IDC	Industrial Dyestuff Co.		GLC	General Latex & Chemical Corp.	IFF	International Flavors & Fragrances, Inc.		GLD	Glidden Co., and Durkee Famous Foods Div.	ILC	International Latex & Chemical Corp.		GLX	Glasflex, Inc.	IMC	International Minerals & Chemical Corp.		GLY	Glyco Chemicals, Inc.	IMP	Hercules, Inc., Imperial Color & Chemical I		GNF	General Foods Corp., Maxwell House Div.	IMR	Imperial, Inc.		GNIM	General Mills, Inc.	INL	Inland Steel Container Co.		GNT	General Tire & Rubber Co., Chemical Div.	IOC	Ritter Pfaudler Corp., Ionac Chemical Co. I		GOC	Gulf Oil Corp.	IPC	Interplastic Corp., Commercial Resins Div.		GOR		IPI	Isocyanate Products, Inc.			Gordon Chemical Co., Inc.	IPR	Inter-Pacific Resins, Inc.		GPM	General Plastics Manufacturing Co.	IRC	IRC, Inc.		GPR	Grain Processing Corp.	IRI	Ironsides Resins, Inc.		GRA.	Great American Plastics Co.	11 7117	TIONDINGO MODINGO	TABLE 22. -- Synthetic organic chemicals: Directory of manufacturers, 1966--Continued	Code		Code			------------	--	--	---		identi-	Name of company	identi-	Name of company		fication	• •	fication	Name of company				 			JCC	Jefferson Chemical Co., Inc.	Mere	No		JDC	Nipak, Inc.	MEE MER	Maumee Chemical Co.		JEN	Jennison-Wright Corp.	MET	Merichem Co.		JMS	J. Meyer & Sons, Inc.	MFG	M & T Chemicals, Inc. Molded Fiber Glass Body Co., Resin Div.		JNS	S. C. Johnson & Son, Inc.	MGK	McLaughlin Gormley King Co.		JOB	Jones-Blair Paint Co.	MGR	Magruder Color Co., Inc.		JOR	Jordan Chemical Co.	MHI	Ventron Corp., Metal Hydrides Div.		JRG	Andrew Jergens Co.	MID	Midland Industrial Finishes Co.		JSC	Jersey State Chemical Co.	MIR	Miranol Chemical Co., Inc.		JTC	Joseph Turner & Co.	MID	Metalead Products Corp.		JWL	Jewel Paint & Varnish Co.	MIS	Miles Laboratories, Inc., Chemicals Div.				MMM	Minnesota Mining & Manufacturing Co.		KAI	Kaiser Aluminum & Chemical Corp., Kaiser	MINO	Monochem, Inc.			Chemicals Div.	MNP	Minnesota Paints, Inc.		KAL	Kali Manufacturing Co.	MOA	Mona Industries, Inc.		KCC	Kennecott Copper Corp., Chino Mines Div.	MOB	Mobay Chemical Co.		KCH	Keystone Chemurgic Corp.	MOC	Marathon Oil Co., Texas Refining Div.		KCU	Kennecott Copper Corp., Utah Copper Div.	MON	Monsanto Co.		KCW KEI	Keystone Color Works, Inc.	MOR	Mineral Oil Refining Co.		KEL	Keil Chemical Co.	MOT	Motomeo, Inc.		KEN	Kelly-Pickering Chemical Corp. Kendall Refining Co.	MPP	Midwest Plastic Products Co.		KET	Ketona Chemical Corp.	MRA MRA	Benjamin Moore & Co.		KF	Kay-Fries Chemicals, Inc.	MRB	Metro-Atlantic, Inc.		КМС	Kohler-McLister Paint Co.	MRD	Marblette Corp. Marden-Wild Corp.		KMP	Kelly-Moore Paint Co.	MRK	Merck & Co., Inc.		KND	Knoedler Chemical Co.	MRN			KNG	Far-Best Corp., O. L. King Div.		International Latex & Chemical Corp., Paisley Products Div.		KNP	Knapp Products, Inc.	MRO	W. R. Grace & Co., Marco Chemical Div.		KON	H. Kohnstamm & Co., Inc.	MRT	Morton Chemical Co.		KPI	Kenrich Petrochemicals, Inc.	MRV	Marlowe-Van Loan Corp.		KPP	Sinclair-Koppers Co.	MRX	Max Marx Color & Chemical Co.		KPS	Koppers Pittsburgh Co.	MASC	Mississippi Chemical Corp.		KPT	Koppers Co., Inc., Tar & Chemical Div.	MTO	Montrose Chemical Corp. of California		KRM	Lawter Chemicals, Inc., Krumbhaar Resin Div.	MTR	Baldwin-Montrose Chemical Co., Inc., Montrose		KYN	Kyanize Paints, Inc.	ļ]	Chemical Div.		KYS	Keysor Chemical Co.	MYW	Stepan Chemical Co., Maywood Div.		LAK	Lakeway Chemical Co.	NAC	Allied Chemical Corp., Industrial Chemicals		LAM	LaMotte Chemical Products Co.	11	Div.		LAS	Lasco Industries, Inc.	NCI	Union Camp Corp., Chemical Div.		LEA	Leatex Chemical Co.	NCW	Nostrip Chemical Works, Inc.		ĻEB	Lebanon Chemical Corp.	NEO	Norda Essential Oil & Chemical Co., Inc.		LEF	Leffingwell Chemical Co.	NEP	Nepera Chemical Co., Inc.		LEM	B. L. Lemke & Co., Inc.	NES	Nease Chemical Co., Inc.		LEN	Leonard Refineries, Inc.	NEV	Neville Chemical Co.		LEV	Lever Brothers Co.	NIL	Nilok Chemicals, Inc.		LIL	Eli Lilly & Co.	NIT	Nitrin, Inc.		TKL	Lakeside Laboratories, Div. of Colgate-	NIX	Tenneco Chemicals, Inc., Nixon-Baldwin Div.		LKY	Palmolive Co.	NLC	Nalco Chemical Co.		IMI	St. Regis Paper Co., Lake States Div. North American Chemical Co.	NIMC NOC	National Milling & Chemical Co., Inc.		LPC	Lignin Products Co.	NOC	Norac Co., Inc. and subsidiary Mathe Chemical		LUB	Lubrizol Corp.	NON	Co.		IUE	George Lueders & Co., Inc.	NOP	A. P. Nonweiler Co. Nopco Chemical Co., Inc.		LUR	Laurel Products Corp.	NOR	Norwich Pharmacal Co.		LVR	C. Lever Co., Inc.	NPC	Northwest Petrochemical Corp.		LVY	Fred'k H. Levey Co., Inc.	NPI	National Polychemicals, Inc.			• • •	NPP	National Plastic Products Co., Inc.		MAH	Maher Color & Chemical Co.	NPR	Newport Products Co., Div. of Safeway Stores,		MAL	Mallinckrodt Chemical Works		Inc.		MAN	Manganese Chemical Co., Div. of Pickands	NPV	Norris Paint & Varnish Co.			Mather & Co.	NRS	Norse Chemical Corp.		MAR	American Can Co.	NSC	National Starch & Chemical Corp.		MAY	Otto B. May, Inc.	NSP	Alabama Binder & Chemical Corp.		MCA	Masonite Corp., Alpine Chemical Div.	NTB	National Biochemical Co.		MCB	Borg-Warner Corp., Marbon Chemical Div.	NTC	National Casein Co.		MCC	McCloskey Varnish Co.	NTL	National Lead Co.		MCH	Michigan Chemical Corp.	NVF	N.V.F. Co.		MCI	Mooney Chemicals, Inc.	NVT	Novamont Corp.		MED	Medical Chemicals Corp.	NW	Northwestern Chemical Co.	TABLE 22. -- Synthetic organic chemicals: Directory of manufacturers, 1966--Continued	Code identi- fication	Name of company	Code identi- fication	Name of company		---------------------------------	---	-----------------------------																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																								
--		MVC	Townson Chemicals Inc. New York Color	PSP	Georgia-Pacific Corp., Puget Sound Div.		NYC	Tenneco Chemicals, Inc., New York Color	PTO	Puerto Rico Chemical Co., Inc.			Div.	PTT	Petro-Tex Chemical Corp.		007	0 0	PUB	Publicker Industries, Inc.		OCF	Owens-Corning Fiberglas Corp.				OH	Air Reduction Co., Inc., Ohio Chemical &	PVI	Polyvinyl Chemicals, Inc.			Surgical Equipment Co. Div.	PYL	Polychemical Laboratories, Inc.		OMC	Olin Mathieson Chemical Corp.	PYR	Poly Resins		OMS	E. R. Squibb & Sons, Inc.	PYZ	Polyrez Co., Inc.		ONX	Millmaster Onyx Corp., Onyx Chemical Div.				OPC	Orbis Products Corp.	QCP	Quaker Chemical Corp.		ORG	Organics, Inc.	QKO	Quaker Oats Co.		ORO	Chevron Chemical Co., Additives Div.	QUN	K. J. Quinn & Co., Inc.		ORT	Roehr Chemicals, Inc.				OSB	C. J. Osborn Co.	RAB	Raybestos-Manhattan, Inc., Raybestos Div.			1	RBC	Roberts Chemicals, Inc.		OTA	Ottawa Chemical Co.	RCC	Rexall Chemical Co.		OTC	Ott Chemical Co.	RCD	Richardson Co.		OTH	Chevron Chemical Co., Ortho Div.	RCI	Reichhold Chemicals, Inc.		OXO	Oxo Chemicals Co.	1	l		OXR	Onyx Oils & Resins, Inc.	RDA	Rhodia, Inc.				RED	Red Spot Paint & Varnish Co., Inc.		PAI	Pennsylvania Industrial Chemical Corp.	REH	Reheis Chemical Co., Div. of Armour		PAN	Pan American Petroleum Corp.		Pharmaceutical Co.		PAR	Pennsylvania Refining Co.	REL	Reliance Universal, Inc.		PAS	Pennsalt Chemicals Corp.	REM	Remington Arms Co., Inc.		PAT	Patent Chemicals, Inc.	REN	Renroh Resins			Pillsbury Co., Chemical Div.	RET	Rayette-Faberge, Inc.		PBY		REZ	Rezolin, Inc.		PC	Proctor Chemical Co., Inc.	RGC	Rogers Corp.		PCC	USS Chemicals, Div. of U.S. Steel Corp.	RH	Rohm & Haas Co.		PCH	Peerless Chemical Co.	RIC	Atlantic Richfield Co., Richfield Div.		PCI	Pioneer Chemical Works, Inc.	1.1	1		PCS	Emery Industries, Inc., Western Div.	RIK	Riker Laboratories, Div. of Rexall Drug &		PCW	Pfister Chemical Works		Chemical Co.		PD	Parke, Davis & Co.	RIL	Reilly Tar & Chemical Corp.		PDC	Berncolors-Poughkeepsie, Inc.	RIV	Riverdale Chemical Co.		PDJ	Joseph Davis Plastics Co.	RLS	Rachelle Laboratories, Inc.		PEK	Peck's Products Co.	ROC	Rock Hill Printing & Finishing Co.		PEL	Pelron Corp.	ROM	United Merchants & Manufacturers, Inc., Rome		PEN	S. B. Penick & Co.	H	Chemical Div.		PER	Perry & Derrick Co.	ROY	Royce Chemical Co.				RPC	Refined Products Co.		PFN	Pfanstiehl Laboratories, Inc.	RSA	R.S.A. Corp.		PFP	Phelan-Faust Paint Manufacturing Co.,	RSB	Rosenberg Bros. & Co.			Phelan's Resins & Plastics Div.	RT	F. Ritter & Co.		PFW	Polak's Frutal Works	11	Ritter Chemical Co., Inc.		PFZ	Chas. Pfizer & Co., Inc.	RTC			PG	Procter & Gamble Co.	RTF	Retzloff Chemical Co.		PGU	Gulf Oil Corp., Chemicals Dept., Perkins Glue	RUB	Hooker Chemical Corp., Ruco Div.			Branch	RUC	Rubicon Chemicals, Inc.		PHR	Pharmachem Corp.	li ·			PIC	Pierce Organics, Inc.	S	Sandoz, Inc.		PII	Polymer Industries, Inc.	SAC	Southeastern Adhesives Co.		PIL	Pilot Chemical Co.	SAL	Salsbury Laboratories				SAR	Sartomer Resins, Inc.		PIT	Pitt-Consol Chemical Co.	SBC	Scher Bros., Inc.		PLA	Richardson Co., Richardson Polymers Div.	SBP	Sugar Beet Products Co.		PLB	P-L Biochemicals, Inc.	scc	Standard Chlorine Chemical Co., Inc.		PLC	Phillips Petroleum Co.		Schaefer Varnish Co., Inc.		PLS	Plastics Engineering Co.	SCF	1 .		PLU	Plumb Chemical Corp.	SCH	Schering Corp.		PMC	Plastics Manufacturing Co.	SCN	Schenectady Chemicals, Inc.		PMP	Premier Malt Products, Inc.	SCO	Scholler Bros., Inc.		PNT	Pantasote Co.	SCP	Standard Chemical Products, Inc.		PNX	Phoenix Oil Co.	SCR	R. P. Scherer Corp.		POL	Polymer Corp.	SDC	Martin-Marietta Corp., Southern Dyestuff Co		PPC		H	Div.		PPU	Premier Petrochemical Co.	SDG	Sterling Drug, Inc., Glenbrook Laboratories			Pittsburgh Plate Glass Co.	555	Div.		PPG	Pioneer Plastics Corp., Chemical Div.	SDH	Sterling Drug, Inc., Hilton-Davis Chemical		PPG PPL		חעט וו	I DACTITIE DIER THE PULL OF THE PROPERTY TH		PPG PPL PRC	Products Research & Chemical Corp.	11	0. 74		PPG PPL	Products Research & Chemical Corp. Productol Chemical Co., Inc.	H	Co. Div.		PPG PPL PRC		SDW	Sterling Drug, Inc., Winthrop Laboratories		PPG PPL PRC PRD	Productol Chemical Co., Inc.	SDW	Sterling Drug, Inc., Winthrop Laboratories Div.		PPG PPL PRC PRD PRP	Productol Chemical Co., Inc. S. B. Penick & Co., Parsons-Plymouth Div.	H	Sterling Drug, Inc., Winthrop Laboratories	TABLE 22. -- Synthetic organic chemicals: Directory of manufacturers, 1966--Continued	***************************************		77			---	---	--------------	---		Code		Code			identi- fication	Name of company	identi-	Name of company		Tication		fication	1				 			SEK	Sekisui Plastics Corp.	svc	Sullivan Varnish Co.		SEL	Selney Co., Inc.	SVT	Solvent Chemical Co., Inc.		SEP	Southeast Polymers, Inc.	SW	Sherwin-Williams Co.		SEY	Seydel-Woolley & Co., Inc.	SWT	Swift & Co.		SF	Stauffer Chemical Co., Industrial Chemical	SYC	Synthetic Chemicals, Inc.		CTRA	Div.	SYN	Synthron, Inc.		SFA	Stauffer Chemical Co., Specialty Chemical Div.	SYP	Synthetic Products Co.		SFD SH	Sonford Chemical Co.	SYR	ADM Co., Synco Resins		SHA	Stein, Hall & Co., Inc.	SYV	Synvar Corp.		SHC	Shanco Plastics & Chemicals, Inc. Shell Oil Co., Shell Chemical Co. Div.				SHF	National Dairy Products Corp., Sheffield	TAE	Chemetron Corp., National Cylinder Gas Div.			Chemical Co. Div.	TBK	Universal Oil Products Co., Chemical Div.		SHL	Shulton, Inc.	TCH	Tanatex Chemical Corp.		SHM	Shamrock Oil & Gas Corp.	TCI	Trylon Chemical Corp.		SHO	Shell Oil Co.	TDC	Texize Chemicals, Inc. Diversey Corp.		SHP	Shepherd Chemical Co.	TEN	Tennessee Copper Co.		SIC	Vistron Corp., Silmar Div.	TGL	Triangle Chemical Co.		SID	George F. Siddall Co., Inc.	THC	Thompson Apex Co., Div. of Continental Oil Co.		SIM	Simpson Timber Co.	THM	Thompson Chemical Corp.		SIN	Sinclair Refining Co.	TIC	Ticonderoga Chemical Corp.		SIO	Standard Oil Co. of Ohio	TID	Tidewater Oil Co.		SIP SK	James P. Sipe & Co.	TKL	Thickol Chemical Corp.		SKC	Smith, Kline & French Laboratories	TMH	Thompson-Hayward Chemical Co.		SKG	Sinclair-Koppers Chemical Co. Sunkist Growers, Inc.	TMS	Sterling Drug, Inc., Thomasset Colors Div.		sko	Skelly Oil Co.	TNA	Ethyl Corp.		SLC	Soluol Chemical Co., Inc.	TNC	Sun Chemical Corp.		SLV	Sterling Drug, Inc., Salvo Chemical Div.	TOC	Gillette Chemical Co.		SMI	Mobil Chemical Co.:	100	Tenneco Oil Co., Refining & Marketing Accounting			Industrial Chemical Div.	TRC	Toms River Chemical Corp.			North Atlantic Div.	TRJ	Trojan Powder Co.			Petrochemical Div.	TRO	Troy Chemical Co.		SM	Socony Mobil Oil Co., Inc.:	TSA	Texas Alkyls, Inc.		1	Mobil Chemical Co. Div. and	TTX	Detrex Chemical Industries, Inc.		C) (C)	Chemical Coatings Div., Louisville Plant	ŢUS	Texas-U.S. Chemical Co.		SMC SNA	Stamford Chemical Co.	TV	Sun Chemical Corp., Industrial Coatings Div.																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																												
	SNC	Sun Chemical Corp., Chemical Products Div. Sonoco Products Co.	TX	Texaco, Inc.		SNI	Kaiser Aluminum & Chemicals Corp., Kaiser	TXC	Tex Chem Co.			Agricultural Chemicals Div.	TXN	Textilana-Nease, Inc.		SNO	SunOlin Chemical Co.	TXT	Textilana Corp.		SNT	Suntide Refining Co.	120	Tizon Chemical Corp.		SNW	Sun Chemical Corp., Chemical Products Div.	UBS	A F Stolow Norwhoods		SOC	Standard Oil Co. of California, Chevron	"	A. E. Staley Manufacturing Co., U B S Chemical Co. Div.		'	Chemical Co.	UCC	Union Carbide Corp., Chemicals Div.		SOG	Signal Oil & Gas Co.	UCP	Union Carbide Corp., Plastics Div.		SOH	Sohio Chemical Co. & Solar Nitrogen Chemicals,	UCS	Union Carbide Corp., Silicones Div.		207	Inc.	UDI	Petrochemicals Co., Inc.		SOI	American Oil Co. (Maryland)	UHL	Paul Uhlich & Co., Inc.		SOL SON	Solar Chemical Corp.	UNC	Badische Products Corp.		SOR	Witco Chemical Co., Inc., Sonneborn Div.	UNG	Ungerer & Co.		SOS	Thomason Industries, Inc., Southern Resin Div. Southern Sizing Co.	UNN	United Chemical Corp. of Norwood		SPC	Sinclair Paint Co.	UNO	United Oil Manufacturing Co.		SPD	General Electric Co., Silicone Products Dept.	UNP	United Chemical Products Corp.		SPI	Sinclair Petrochemicals, Inc.	UNS UOC	Union Starch & Refining Co., Inc.		SPL	Spaulding Fibre Co., Inc.	UPF	Union Oil Co. of California		SPN	Gulf Oil Corp., Chemicals Dept.	UPJ	United States Pipe & Foundry Co. Upjohn Co.		SPY	Standard Pyroxoloid Corp.	UPL	United States Plywood Corp., California Div.,			G. D. Searle & Co.		Shasta Operations		SRR	Stresen-Reuter International, International	UPM	Universal Oil Products Co.			Minerals & Chemical Corp.	UPR	U.S. Peroxygen Corp.		STA	A. E. Staley Manufacturing Co.	URC	United Carbon Co.		STC	Sou-Tex Chemical Co., Inc.	USB	U.S. Borax Research Corp.		STG STP	Stange Co. Stepen Chemical Co. Industrial Chamical	USI	National Distillers & Chemical Corp.:		211	Stepan Chemical Co., Industrial Chemicals	I	A-B Chemical Corp. Div.		SUG	Div., Millsdale Works Sucro-Chemical, Div. of Colonial Sugars Co.	1	National Petro Chemical Corp. Div.			Summit Chemical Products Corp.	1100	U.S. Industrial Chemicals Co. Div.			Sun Oil Co.	USO USR	U.S. 011 Co.				oon	Uniroyal, Inc., Uniroyal Chemical Div.	TABLE 22. -- Synthetic organic chemicals: Directory of manufacturers, 1966--Continued	Code identi- fication	Name of company	Code identi- fication	Name of company		-----------------------------	---	-----------------------------	---		UTR	Utah Resin Co., Inc.	WES	Weston Chemical Corp.		UVC	Universal Chemicals Corp.	WHC	Whittaker Corp., Narmco Research & Development Div.		VAC	Varney Chemical Corp.	WHI	White & Hodges, Inc.		VAL	Valchem	WHIL	Whitmoyer Laboratories, Inc.		VAR	Reichhold Chemicals, Inc., Varcum Chemical	WHW	Whittemore-Wright Co., Inc.			Div.	WIC	Wica Chemicals, Inc.		VB	Vermilve-Bell	WIL	Wilson & Co., Inc., Wilson Laboratories Div.		VDM	Van De Mark Chemical Co.	WJ	Warner-Jenkinson Manufacturing Co.		VEL	Velsicol Chemical Corp. & Industrial	WLI	White Laboratories, Inc.			Chemicals Div.	WLM	Wilmot & Cassidy, Inc.		VGC	Virginia Chemicals, Inc.	WM.	Wilson & Co., Inc., Wilson-Martin Div.		VIN	Vineland Chemical Co.	WMP	Warner Machine Products, Inc., Warner		VLN	Valley Nitrogen Producers, Inc.		Chemical Div.		VLY	Chem-Fleur, Inc.	WOB	Woburn Chemical Corp.		VNC	Vanderbilt Chemical Corp.	WOI	Neville Chemical Co.		VND	Van Dyk & Co., Inc.	WON	Woonsocket Color & Chemical Co.		VPC	Verona-Pharma Chemical Corp.	WRC	Wood Ridge Chemical Corp.		VPT	Vickers Refining Co., Inc.	WRD	Weyerhaeuser Co., Wood Products Div.		VSV	Valentine Sugars, Inc., Valite Div.	WSN	Washine Chemical Corp.		VIV	Vita-Var Corp., Div. of Textron Industries,	WTC	Witco Chemical Co., Inc.			Inc.	WTH	Wallace & Tiernan, Inc., Harchem Div.				WTL	Wallace & Tiernan, Inc., Lucidol Div.		WAS	Purex Corp., Ltd.	WVA	West Virginia Pulp & Paper Co., Polychemicals		WAW	W. A. Wood Co.	II	Div.		WAY	Philip A. Hunt Chemical Corp., Wayland	WYC	Wycon			Chemical Div.	WYN	Wyandotte Chemicals Corp.		WEC	Worthington Biochemical Corp.	WYT	American Home Products Corp., Wyeth Labora-		WBG	White & Bagley Co.	11	tories, Inc. Div.		WCA.	West Coast Adhesives Co.	[]			WCC	Witfield Chemical Corp.	WAY	Young Aniline Works, Inc.	TABLE 22. -- Synthetic organic chemicals: Directory of manufacturers, 1966--Continued ### SECTION 2. ALPHABETICAL DIRECTORY BY COMPANY [Names of synthetic organic chemical manufacturers that reported production or sales to the U.S. Tariff Commission for 1966 are listed below alphabetically, together with their identification codes as used in tables in pt. III. Sec. 1 of this table lists these manufacturers in the order of their identification codes]	Identi- fication code	. Name of company	Office address		-----------------------------	--	--		ADM	ADM Co	E00 T		SYR	Synco Resins	The second of the property of the second sec		ABB	Abbott Laboratories			ABS	Abex Corp., American Brakeblok Div	14th St. and Sheridan Rd., N. Chicago, IL 60664.		ACI	Aceto Industrial Chemical Corp	1900 W. Maple Rd., Troy. MI 48012.		ACE	Acme Chemical Co	126-02 Northern Blvd., Flushing, New York, NY 11368.		ACR	Acme Resin Corp	2506 N. 32nd St., Milwaukee, WI 53245.			Air Products &																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																				
Chemicals, Inc.: | 1401 Circle Ave., Forest Park, IL 60130. | | AFP | Apache Foam Products Div | P.O. Box 7 Polysidama TT crops | | HOU | Houdry Process & Chemical Div | P.O. Box 7, Belvidere, IL 61008. | | OH | Air Reduction Co., Inc., Ohio Chemical & | 1339 Chestnut St., Philadelphia, PA 19107. | | | Surgical Equipment Co. Div. | 1400 E. Washington Ave., Madison, WI 53701. | | NSP | Alabama Binder & Chemical Corp | P.O. Box 3179, Tuscaloosa, AL 35401. | | ALO | Alamo Industries, Inc | 16th Fl., Daniel Bldg., Greenville, SC 29606. | | ALC | Alco Chemical Corp | Trenton Ave. and William St., Philadelphia, PA 19134. | | AAC | Alcolac Chemical Corp | 3440 Fairfield Rd., Baltimore, MD 21061. | | ALD | Aldrich Chemical Co., Inc | 2371 N. 30th St., Milwaukee, WI 53210. | | ALL | Alliance Color & Chemical Co | P.O. Box 326, Ridgefield, NJ 07657. | | ACIN | Allied Chemical Corp.: | NO 0/0//. | | ACN | Agricultural Div | P.O. Drawer 61, Hopewell, VA 23860. | | ACB
ALF | Barrett Div | 40 Rector St., New York, NY 10006. | | ACG | Fibers Div | 1450 Broadway, New York, NY 10018. | | | General Chemical Div | Columbia Rd. and Park Ave., Morristown, NJ 07960. | | NAC
ACP | Industrial Chemicals Div | Columbia Rd. and Park Ave., Morristown, NJ 07960. | | ACS | Plastics Div | F. U. BOX 363, Morristown, N.T 07960 | | ACU | Solvay Process Div | P.U. Box 6, Solvay, NY 13209. | | ALX | Union Texas Petroleum Div | P. 0. Box 2120, Houston, TX 77001 | | AML | Alox Corp | 3943 Buffalo Ave., Niagara Falls. NY 14302 | | AMC | Amalgamated Chemical Corp | Unitario and Korer Sts., Philadelphia, PA 19134 | | AAI | American Allerd Traductor | Brookside Ave., Ambler, PA 19002. | | AAE | American Alkyd Industries | Broad and 14th Sts., Carlstadt. NJ 07072 | | AAP | American Aniline & Extract Co., Inc | venango and F Sts., Philadelphia. PA 19134 | | AMB | American Aniline Products, Inc | P. 0. Box 3063, Paterson, NJ 07509. | | MAR | American Bio-Synthetics CorpAmerican Can Co | 710 W. National Ave., Milwaukee, WT 53204. | | | American Chemical Corp | 100 Park Ave., New York. NY 10017 | | ACY | American Cyanamid Co | P.O. Box 9247, Long Beach, CA 90810. | | HST | American Hoechst Corp | Wayne, NJ 07470. | | 1 | American Home Products Corp., Wyeth | 129 Quidnick St., Coventry, RI 02816. | | | Laboratories, Inc. Div. | P.O. Box 8299, Philadelphia, PA 19101. | | SOI | American Oil Co. (Maryland) | 010 0 14 14 14 14 | | AMO | American Oil Co. (Texas) | 910 S. Michigan Ave., Chicago, IL 60680. | | APT | American Petrochemical Corp | 910 S. Michigan Ave., Chicago, IL 60680. | | AMP | American Potash & Chemical Corp | 3134 California St., N.E., Minneapolis, MN 55418. | | BAR | American Rubber & Chemical Co | 3000 W. 6th St., Los Angeles, CA 90054. | | ASY | | P.O. Box 1034, Louisville, KY 40201. | | ATC | American Tartars Corp | P.O. Box 360, Louisville, KY 40201.
420 Lexington Ave., New York, NY 10017. | | ALB | Ames Laboratories, Inc | 200 Rock Lane, Milford, CT 06460. | | ACC | Amoco Chemicals Corp | 130 E. Randolph Dr., Chicago, IL 60601. | | ANM . | Ancon Chemical Corp | 1 Stanton St., Marinette, WI 54143. | | ASL . | Ansul Chemical Co | 1 Stanton St., Marinette, WI 54143. | | APX | Apex Chemical Co., Inc | 200 S. 1st St., Elizabethport, NJ 07206. | | HAP . | Applied Plastics Co., Inc | 130 Penn St., El Segundo, CA 90246. | | ARA . | Arapahoe Chemicals, Div. of Syntex Corp | 2855 Walnut St., Boulder, CO 80302. | | ARD . | | 840 Valley Brook Ave., Lyndhurst, NJ 07071. | | ARN . | Ammin Chamber 2 | 40-33 23d St., Long Island City, NJ 11101 | | ARG . | | 633 Court St., Brooklyn, NY 11231. | | ARZ . | Andrews - A | Wayne, NJ 07470. | | ARM . | Arkansas vo., inc | 185 Foundry St., Newark, NJ 07105. | | | Ammour Televited of the Commence Commen | P.O. Box 1685, Atlanta, GA 30301. | | | A-maria W | 401 N. Wabash Ave., Chicago, IL 60609. | | ADD ! | | | | ARP A | American Coult A | P.O. Box 511, Kankakee, IL 60901. | | ARP ARK | Armstrong Cork Co | P.O. Box 511, Kankakee, IL 60901.
Liberty and Charlotte Sts., Lancaster, PA 17604. | | ARK
APV | Armstrong Cork CoArmstrong Paint & Varnish Works, Inc | P.O. Box 511, Kankakee, IL 60901.
Liberty and Charlotte Sts., Lancaster, PA 17604.
1330 S. Kilbourn Ave., Chicago, IL 60623.
371 Wayne St., Jersey City, NJ 07302. | TABLE 22. -- Synthetic organic chemicals: Directory of manufacturers, 1966--Continued | Identi-
fication
code | Name of company | Office address | |-----------------------------|--|---| | ASH | Ashland Oil & Refining Co | 1401 Winchester Ave., Ashland, KY 41101. | | CAT | Catalin Corp. Div | 1 Park Ave., New York, NY 10016. | | AST | Astra Pharmaceutical Products, Inc | 7-1/2 Neponset St., Worcester, MA 01606. | | ATP | Atco Chemical-Industrial Products, Inc., | 93 Main St., Franklin, NJ 07416. | | AII | Fine Chemicala Div. | D O Por 216 Mutley, NJ 07110. | | ATL | Atlantic Chemical Corp Atlantic Richfield Co.: | P.O. Box 216, Nutley, NJ 07110. | | ATR | ARCO Chemical Co. Div | 260 S. Broad St., Philadelphia, PA 19101. | | RIC | Dishfield Div | 645 South Mariposa, Los Angeles, CA 90005. | | ATU | Atlantia Tubing & Rubber (O | Mill St., Cranston, RI 02905. | | APD | Atles Chemical Industries. Inc | Wilmington, DE 19899. P.O. Box 1786, 3546 Midway St., Shreveport, LA 71102. | | APR | Atles Processing (O | P.O. BOX 1786, 3346 MILWAY 500, CAR evepor of MIL 122011 | | AUG | Augusta Chemical Co | P.O. Box 660, Augusta, GA 30903. | | AVS | Arrigan Companyane Language | 1608 Walnut St., Philadelphia, PA 19103. | | AZT | Aztec Chemicals, Inc | P.O. Box 756, Elyria, OH 44035. | | MU. | 1 | | | UNC | Badische Products Corp | Foot of Central Ave., Kearny, NJ 07032. | | BRD | Daind Chemical Industries. NC | 185 Madison Ave., New York, NY 10016. | | | Dalan Caston Oil Commencement | 40 Avenue A. Bayonne, NJ 07002. | | BAC | T T Reker Chemical Co | 222 Red School Lane, Phillipsburg, NJ 08865. | | BKC | Taylor Div | 222 Red School Lane, Phillipsburg, NJ 08865. | | BKT
MTR | Baldwin-Montrose Chemical Co., Inc., | 100 Lister Ave., Newark, NJ 07105. | | | Montrose Chemical Div. Baltimore Paint & Chemical Corp | 2325 Hollins Ferry Rd., Baltimore, MD 21230. | | BAL | J. H. Baxter & Co | 120 Montgomery St., San Francisco, CA 94104. | | BXT | J. H. Baxter & Co | 6301 N. Lincoln Ave., Morton Grove, IL 60053. | | BAX | Baxter Laboratories, Inc | Church St., Canajoharie, NY 13317. | | BLS | Beech-Nut Life Savers, Inc | 1407 Broadway, New York, NY 10018. | | BCM . | Belding Chemical Industries | P.O. Box 848, Lowell, NC 28089. | | BL | Belle Chemical Co., Inc | P. O. Box 646, Dowell, No 2000. | | BME | Bendix Corn. Marshall-Eclipse Div | P.O. Box 238, Troy, NY 12180. | | BEN | Donnett! C | 65 W. lst S., Salt Lake City, UT 84110. | | BDO | Bengenoid Organics, Inc | P.O. Box 156, Bellingham, MA 02019. | | PDC | Bermoolore-Poughkeensie, Inc | P.O. Box 29, 77 N. Water St., Poughkeepsie, NY 12602. | | BST | Doct Fortilizers (O | P.O. Box 198, Lathrop, CA 95330. | | BUC | Fleckman-Uhler Chemical Co | P.O. Box 5627, Spartanburg, SC 29301. | | BLA | Plue Arrow. Inc | 5050 Rigewood Ct., Jacksonville, FL 32203. | | BOR | Borden Co., Borden Chemical Co. Div | 350 Madison Ave., New York, NY 10017. | | MCB | Bong-Werner Corn. Marhon Chemical Div | P.O. Box 68, Washington, WV 26181. | | BOY | Welter N. Boysen Co | 1001 42d St., Oakland, CA 94608. | | BFR | Propositions Consequences | 4501 Shilshole Ave., NW., Seattle, WA 98101. | | | Prond Plastics Co | 130 E. Randolph Dr., Chicago, IL 60601. | | BPL | Bristol-Meyers Co., Bristol Laboratories Div- | P.O. Box 657, Syracuse, NY 13201. | | BRS | Prockim Color Works, Inc | 90 Linden Blvd., Hicksville, NY 11801. | | BLN | M. A. Bruder & Sons, Inc | 52d St. and Grays Ave., Philadelphia, PA 19143. | | BRU | Bryant Chemical Corp | 6 North St., N. Quincy, MA 02171. | | BRY | Buckeye Cellulose Corp | 2899 Jackson Ave., Memphis, TN 38108. | | BUK | Buckeye Cellulose Corp | 1256 N. McLean Blvd., Memphis, TN 38108. | | BKM | Budd Co., Polychem Div | 70 S. Chapel St., Newark, DE 19711. | | CD | Budd Co., Polyonem Div | 1953 S. Harvey St., Muskegon, MI 49442. | | BJL | Burdick & Jackson Laboratories, Inc | 1228 Chestnut St., Chattanooga, TN 37402. | | BSC | Burkert-Schier Chemical Co | 1 Scarsdale Rd., Tuckahoe, NY 10707. | | BUR | Burroughs-Wellcome & Co. (U.S.A.), Inc | | | CBT | Samuel Cabot, Inc | 246 Summer St., Boston, MA 02210. | | CAD | Codet Chemical Company | 2193 Dockbor a-orconn imaily per of the | | CAU | Colossian Chemical COTD | P.U. BUX 1522; DAKE CHARLES, ILL FORES | | CAL | Callery Chemical Co | Callery, PA 10024. | | CEM | Carbomindum Co., Coated Abrasives Div | P. U. BOX 4/// Hangara raman, and an area area. | | | Cardill. Inc | HOOM 2008, 5 Felli Cell Cell 11 | | CGL | Carliele Chemicals Works, Inc | West St., Reading, OH 45215. | | CCW | Advance Div | . 500 Jersey Ave., New Brunswick, NJ 08903. | | CCA | Carpenter-Morton Co | . 376 W. 3d St., Everett, MA 02149. | | CM | Carus Chemical Co., Inc | 1375 8th St., LaSalle, IL 61301. | | CRS | Carus Chemical Co., Inc | | | CEL | Celanese Corp. of America: | 522 5th Ave., New York, NY 10036. | | | Celanese Chemical Co. Div | 1481 S. 11th St., Louisville, KY 40208. | | | Colonese Costings Co | 1 1401 0. 1100 00., 1001012122 | | | 7-1 Mestice (A | - 1 350 Program 20.9 Heward, No elmont | | | Whose Co My | P.O. BOX 1414, Ontario vee, ite menter | | | Fibers co. Div | | | CCT. | Charlotte Chemical Laboratories | - P.O. Box 948, 5048 Cita rineville 121, Cital 1000, | | CCL | Charlotte Chemical Laboratories | NC 28201. | TABLE 22. -- Synthetic organic chemicals: Directory of manufacturers, 1966--Continued | T-2 1: | | | |------------------|---|--| |
Identi- | | | | fication
code | Name of company | Office address | | | | | | CHT | Chattem Drug & Chemical Co., Chattem Chemicals Div. | 1715 W. 38th St., Chattanooga, TN 37409. | | CHG | Chemagro Corp | P.O. Boy (913 Station WEW Variance) | | CBD | Chembond Corp | P.O. Box 4913, Station "F", Kansas City, MO 64120.
P.O. Box 270, Springfield, OR 97477. | | CVTDAT | Chemetron Corp.: | on 9/4//. | | CTN | Chemetron Chemicals Div., Organic Chemical Dept. | 201 E. 42d St., New York, NY 10017. | | TAE | National Cylinder Ges Div | 840 N. Michigan Ave., Chicago, IL 60611. | | VLY | Chem-Fleur, Inc | - 2000 Pitlacki C+ Nome-1- NT OFFOR | | CHF | Chemical Formulators, Inc | - IP.O. Box 26 Mi+ma wax 251/2 | | CPD | Chemical Insecticide Corp | - 20 Whitman Ave., Metuchen. NJ 08840. | | CSB | Chemical Products Corp | P.O. Box 449, Cartersville, GA 30120. | | cco | Chemico, Inc | · Howard and West Sts., Baltimore, MD 21230 | | CKL | Chemlek Laboratories, Inc | ・ 2008 E. Bailey Rd., Cuyahoga Falls. OH 44221 | | CHIL | Chemol, Inc | · 4040 W. 123d St., Alsip. II. 60658. | | | Chevron Chemical Co.: | 201 201 3227, di censoro, NC 27402. | | ORO | Additives Div | 200 Bugh St. Son Brownston. Gt. 04700 | | OTH | Ortho Div | 200 Bush St., San Francisco, CA 94120.
940 Hensley, Richmond, CA 94801. | | CPC | Childs Pulp Colors, Inc | 43 Summit St Propolation No. 27 27 27 | | CHC | Chipman Chemical Co., Inc | P.O. Box 2009, 297 Jersey Ave., New Brunswick, NJ | | CIB | | 08903. | | 1 | Ciba Chemical & Dye Co | Route 208, Fair Lawn, NJ 07410. | | CBP | Ciba Corp.: Ciba Pharmaceutical Co. Div | | | CBA | Ciba Products Co | 556 Morris Ave., Summit, NJ 07901. | | | Cities Service Oil Co | 556 Morris Ave., Summit. N.I 07901. | | CLK | Clark Oil & Refining Corp | P.O. Box 300, Tulsa, OK 74101. | | CTA | W. A. Cleary Corp | 131st St. and Kedzie Ave., Blue Island, IL 60406. | | CTT | Clintwood Chemical Co | P.O. Box 749, New Brunswick, NJ 08903.
1 N. LaSalle St., Chicago, IL 60602. | | CTA | Clover Chemical Co | P.O. Box 146, Eighty Four, PA 15330. | | COK | Cockerille Chemicals, Inc | Greenwood, VA 22943. | | CBR
CP | Colab Resin Corp | Main St., Tewksbury, MA 01876. | | COL | Colgate-Palmolive Co | 300 Park Ave., New York, NY 10022. | | | Collier Carbon & Chemical CorpColloids, Inc | 1714 W. Olympic Blvd., Los Angeles, CA 90015 | | CLB | Columbia Organic Chemicals Co., Inc | 1394 Frelinghuysen Ave., Newark, NJ 07114. | | | Columbian Carbon Co | 912 Drake St., Columbia, SC 29205. | | | Chemicals Div | 380 Madison Ave., New York, NY 10017. | | CNC (| Columbian Nitrogen Corp | P.O. Box 1522, Lake Charles, LA 70601. | | CAMP (| Commercial Products Co., Inc | P.O. Box 1483, Augusta, GA 30903.
117 Fthel Ave., Hawthorne, NJ 07641. | | COM (| Commercial Solvents Corp | 260 Madison Ave., New York, NY 10016. | | COR | Commonwealth Oil Refining Co., Inc | P.O. Box 4423, San Juan, PR 00905. | | DAV (| Conchemco, Inc., H. B. Davis Co. Div | Bayard and Severn Sts., Baltimore, MD 21230. | | 1 - | Concord Chemical Co., Inc | 205 S. 2d St., Camden, NJ 08103. | | CWP C | Conestoga Chemical CorpConsolidated Papers, Inc | Wilmington Industrial Park, Wilmington, DF 19801 | | | Continental Chemical Co | wisconsin Rapids, WI 54494. | | co c | Continental Oil Co | 270 Clifton Blvd., Clifton, NJ 07015. | | CPV C | ook Paint & Varnish Co | 9 Rockefeller Plaza, New York, NY 10020. | | CFA (| Coperative Farm Chemicals Association | P.O. Box 389, N. Kansas City, MO 64141. | | COP C | Copers Creek Chemical Corp | P.O. Box 308, Lawrence, KS 66044.
River Rd., W. Conshohocken, PA 19428. | | CPI (| opolymer Rubber & Chemical Corp | P.O. Box 2591, Baton Rouge, LA 70821. | | CRN C | orn Products Co | 717 5th Ave., New York, NY 10022. | | CWIL C | osden Oil & Chemical Co | P.U. BOX 1311, Big Spring, TX 70720 | | BPC | Owles Chemical Co Benzol Products Div | 12000 Shaker Blvd., Cleveland. OH 44120 | | | rest Chemical Corp | 237 South St., Newark, NJ 07114. | | ALT C | rompton & Knowles Corp., Chemicals Group. | 225 Emmet St., Newark, NJ 07114.
500 Pear St., Reading, PA 19603. | | CBY C | Althouse & Bates Div. | | | | rosby Chemicals, Inc rown Central Petroleum Corp | P.O. Drawer 32, DeRidder, LA 70634. | | | rown Chemical Corp | P.U. BOX 1168, Baltimore, MD 21203. | | | rown Zellerbach Corp., Chemical Products Div- | 12 Dudley St., Providence, RI 02901. | | COT C | Liver Chemical Co | Camas, WA 98607. | | CUC C | imberland Chemical Corp., Subsidiary of | 1502 N. 25th St., Melrose Park, IL 60160. | | | | 150 E. 42d St., New York, NY 10017. | | | Reduction Co., Inc. | 10017. | | cur a | reduction Co., Inc. utter Laboratories, Inc | | TABLE 22. -- Synthetic organic chemicals: Directory of manufacturers, 1966 -- Continued | Identi-
fication
code | Name of company | Office address | |-----------------------------|--|--| | | | | | DAN | Den River Mills, Inc | Danville, VA 24540. | | DYS | Davies-Young Soap Co | 705 Albany St., Dayton, OH 45401. | | PDJ | Joseph Davis Plastics Co | 450 Schuyler Ave., Kearny, NJ 07032. | | DLI | Dawe's Laboratories, Inc | 4800 S. Richmond St., Chicago, IL 60632. | | | Degen Oil & Chemical Co | 200 Kellogg St., Jersey City, NJ 07305. | | DEG | Degen of a chemical co- | 44-27 Purvis St., Long Island City, NY 11101. | | DEP | DePaul Chemical Co., Inc | 1700 S. Mt. Prospect Ave., Des Plaines, IL 60018. | | DSO | DeSoto Chemical Coatings, Inc | | | TTX | Detrex Chemical Industries, Inc | 14331 Woodrow Wilson, Detroit, MI 48232. | | DEX | Dexter Chemical Corp | 845 Edgewater Rd., Bronx, NY 10474. | | DA | Diamond Alkali Co | 300 Union Commerce Bldg., Cleveland, OH 44114. | | | Western Div | 300 Union Commerce Bldg., Cleveland, OH 44114. | | TDC | Diversey Corp | 212 W. Monroe St., Chicago, IL 60606. | | DIX | Dixie Chemical Co | 3635 W. Dallas Ave., Houston, TX 77019. | | DPP | Dixie Pine Products Co., Inc | P.O. Box 470, Hattiesburg, MS 39401. | | | Dominion Products, Inc | 882 3d Ave., Brooklyn, NY 11232. | | DOM | Dover Chemical Co | 15th and Davis Sts., Dover, OH 44622. | | DAC | Dover Chemical Co | | | DBC | Dow Badische Co | Williamsburg, VA 23185. | | DOW | Dow Chemical Co | Midland, MI 48640. | | DCC | Dow Corning Corp | P.O. Box 582, Midland, MI 48640. | | DRW | Drew Chemical Corp | 416 Division St., Boonton, NJ 07005. | | DUN | Frank W. Dunne Co | 1007 41st St., Oakland, CA 94608. | | DUP | E. I. duPont de Nemours & Co., Inc | DuPont Bldg., Wilmington, DE 19898. | | DSC | Dye Specialties, Inc | 26 Journal Sq., Jersey City, NJ 07306. | | 220 | | | | EAK | J. S. & W. R. Eakins, Inc | 55 Berry St., Brooklyn, NY 11211. | | ECC | Eastern Color & Chemical Co | 35 Livingston St., Providence, RI 02904. | | | Eastman Kodak Co | 343 State St., Rochester, NY 14650. | | EK | Tennessee Eastman Co. Div | P.O. Box 511, Kingsport, TN 37662. | | EKT | Tennessee Mastman Co. Div | | | EKX | Texas Eastman Co. Div | P.O. Box 2068, Longview, TX 75601. | | ESA | Fast Shore Chemical Co., Inc | 1180 Michigan Ave., Muskegon, MI 49440. | | EDC | Edcan Laboratories | 18 Marshall, S. Norwalk, CT 06856. | | ELP | El Paso Products Co | P.O. Box 3986, Odessa, TX 79760. | | EMR | Fmery Industries. Inc | 4300 Carew Tower, Cincinnati, OH 45202. | | PCS | Western Div | 8733 S. Dice Rd., Santa Fe Springs, CA 90670. | | EMK | Rmkay Chemical Co | 319 2d St., Elizabeth, NJ 07206. | | EN | Endo Laboratories, Inc | 1000 Stewart Ave., Garden City, NY 11530. | | | Enjay Chemical Co | 60 W. 49th St., New York, NY 10020. | | ENJ | Epoxylite Corp | 1428 N. Tyler Ave., S. El Monte, CA 91733. | | EPC | Moxylite Corp | P.O. Box 467, Pensacola, FL 32502. | | ESC | Escambia Chemical Corp | 100 Dowle Arro New York NV 10017 | | TNA | Ethyl Corp | 100 Park Ave., New York, NY 10017. | | ETD | Ethyl-Dow Chemical Co | Midland, MI 48640. | | EVN | Evens Chemetics, Inc | 250 E. 43d St., New York, NY 10017. | | | FMC Corp.: | | | AV | American Viscose Div | 1617 John F. Kennedy Elvd., Philadelphia, PA 19103. | | FMB | Inorganic Chemicals Div | Sawyer Ave. and River Rd., Tonawanda, NY 14207, and | | THE | Horganio Giomiotio Piv | 633 3d Ave., New York, NY 10017. | | 770.07 | Niagara Chemical Div | 100 Niagara St., Middleport, NY 14105. | | FMN | Niagara Chemicai Div | 1701 Patapaco Dr., Baltimore, MD 21226, and P.O. Box | | FMP | Organic Chemicals Div | | | | | 547, Nitro, WV 25143. | | FAB | Fabricolor Manufacturing Corp | - 24-1/2 Van Houten St., Paterson, NJ 07505. | | FMT | Fairmount Chemical Co., Inc | - 117 Blanchard St., Newark, NJ 07105. | | FOC | Farac Oil & Chemical Co., Div of Handschy | 147th St. and Indiana Ave., Chicago, IL 60627. | | | Chemical Co. | | | KNG | Far-Best Corp., O. L. King Div | - 640 Gilman St., Berkeley, CA 94710. | | | Farmers Chemical Association, Inc | | | FCA | Farmer's Chemical Co | P.O. Box 591, Kalamazoo, MI 49005. | | FRM | Farnow, Inc | - 77 Jacobus Ave., S. Kearny, NJ 07032. | | FAR | Fairnof, Incommentary | LEGG Chickening Are Cincinneti OU /5232 | | FCL | Federal Color Laboratories | - 4526 Chickering Ave., Cincinnati, OH 45232. | | FTX | Fel-Tex, Inc | - P.O. Box 68, Fremont, NB 68025. | | FEL | Felton Chemical Co., Inc | 599 Johnson Ave., Brooklyn, NY 11237. | | FER | Ferro Corp., Ferro Chemical Div | - P.O. Box 349, Bedford, OH 44014. | | FBR | Fibreboard Corp | | | FRP | Filtered Rosin Products Co | - P.O. Box 349, Baxley, GA 31513. | | FIN | Fine Organics, Inc | - 205 Main St., Lodi, NJ 07644. | | LTM | | | | מדה | Firestone Tire & Rubber Co.: | - P.O. Box 699, Pottstown, PA 19464. | | FIR | Firestone Plastics Co. Div | | | FRL | Firestone Rubber & Latex Products Co. Div | | | FRS | Firestone Synthetic Rubber & Latex Co. Div | 1 | | FIS | Fisher Melamine Corp | - 90 Park Ave., New York, NY 10016. | TABLE 22. -- Synthetic organic chemicals: Directory of manufacturers, 1966--Continued | Identi- | | | |------------
--|--| | fication | Name of company | Office address | | code | | Carrot andress | | | | | | FLM | Fleming Laboratories, Inc | | | FLO
FTE | Florasynth, Inc | - 900 Van Nest Ave., Bronx, NY 10462. | | FOR | Foote Mineral CoForemost Chemical Products Co | - Route 100, Exton, PA 19341 | | FOM | Formica Corp | - P.O. Box 599, Oakland, CA 94604. | | FG | Foster Grant Co., Inc | 11-01-20) 110 0/4/01 | | FH | Foster-Heaton Co | | | FCD | France, Campbell & Darling, Inc | | | FC | Franklin Chemical Co | 2020 Branch St. Columbus Ov. 1200 | | FRE | Freeman Chemical Corp | 222 E. Main St. Port Washington WT 5207 | | FSH | Frisch & Co., Inc | | | FB | Fritzsche Bros., Inc | | | FLH
FLW | H. B. Fuller Co | 1150 Elstic St., St. Paul, MN 55108. | | 11311 | W. P. Fuller Paint Co | 450 E. Grand Ave., S. San Francisco, CA 94080. | | GAM | Gamma Chemical Corp | | | GAN | Gene's Chemical Works, Inc | 1 10 TOTAL TACES NOW TOTAL INI TOWNER. | | GGY | Geigy Chemical Corp | | | GAF | General Aniline & Film Corp., Dyestuff & | | | | Chemical Div. | P.O. Box 2164, Greenville, SC 29602, and P.O. Box 12, Linden, NJ 07036. | | | General Electric Co.: | | | GE | Chemical Materials Dept | 1 Plastics Ave., Coshocton, OH 43812, and 1 Plastics | | GEI | Transit addition No. 1. 2. 2. 2. 2. | Ave., Pittsfield, MA 01203. | | SPD | Insulating Materials Dept | 1 River Rd., Schenectady, NY 12305. | | GNF | Silicone Products DeptGeneral Foods Corp., Maxwell House Div | waterford, NY 12188. | | GLC | General Latex & Chemical Corp | 1125 Hudson St., Hoboken, NJ 07030. | | GNIM | General Mills, Inc | 666 Main St., Cambridge, MA 02139. | | CW | Chemical Div | S. Kensington Rd., Kankakee, IL 60901.
Quimby St., Ossining, NY 10562. | | GPM | General Plastics Manufacturing Co | 3481 S. 35th St., Tacoma, WA 98409. | | GNT | General Tire & Rubber Co., Chemical Div | 1708 Englewood Ave., Akron, OH 44309. | | GRG | P. D. George Co | 5200 N. 2d St., St. Louis, MO 63147. | | CBC | Georgia-Pacific Corp.: Coos Bay Div | | | PSP | Puget Sound Div | P.O. Box 869, Coos Bay, OR 97420. | | | Gillette Chemical Co | P.O. Box 1236, Bellingham, WA 98225. | | GIL | Gilman Paint & Varnish Co | P.O. Box 362, N. Chicago, IL 60064. | | GIV | Givaudan Corp | W. 8th and Fine Sts., Chattanooga, TN 37401.
125 Delawanna Ave., Clifton, NJ 07014. | | GLX | Glasflex, Inc | Stirling, NJ 07980. | | GLD | Glidden Co | 900 Union Commerce Bldg., Cleveland, OH 44115. | | GLY | Durkee Famous Foods Div | Logan Bivd., Chicago, II, 60647. | | 1 | Glyco Chemicals, Inc | 417 5th Ave., New York, NY 10016. | | | Co. Div. | 3135 Euclid Ave., Cleveland, OH 44137. | | GGC | Goodrich-Gulf Chemicals, Inc | 1717 F 9th St | | GYR | Goodyear Tire & Rubber Co | 1717 E. 9th St., Cleveland, OH 44114.
1144 E. Market St., Akron, OH 44316. | | GOR | Gordon Chemicals Co., Inc | 88 Webster St., Worcester, MA 01603. | | | W. R. Grace & Co.: | THE CLOUP, | | GCC | Agricultural Products Div | P.O. Box 277, 147 Jefferson Ave., Memphis, TN 38101. | | GRD
GRC | Dewey & Almy Chemical Div | oz mir ocembre Ave., Campringe, MA U214(). | | HMP | Dubois Chemicals DivHampshire Chemical Div | 634 Broadway, Cincinnati, OH 45202. | | GRH | Hatco Chemical Div | Poisson Ave., Nashua, NH O3060. | | MRO | Marco Chemical Div | 629 Amboy St., Fords, NJ 08863. | | GRL | Vestal Laboratories Div | 1711 W. Elizabeth Ave., Linden, NJ 07036. | | GPR 6 | Grain Processing Corp | 4963 Manchester Ave., St. Louis, MO 63110. | | GRA (| Great American Plastics Co | 1600 Oregon St., Muscatine, LA 52761.
85 Water St., Fitchburg, MA 21420. | | GTL (| Great Lakes Chemical Corp | P.O. Box 2200, West Lafayette, IN 47906. | | GRW (| Great Western Sugar Co | P.O. Box 5308, Terminal Annex, Denver, CO 80217 | | GRO A | A. Gross & Co., Inc | 295 Madison Ave., New York, NY 10017. | | GRV G | hrow Chemical Corp., Harris Paint Co. Div | 1010-26 N. 19th St., Tampa, FL. 33601. | | | Audit Oil Corp | 1350 Steele Ave. SW., Grand Rapids. MT 49502 | | SPN | Chemicals Dept | P. O. Drawer 2100, Houston, TX 77001. | | PGU | Perkins Glue Branch | Dwight Bldg., Kansas City, MO 64105. | | GTH G | Auth Chemical Co | 632 Cannon Ave., Lansdale, PA 19446. | | ł | | 332 S. Center St., Hillside, IL 60162. | | HNC H | I & N Chemical Co | 90 Maltese Dr., Totowa, NJ 07512. | | HAB H | | | | , | alby Products Co., Inc | P.U. BOX 366, Wilmington, DE 19899. | TABLE 22. -- Synthetic organic chemicals: Directory of manufacturers, 1966--Continued | Identi-
fication
code | Name of company | Office address | |---------------------------------------|--|---| | **** | C. P. Hall Co. of Illinois | 7300 S. Central Ave., Chicago, IL 60638. | | HAL | C. P. Hall Co. of lillinois | 5 Albany St., Springfield, MA 01101. | | HAM | Hampden Color & Chemical Co | | | HAN | Hanna Paint Manufacturing Co., Inc | P.O. Box 147, Columbus, OH 43216. | | HSH | Harshaw Chemical Co., Div. of Kewanee Ull Co | 1945 E. 97th St., Cleveland, OH 44106. | | HLC | Hartman-Leddon Co | 60th St. and Woodland Ave., Philadelphia, PA 19143. | | | Hart Products Corp | 1440 Broadway, New York, NY 10018. | | HRT | Mart Froducts corp | 900 Greenbark Rd., Wilmington, DE 19808. | | HVG | Haveg Industries, Inc., Resin & Compound Div | P.O. Box 899, Clinton, LA 52733. | | HKY | Hawkeye Chemical Co | P.U. BOX 099, CITHOON, IM JETJO. | | HPC | Hercules. Inc | Hercules Tower, 910 Market St., Wilmington, DE 19899. | | IMP | Imperial Color & Chemical Dept | P.O. Box 231, Glens Falls, NY 12803. | | HER | Heresite & Chemical Co | 822 S. 14th St., Manitowoc, WI 54220. | | | Hess Oil & Chemical Corp | 280 Park Ave., New York, NY 10017. | | DLH | Hess Off & Grenical Corp | 111 E. Hawthorne Ave., Valley Stream, NY 11582. | | HET | Heterochemical Corp | 2524 Dentuce Area Proper MV 10/60 | | HEX | Hexagon Laboratories, Inc | 3536 Peartree Ave., Bronx, NY 10469. | | HDG | Hodag Chemical Corp | 7247 N. Central Park Ave., Skokie, IL 60076. | | HOF | Hoffmann-LaRoche, Inc | 324-424 Kingsland Rd., Nutley, NJ 07110. | | | Hoffman-Taff, Inc | P.O. Box 1246 SSS, Springfield, MO 65805. | | HFT | normani-lair, me | P.O. Box 2166, Huntington, WV 25722. | | HSC | Holland-Suco Color Co | | | HK | Hooker Chemical Corp | Long Rd., Grand Island, NY 14072. | | HKD | Durez Plastics Div | Walck Rd., N. Tonawanda, NY 14121. | | RUB | Ruco Div | New South Rd., Hicksville, L.I., NY 11802. | | | E. F. Houghton & Co | 303 W. Lehigh Ave., Philadelphia, PA 19133. | | EFH | Houston Chemical Corp | 1 Gateway Center, Pittsburgh, PA 15222. | | HCH | Houston Chemical Corp-22-22-22-22-22-22-22-22-22-22-22-22-22 | 417 5th Ave., New York, NY 10016. | | CLC | Charles L. Huisking & Co., Inc., Clintbrook | 417 Jun Ave., New IOTA, NI 10010. | | | Chemical Co. Div. | | | HMY | Humphrey Chemical Co | Devine St., North Haven, CT 06473. | | | Philip A. Hunt Chemical Corp., Wayland | P.O. Box 63, Lincoln, RI 02865. | | YAW | | | | | Chemical Div. | D.O. Daw 530 Huntington TN 46750 | | HNT | Huntington Laboratories, Inc | P.O. Box 710, Huntington, IN 46750. | | HUS | Husky Briquetting. Inc | P.O. Box 380, Cody, WY 82414. | | HYN | Hymson, Westcott & Dunning, Inc | Charles and Chase Sts., Baltimore, MD 21201. | | | Hysol Corp | 1100 Seneca Ave., Olean, NY 14760. | | HYC | Wast Others | | | | | 55 Garal Ct. Drowddones PT 02001 | | ICI | I.C.I. (Organics), Inc | 55 Canal St., Providence, RI 02901. | | IRC | TRC. Trongeres | 401 N. Broad St., Philadelphia, PA 19108. | | IMR | Imperial Inc | W. 6th and Grass Sts., Shenandoah, IA 51601. | | | Industrial Biochemicals | U.S. Highway
1, Edison, NJ 08817. | | IBI | Industrial Dyestuff Co | P.O. Box 4249, E. Providence, RI 02914. | | IDC | industrial Dyestuil Co | 6532 S. Menard Ave., Chicago, IL 60638. | | INL | Inland Steel Container Co | 0))2 5. menard Ave., directed in cooses | | | Interchemical Corp.: | | | ICC | Color & Chemicals Div | 150 Wagaraw Rd., Hawthorne, NJ 07506. | | ICF | Finishes Div | 1255 Broad St., Clifton, NJ 07015. | | | Organic Chemicals Dept | Berry Ave. and 13th St., Carlstadt, NJ 07072. | | ICO | Organic Chemicals Deposition The | 521 W. 57th St., New York, NY 10019. | | IFF | International Flavors & Frangrances, Inc | D.O. Drawon V. Diarriov Dank Dovon DE 19901. | | ILC | International Latex & Chemical Corp | P.O. Drawer K, Playtex Park, Dover, DE 19901. | | MRN | Paislev Products Div | 1770 Canalport Ave., Chicago, IL 60616. | | IMC | International Minerals & Chemical Corp | 5401 Old Orchard Rd., Skokie, IL 60078. | | | Inter-Pacific Resins, Inc | P.O. Box 445, 1602 N. 18th St., Sweet Home, OR 97386. | | IPR | The state of the Communication | 2015 N.E. Broadway St., Minneapolis, MN 55413. | | IPC | Interplastic Corp., Commercial Resins Div | OCO W Married Ct. D.O. Box 1000 Columbia OU /2016 | | IRI | Ironsides Resins, Inc | 270 W. Mound St., P.O. Box 1999, Columbus, OH 43216. | | IPO | Isocyanate Products, Inc | 900 Wilmington Rd., New Castle, DE 19720. | | | \ | | | TOO | Jefferson Chemical Co., Inc | P.O. Box 53300, Houston, TX 77052. | | JCC | Tourison Wedget Com | P.O. Box 691, Toledo, OH 43601. | | JEN | Jennison-Wright Corp | 2525 Chring Chouse Ave Cincinnati OU 15211 | | JRG | Andrew Jergens Co | 2535 Spring Grove Ave., Cincinnati, OH 45214. | | JSC | Jersey State Chemical Co | 59 Lee Ave., Haledon, NJ U7508. | | | Jewel Paint & Varnish Co | 345 N. Western Ave., Chicago, IL 60612. | | JWL | O O Tahanan Con Tan | 1525 Howe St., Racine, WI 53403. | | JNS | S. C. Johnson & Son, Inc | 6060 Donton Dm Dollag MV 75025 | | JOB | Jones-Blair Paint Co | 6969 Denton Dr., Dallas, TX 75235. | | JOR | Jordan Chemical Co | Barclay Bldg., 1 Belmont Ave., Bala Cynwyd, PA 19004. | | | | | | 0021 | | | | 0011 | Voicen Aluminum & Chemical Comp . | | | | Kaiser Aluminum & Chemical Corp.: | P.O. Boy 246: Savannah, GA 31402. | | SNI | Kaiser Agricultural Chemicals Div | P.O. Box 246, Savannah, GA 31402. | | SNI | Kaiser Agricultural Chemicals Div | P.O. Box 337, Gramercy, LA 70052. | | SNI
KAI | Kaiser Agricultural Chemicals Div Kaiser Chemical Div Kali Manufacturing Co | P.O. Box 337, Gramercy, LA 70052. 427 E. Moyer St., Philadelphia, PA 19125. | | SNI
KAI
KAL | Kaiser Agricultural Chemicals Div Kaiser Chemical Div Kali Manufacturing Co | P.O. Box 337, Gramercy, LA 70052. 427 E. Moyer St., Philadelphia, PA 19125. | | SNI
KAI
KAL
KF | Kaiser Agricultural Chemicals Div Kaiser Chemical Div Kali Manufacturing Co | P.O. Box 337, Gramercy, LA 70052.
 427 E. Moyer St., Philadelphia, PA 19125.
 360 Lexington Ave., New York, NY 10017. | | SNI
KAI
KAL | Kaiser Agricultural Chemicals Div Kaiser Chemical Div Kali Manufacturing Co | P.O. Box 337, Gramercy, LA 70052. 427 E. Moyer St., Philadelphia, PA 19125. 360 Lexington Ave., New York, NY 10017. 3000 Sheffield Ave., Hammond, IN 46320. | | SNI
KAI
KAL
KF
KEI | Kaiser Agricultural Chemicals Div | . P.O. Box 337, Gramercy, LA 70002. 427 E. Moyer St., Philadelphia, PA 19125. 360 Lexington Ave., New York, NY 10017. 3000 Sheffield Ave., Hammond, IN 46320. 1015 Commercial St., San Carlos, CA 94070. | | SNI
KAI
KAL
KF
KEI
KMP | Kaiser Agricultural Chemicals Div | 1 P.O. Box 337, Gramercy, LA 70052. 427 E. Moyer St., Philadelphia, PA 19125. 360 Lexington Ave., New York, NY 10017. 3000 Sheffield Ave., Hammond, IN 46320. 1015 Commercial St., San Carlos, CA 94070. 956 Bransten Rd., San Carlos, CA 94070. | | SNI
KAI
KAL
KF
KEI | Kaiser Agricultural Chemicals Div Kaiser Chemical Div Kali Manufacturing Co | 427 E. Moyer St., Philadelphia, PA 19125. 360 Lexington Ave., New York, NY 10017. 3000 Sheffield Ave., Hammond, IN 46320. 1015 Commercial St., San Carlos, CA 94070. | TABLE 22. -- Synthetic organic chemicals: Directory of manufacturers, 1966 -- Continued | Identi-
fication | | | |--|--|---| | | | | | | Name of company | Office address | | code | | | | l | | | | 77.00 | Kennecott Copper Corp.: | | | KCC | Chino Mines Div | Hurley, NM 88043. | | KCU | Utah Copper Div | P.O. Box 11299, Salt Lake City, UT 84111. | | KPI | Kenrich Petrochemicals, Inc | Foot of E. 22d St., Bayonne, NJ 07002. | | KET | Ketona Chemical Corp | P.O. Box 6565, Tarrant Branch, Birmingham, AL 35217. | | KYS | Keysor Chemical Co | 26000 Bouquet Canyon Rd., Saugus, CA 91350. | | KCH | Keystone Chemurgic Corp | R.D. 2, Bethlehem, PA 18017. | | KCW | Keystone Color Works, Inc | 151 W. Gay Ave., York, PA 17403. | | KNP | Knapp Products, Inc | 180 Hamilton Ave., Lodi, NJ 07644. | | KND | Knoedler Chemical Co | 651 High St., Lancaster, PA 17604. | | KMC | Kohler-McLister Paint Co | P.O. Box 546, 1201 Osage St., Denver, CO 80201. | | KON | H. Kohnstamm & Co., Inc | 161 Avenue of the Americas, New York, NY 10013. | | KPT | Koppers Co., Inc., Tar & Chemical Div | Koppers Bldg., 430 7th Ave., Pittsburgh, PA 15219. | | KPS | Koppers Pittsburgh Co | Koppers Bldg., 430 7th Ave., Pittsburgh, PA 15219. | | KYN | Kyanize Paints, Inc | 2d and Boston Sts., Everett, MA 02149. | | | | Described by Evereus, MR O2149. | | LKL | Lakeside Laboratories, Div. of Colgate- | 1707 E. North Ave., Milwaukee, WI 53201. | | [| Palmolive Co. | TOTAL | | LAK | Lakeway Chemical Co | 5025 Evanston Ave., Muskegon, MI 49443. | | LAM | LaMotte Chemical Products Co | Chestertown, MD 21620. | | GDN | Lancaster Chemical Corp., Gordon Chemicals | 500 A St., Wilmington, DE 19801. | | | Co. Div. | , | | LAS | Lasco Industries, Inc | 1561 Chapin Rd., Montebello, CA 90640. | | LUR | Laurel Products Corp | 2600 Tioga St., Philadelphia, PA 19134. | | KRM | Lawter Chemicals, Inc., Krumbhaar Resin Div | 3550 Touhy Ave., Chicago, IL 60645. | | LEA | Leatex Chemical Co | 2722 N. Hancock St., Philadelphia, PA 19133. | | LEB | Lebanon Chemical Corp | P.O. Box 180, Lebanon, PA 17042. | | LEF | Leffingwell Chemical Co | P.O. Box 185 Prop. CA 00601 | | BCN | Lehn & Fink Products Corp., Beacon Div | P.O. Box 185, Brea, CA 92621. | | LEM | B. L. Lemke & Co., Inc | 33 Richdale Ave., Cambridge, MA 02140. | | LEN | Leonard Refineries, Inc | 199 Main St., Iodi, NJ 07644. | | LEV | Lever Brothers Co | E. Superior St., Alma, MI 48801. | | LVR | C. Lever Co., Inc | 390 Park Ave., New York, NY 10022. | | LVY | Fred'k H. Levey Co., Inc | Howard and Huntington Sts., Philadelphia, PA 19133. | | LPC | Lignin Products Co | 380 Madison Ave., New York, NY 10017. | | LIL | Eli Lilly & Co | P.O. Box 960, Erie, PA 16512. | | LUB | Lubrizol Corp | 740 S. Alabama St., Indianapolis, IN 46206. | | LUE | George Lueders & Co., Inc | 29400 Lakeland Blvd., Wickliffe, OH 44117. | | | design models a coly monantal and an arrangement of | 427 Washington St., New York, NY 10013. | | MET | M & T Chemicals, Inc | Wasakada Ba | | | Magruder Color Co., Inc | Woodbridge Rd. and Randolph Ave., Rahway, NJ 07065. | | | Maher Color & Chemical Co | 1 Virginia St., Newark, NJ 07114. | | ! | Mallinckrodt Chemical Works | 1700 N. Elston Ave., Chicago, IL 60622. | | | | 3600 N. 2nd St., St. Louis, MO 63147. | | THE STATE OF | Manganese Chemical Co., Div. of Pickands | 2000 Union Commerce Bldg., Cleveland, OH 44115. | | MOC | Mather & Co. | | | | Marathon Oil Co., Texas Refining Div | P.O. Box 1191, Texas City, TX 77590. | | | Marblette Corp | 37-31 30th St., Long Island City, NY 11101. | | ! | Marden-Wild Corp | 500 Columbia St., Somerville, MA 02143. | | | Marlowe-Van Loan Corp | P.O. Box 1851, 1511 Joshua Circle, High Point, NC 27261 | | AMS |
Martin-Marietta Corp.: | | | SDC | Ridgway Color & Chemical Div | 75 Front St., Ridgway, PA 15853. | | | Southern Dyestuff Co. Div | P.O. Box 10098, Charlotte, NC 28201. | | | Max Marx Color & Chemical Co | 192 Coit St., Irvington, NJ 07111. | | | Masonite Corp., Alpine Chemical Div | P.O. Box 2392, Gulfport, MS 39503. | | | Mathe Chemical Co | 169 Millbank St., Lodi, NJ 07644. | | | Maumee Chemical Co | 1310 Expressway Dr., Toledo, OH 43608. | | | Otto B. May, Inc | 52 Amsterdam St., Newark, NJ 07105. | | MOO | McCloskey Varnish Co | 7600 State Rd., Philadelphia, PA 19136. | | | McLaughlin Gormley King Co | 1715 S.E. 5th St., Minneapolis, MN 55414. | | MGK | Medical Chemicals Corp | 4541 W. Grand Ave., Chicago, IL 60639. | | MCK
MED | | 106 B 741- A D 1 | | MCK
MED
MRK | Merck & Co., Inc | 120 L Lincoin Ave., Rahway, N.J (77)65. | | MCK
MED
MRK
MER | Merichem Co | 126 E. Lincoln Ave., Rahway, NJ 07065.
1914 Haden Rd., Houston, TX 77015. | | MCK
MED
MRK
MER
MLD | | 1914 Haden Rd., Houston, TX 77015. | | MCK
MED
MRK
MER
MLD
MRA | Merichem Co Metalead Products Corp Metro-Atlantic, Inc | 1914 Haden Rd., Houston, TX 77015. P.O. Box 11005, 2901 Park Hlvd., Palo Alto, CA 94306. | | MCK MED MRK MER MLD MRA JMS | Merichem Co | 1914 Haden Rd., Houston, TX 77015. P.O. Box 11005, 2901 Park Elvd., Palo Alto, GA 94306. 2027 Smith St., Centerdale, RI 02911. | | MCK MED MRK MER MLD MRA JMS | Merichem Co Metalead Products Corp Metro-Atlantic, Inc | 1914 Haden Rd., Houston, TX 77015. P.O. Box 11005, 2901 Park Hlvd., Palo Alto, CA 94306. 2027 Smith St., Centerdale, RI 02911. 4321 N. 4th St., Philadelphia, PA 19140. | | MCK MED MRK MER MLD MRA JMS MCH | Merichem Co | 1914 Haden Rd., Houston, TX 77015. P.O. Box 11005, 2901 Park Elvd., Palo Alto, CA 94306. 2027 Smith St., Centerdale, RI 02911. 4321 N. 4th St., Philadelphia, PA 19140. 2 N. Riverside Plaza, Chicago, IL 60606. | | MCK MED MRK MER MLD MRA JMS MCH | Merichem Co | 1914 Haden Rd., Houston, TX 77015. P.O. Box 11005, 2901 Park Hlvd., Palo Alto, CA 94306. 2027 Smith St., Centerdale, RI 02911. 4321 N. 4th St., Philadelphia, PA 19140. | TABLE 22. -- Synthetic organic chemicals: Directory of manufacturers, 1966--Continued | Identi-
fication
code | Name of company | Office address | |--|---|--| | | Millmaster Onyx Corp.: | | | דעת | Berkeley Chemical Div | 99 Park Ave., New York, NY 10016. | | BKL | Berketey (Memical Div | · · · · · · · · · · · · · · · · · · · | | ONX | Onyx Chemical Div | Warren and Morris Sts., Jersey City, NJ 07302. | | MOR | Mineral Oil Refining Co | 4401 Park Ave., Dickinson, TX 77539. | | MMM | Minnesota Mining & Manufacturing Co | 2501 Hudson Rd., St. Paul, MN 55119. | | MNP | Minnesota Paints, Inc | 1101 S. 3d St., Minneapolis, MN 55415. | | MIR | Miranol Chemical Co., Inc | 277 Coit St., Irvington, NJ 07111. | | MSC | Mississippi Chemical Corp | P.O. Box 388, Yazoo City, MS 39194. | | MOB | Mobay Chemical Co | Penn Lincoln Parkway, W. Pittsburgh, PA 15205. | | SM | Mobil Chemical Co.: | | | | Industrial Chemical Div | 401 E. Main St., Richmond, VA 23208. | | | North Atlantic Div | 612 South Flower St., Los Angeles, CA 90054. | | | Petrochemical Div | P.O. Box 3868, Beaumont, TX 77704. | | MFG | Molded Fiber Glass Body Co., Resin Div | 4601 Benefit Ave., Ashtabula, OH 44004. | | MOA | Mona Industries, Inc | 65 E. 23d St., Paterson, NJ 07524. | | MNO | Monochem, Inc | P.O. Box 488, Geismar, LA 70734. | | MON | Monsanto Co.: | ,, | | | Bircham Bend Plant | 190 Grochmal Ave., Indian Orchard, MA 01051. | | | Chocolate Bayou Plant | P.O. Box 711, Alvin, TX 77511. | | | Gering Plastics Dept | 200 N. 7th St., Kenilworth, NJ 07033. | | | Organic Chemical Div | 800 N. Lindbergh Blvd., St. Louis, MO 63166. | | | Plastics Div | 730 Worcester St., Springfield, MA 01101; 5100 W. | | | 1148 0108 1014 | Jefferson Ave., Trenton, MI 48183; River Rd., | | | | Addyston, OH 45001, and P.O. Box 1311, Texas City, | | | | | | | Textiles Div | TX 77591. | | | | 350 5th Ave., New York, NY 10001. | | 100 | Western Div | 9229 E. Marginal Way S., Seattle, WA 98108. | | MTO | Montrose Chemical Corp. of California | 500 S. Virgil Ave., Los Angeles, CA 90005. | | MCI | Mooney Chemical, Inc | 2301 Scranton Rd., Cleveland, OH 44113. | | MR | Benjamin Moore & Co | 548 5th Ave., New York, NY 10036. | | MRT | Morton Chemical Co | 110 N. Wacker Dr., Chicago, IL 60606. | | MOT | Motomeo, Inc | 89 Terminal Ave., Clark, NJ 07066. | | nvf | N. V. F. © | Maryland Ave. and Beech St., Wilmington, DE 19899. | | NLC | Nalco Chemical Co | 180 N. Michigan Ave., Chicago, IL 60601. | | NTB | National Biochemical Co | 3127 W. Lake St., Chicago, IL 60612. | | | National Casein Co | 601 W. 80th St., Chicago, IL 60620. | | NTC | National Dairy Products Corp.: | our we could been directly in could | | | | | | 7779.6 | | D O Por 200 Normania TN 20101 | | HUM | Humko Products Chemical Div | P.O. Box 398, Memphis, TN 38101. | | SHF | Humko Products Chemical DivSheffield Chemical Co. Div | P.O. Box 398, Memphis, TN 38101.
P.O. Box 630, Norwich, NY 13815. | | | Humko Products Chemical Div Sheffield Chemical Co. Div National Distillers & Chemical Corp.: | P.O. Box 630, Norwich, NY 13815. | | SHF | Humko Products Chemical Div Sheffield Chemical Co. Div National Distillers & Chemical Corp.: A-B Chemical Corp. Div | P.O. Box 630, Norwich, NY 13815. 99 Park Ave., New York, NY 10016. | | SHF | Humko Products Chemical DivSheffield Chemical Co. Div | P.O. Box 630, Norwich, NY 13815. 99 Park Ave., New York, NY 10016. 99 Park Ave., New York, NY 10016. | | SHF
USI | Humko Products Chemical Div | P.O. Box 630, Norwich, NY 13815. 99 Park Ave., New York, NY 10016. 99 Park Ave., New York, NY 10016. 99 Park Ave., New York, NY 10016. | | SHF
USI
NTL | Humko Products Chemical Div | P.O. Box 630, Norwich, NY 13815. 99 Park Ave., New York, NY 10016. 99 Park Ave., New York, NY 10016. 99 Park Ave., New York, NY 10016. 111 Broadway, New York, NY 10006. | | SHF
USI
NTL
NMC | Humko Products Chemical Div | P.O. Box 630, Norwich, NY 13815. 99 Park Ave., New York, NY 10016. 99 Park Ave., New York, NY 10016. 99 Park Ave., New York, NY 10016. 111 Broadway, New York, NY 10006. 4601 Flat Rock Rd., Philadelphia, PA 19127. | | SHF
USI
NTL
NMC
NPP | Humko Products Chemical Div | P.O. Box 630, Norwich, NY 13815. 99 Park Ave., New York, NY 10016. 99 Park Ave., New York, NY 10016. 99 Park Ave., New York, NY 10016. 111 Broadway, New York, NY 10006. 4601 Flat Rock Rd., Philadelphia, PA 19127. Odenton, MD 21113. | | SHF
USI
NTL
NMC
NPP
NPI | Humko Products Chemical Div | P.O. Box 630, Norwich, NY 13815. 99 Park Ave., New York, NY 10016. 99 Park Ave., New York, NY 10016. 99 Park Ave., New York, NY 10016. 111 Broadway, New York, NY 10006. 4601 Flat Rock Rd., Philadelphia, PA 19127. Odenton, MD 21113. 51 Emmes St., Wilmington, MA 01887. | | SHF
USI
NTL
NMC
NPP | Humko Products Chemical Div | P.O. Box 630, Norwich, NY 13815. 99 Park Ave., New York, NY 10016. 99 Park Ave., New York, NY 10016. 111 Broadway, New York, NY 10006. 4601 Flat Rock Rd., Philadelphia, PA 19127. Odenton, MD 21113. 51 Eames St., Wilmington, MA 01887. 750 3d Ave., New York, NY 10017. | | SHF
USI
NTL
NMC
NPP
NPI | Humko Products Chemical Div | P.O. Box 630, Norwich, NY 13815. 99 Park Ave., New York, NY 10016. 99 Park Ave., New York, NY 10016. 99 Park Ave., New York, NY 10016. 111 Broadway, New York, NY 10006. 4601 Flat Rock Rd., Philadelphia, PA 19127. Odenton, MD 21113. 51 Eames St., Wilmington, MA 01887. 750 3d Ave., New York, NY 10017. P.O. Box 221, State College, PA 16801. | | SHF
USI
NTL
NMC
NPP
NPI
NSC | Humko Products Chemical Div | P.O. Box 630, Norwich, NY 13815. 99 Park Ave., New York, NY 10016. 99 Park Ave., New York, NY 10016. 111 Broadway, New York, NY 10006. 4601 Flat Rock Rd., Philadelphia, PA 19127. Odenton, MD 21113. 51 Eames St., Wilmington, MA 01887. 750 3d Ave., New York, NY 10017. | | SHF
USI
NTL
NMC
NPP
NPI
NSC
NES | Humko Products Chemical Div | P.O. Box 630, Norwich, NY 13815. 99 Park Ave., New York, NY 10016. 99 Park Ave., New York, NY 10016. 99 Park Ave., New York, NY 10016. 111 Broadway, New York, NY 10006. 4601 Flat Rock Rd., Philadelphia, PA 19127. Odenton, MD 21113. 51 Eames St., Wilmington, MA 01887. 750 3d Ave., New York, NY 10017. P.O. Box 221, State College, PA 16801. | |
SHF
USI
NTL
NMC
NPP
NPI
NSC
NES
NEP | Humko Products Chemical Div | P.O. Box 630, Norwich, NY 13815. 99 Park Ave., New York, NY 10016. 99 Park Ave., New York, NY 10016. 99 Park Ave., New York, NY 10016. 111 Broadway, New York, NY 10006. 4601 Flat Rock Rd., Philadelphia, PA 19127. Odenton, MD 21113. 51 Eames St., Wilmington, MA 01887. 750 3d Ave., New York, NY 10017. P.O. Box 221, State College, PA 16801. Route 17 and Averill Ave., Harriman, NY 10926. | | SHF
USI
NTL
NMC
NPP
NPI
NSC
NES
NEP
NEV & | Humko Products Chemical Div | P.O. Box 630, Norwich, NY 13815. 99 Park Ave., New York, NY 10016. 99 Park Ave., New York, NY 10016. 99 Park Ave., New York, NY 10016. 111 Broadway, New York, NY 10006. 4601 Flat Rock Rd., Philadelphia, PA 19127. Odenton, MD 21113. 51 Eames St., Wilmington, MA 01887. 750 3d Ave., New York, NY 10017. P.O. Box 221, State College, PA 16801. Route 17 and Averill Ave., Harriman, NY 10926. | | SHF
USI
NTL
NMC
NPP
NPI
NSC
NES
NEP
NEV & | Humko Products Chemical Div | P.O. Box 630, Norwich, NY 13815. 99 Park Ave., New York, NY 10016. 99 Park Ave., New York, NY 10016. 99 Park Ave., New York, NY 10016. 111 Broadway, New York, NY 10006. 4601 Flat Rock Rd., Philadelphia, PA 19127. Odenton, MD 21113. 51 Emmes St., Wilmington, MA 01887. 750 3d Ave., New York, NY 10017. P.O. Box 221, State College, PA 16801. Route 17 and Averill Ave., Harriman, NY 10926. Neville Island P.O., Pittsburgh, PA 15225. | | SHF
USI
NTL
NMC
NPP
NPI
NSC
NES
NEP
NEV & | Humko Products Chemical Div | P.O. Box 630, Norwich, NY 13815. 99 Park Ave., New York, NY 10016. 99 Park Ave., New York, NY 10016. 99 Park Ave., New York, NY 10016. 111 Broadway, New York, NY 10006. 4601 Flat Rock Rd., Philadelphia, PA 19127. Odenton, MD 21113. 51 Emmes St., Wilmington, MA 01887. 750 3d Ave., New York, NY 10017. P.O. Box 221, State College, PA 16801. Route 17 and Averill Ave., Harriman, NY 10926. Neville Island P.O., Pittsburgh, PA 15225. | | SHF USI NTL NMC NPP NPI NSC NES NEP NEV & WOI NPR | Humko Products Chemical Div | P.O. Box 630, Norwich, NY 13815. 99 Park Ave., New York, NY 10016. 99 Park Ave., New York, NY 10016. 99 Park Ave., New York, NY 10016. 111 Broadway, New York, NY 10006. 4601 Flat Rock Rd., Philadelphia, PA 19127. Odenton, MD 21113. 51 Eames St., Wilmington, MA 01887. 750 3d Ave., New York, NY 10017. P.O. Box 221, State College, PA 16801. Route 17 and Averill Ave., Harriman, NY 10926. Neville Island P.O., Pittsburgh, PA 15225. 1501 Mariposa St., San Francisco, CA 94107. Mill St. and N. Transit Rd., Lockport, NY 14094. | | SHF USI NTL NMC NPP NPI NSC NES NEP NEV & WOI NPR NIL JDC | Humko Products Chemical Div | P.O. Box 630, Norwich, NY 13815. 99 Park Ave., New York, NY 10016. 99 Park Ave., New York, NY 10016. 99 Park Ave., New York, NY 10016. 111 Broadway, New York, NY 10006. 4601 Flat Rock Rd., Philadelphia, PA 19127. Odenton, MD 21113. 51 Emmes St., Wilmington, MA 01887. 750 3d Ave., New York, NY 10017. P.O. Box 221, State College, PA 16801. Route 17 and Averill Ave., Harriman, NY 10926. Neville Island P.O., Pittsburgh, PA 15225. 1501 Mariposa St., San Francisco, CA 94107. Mill St. and N. Transit Rd., Lockport, NY 14094. 301 S. Howard St., Dallas, TX 75221. | | SHF USI NTL NMC NPP NPI NSC NES NEP NEV & WOI NPR NIL JDC NIT | Humko Products Chemical Div | P.O. Box 630, Norwich, NY 13815. 99 Park Ave., New York, NY 10016. 99 Park Ave., New York, NY 10016. 99 Park Ave., New York, NY 10016. 111 Broadway, New York, NY 10006. 4601 Flat Rock Rd., Philadelphia, PA 19127. Odenton, MD 21113. 51 Emmes St., Wilmington, MA 01887. 750 3d Ave., New York, NY 10017. P.O. Box 221, State College, PA 16801. Route 17 and Averill Ave., Harriman, NY 10926. Neville Island P.O., Pittsburgh, PA 15225. 1501 Mariposa St., San Francisco, CA 94107. Mill St. and N. Transit Rd., Lockport, NY 14094. 301 S. Howard St., Dallas, TX 75221. P.O. Box 233, Cordova, IL 61242. | | NTL NMC NPP NPI NSC NES NEP NEV WOI NPR NIL JDC NIT NON | Humko Products Chemical Div | P.O. Box 630, Norwich, NY 13815. 99 Park Ave., New York, NY 10016. 99 Park Ave., New York, NY 10016. 111 Broadway, New York, NY 10006. 4601 Flat Rock Rd., Philadelphia, PA 19127. Odenton, MD 21113. 51 Emmes St., Wilmington, MA 01887. 750 3d Ave., New York, NY 10017. P.O. Box 221, State College, PA 16801. Route 17 and Averill Ave., Harriman, NY 10926. Neville Island P.O., Pittsburgh, PA 15225. 1501 Mariposa St., San Francisco, CA 94107. Mill St. and N. Transit Rd., Lockport, NY 14094. 301 S. Howard St., Dallas, TX 75221. P.O. Box 233, Cordova, IL 61242. P.O. Box 1007, Oshkosh, WI 54901. | | NTL NMC NPP NPI NSC NES NEP NEV & WOIL NPR NIL JDC NIT NON NOP | Humko Products Chemical Div | P.O. Box 630, Norwich, NY 13815. 99 Park Ave., New York, NY 10016. 99 Park Ave., New York, NY 10016. 99 Park Ave., New York, NY 10016. 111 Broadway, New York, NY 10006. 4601 Flat Rock Rd., Philadelphia, PA 19127. Odenton, MD 21113. 51 Eames St., Wilmington, MA 01887. 750 3d Ave., New York, NY 10017. P.O. Box 221, State College, PA 16801. Route 17 and Averill Ave., Harriman, NY 10926. Neville Island P.O., Pittsburgh, PA 15225. 1501 Mariposa St., San Francisco, CA 94107. Mill St. and N. Transit Rd., Lockport, NY 14094. 301 S. Howard St., Dallas, TX 75221. P.O. Box 233, Cordova, IL 61242. P.O. Box 1007, Oshkosh, WI 54901. 60 Park Fl., Newark, NJ 07101. | | NTL NMC NPP NPI NSC NES NEP NEV & WOI NPR NIL JDC NIT NON NOP | Humko Products Chemical Div- Sheffield Chemical Co. Div- National Distillers & Chemical Corp.: A-B Chemical Corp. Div National Petro Chemical Corp. Div U.S. Industrial Chemicals Co. Div National Lead Co | P.O. Box 630, Norwich, NY 13815. 99 Park Ave., New York, NY 10016. 99 Park Ave., New York, NY 10016. 99 Park Ave., New York, NY 10016. 111 Broadway, New York, NY 10006. 4601 Flat Rock Rd., Philadelphia, PA 19127. Odenton, MD 21113. 51 Eames St., Wilmington, MA 01887. 750 3d Ave., New York, NY 10017. P.O. Box 221, State College, PA 16801. Route 17 and Averill Ave., Harriman, NY 10926. Neville Island P.O., Pittsburgh, PA 15225. 1501 Mariposa St., San Francisco, CA 94107. Mill St. and N. Transit Rd., Lockport, NY 14094. 301 S. Howard St., Dallas, TX 75221. P.O. Box 233, Cordova, IL 61242. P.O. Box 1007, Oshkosh, WI 54901. 60 Park Pl., Newark, NJ 07101. 405 S. Motor Ave., Azusa, CA 91703. | | NTL NMC NPP NPI NSC NES NEP NEV & WOI NPR NIL JDC NIT NON NOP NOC NEO | Humko Products Chemical Div | P.O. Box 630, Norwich, NY 13815. 99 Park Ave., New York, NY 10016. 99 Park Ave., New York, NY 10016. 99 Park Ave., New York, NY 10016. 111 Broadway, New York, NY 10006. 4601 Flat Rock Rd., Philadelphia, PA 19127. Odenton, MD 21113. 51 Emmes St., Wilmington, MA 01887. 750 3d Ave., New York, NY 10017. P.O. Box 221, State College, PA 16801. Route 17 and Averill Ave., Harriman, NY 10926. Neville Island P.O., Pittsburgh, PA 15225. 1501 Mariposa St., San Francisco, CA 94107. Mill St. and N. Transit Rd., Lockport, NY 14094. 301 S. Howard St., Dallas, TX 75221. P.O. Box 233, Cordova, IL 61242. P.O. Box 1007, Oshkosh, WI 54901. 60 Park Fl., Newark, NJ 07101. 405 S. Motor Ave., Azusa, CA 91703. 475 10th Ave., New York, NY 10001. | | NTL NMC NPP NPI NSC NES NEP NEV & WOI NPR NIL JDC NIT NON NOP NOC NEO NPV | Humko Products Chemical Div | P.O. Box 630, Norwich, NY 13815. 99 Park Ave., New York, NY 10016. 99 Park Ave., New York, NY 10016. 111 Broadway, New York, NY 10006. 4601 Flat Rock Rd., Philadelphia, PA 19127. Odenton, MD 21113. 51 Emmes St., Wilmington, MA 01887. 750 3d Ave., New York, NY 10017. P.O. Box 221, State College, PA 16801. Route 17 and Averill Ave., Harriman, NY 10926. Neville Island P.O., Pittsburgh, PA 15225. 1501 Mariposa St., San Francisco, CA 94107. Mill St. and N. Transit Rd., Lockport, NY 14094. 301 S. Howard St., Dallas, TX 75221. P.O. Box 233, Cordova, IL 61242. P.O. Box 1007, Oshkosh, WI 54901. 60 Park Pl., Newark, NJ 07101. 405 S. Motor Ave., Azusa, CA 91703. 475 10th Ave., New York, NY 10001. 1675 Commercial St., N.E., Salem, OR 97303. | | SHF USI NTL NMC NPP NPI NSC NES NEP NEV WOI NPR NIL JDC NIT NON NOP NOC NEO NPV NRS | Humko Products Chemical Div | P.O. Box 630, Norwich, NY 13815. 99 Park Ave., New York, NY 10016. 99 Park Ave., New York, NY 10016. 111 Broadway, New York, NY 10006. 4601 Flat Rock Rd., Philadelphia, PA 19127. Odenton, MD 21113. 51 Emmes St., Wilmington, MA 01887. 750 3d Ave., New York, NY 10017. P.O. Box 221, State College, PA 16801. Route 17 and Averill Ave., Harriman, NY 10926. Neville Island P.O., Pittsburgh, PA 15225. 1501 Mariposa St., San Francisco, CA 94107. Mill St. and N. Transit Rd., Lockport, NY 14094. 301 S. Howard St., Dallas, TX 75221. P.O. Box 233, Cordova, IL 61242. P.O. Box 1007, Oshkosh, WI 54901. 60 Park Pl., Newark, NJ 07101. 405 S. Motor Ave., Azusa, CA 91703. 475 10th Ave., New York, NY 10001. 1675 Commercial St., N.E., Salem, OR 97303. 2121 Norse Ave., Cudahy, WI 53110. | | SHF USI NTL NMC NPP NPI NSC NES NEP NEV & WOIN NPR NIL JDC NIT NON NOP NOC NEO NPV NRS | Humko Products Chemical Div | P.O. Box 630, Norwich, NY 13815. 99 Park Ave., New York, NY 10016. 99 Park Ave., New York, NY 10016. 111 Broadway, New York, NY 10016. 111 Broadway, New York, NY 10006. 4601 Flat Rock Rd., Philadelphia, PA 19127. Odenton, MD 21113. 51 Eames St., Wilmington, MA 01887. 750 3d Ave., New York, NY 10017. P.O. Box 221, State College, PA 16801. Route 17 and Averill Ave., Harriman, NY 10926. Neville Island P.O., Pittsburgh, PA 15225. 1501 Mariposa St., San Francisco, CA 94107. Mill St. and N. Transit Rd., Lockport, NY 14094. 301 S. Howard St., Dallas, TX 75221. P.O. Box 233, Cordova, IL 61242. P.O. Box 1007, Oshkosh, WI 54901. 60 Park Fl., Newark, NJ 07101. 405 S. Motor Ave., Azusa, CA 91703. 475 10th Ave., New York, NY 10001. 1675 Commercial St., N.E., Salem, OR 97303. 2121 Norse Ave., Cudahy, WI 53110. 19 S. Canal St., Lawrence, MA 01843. | | SHF USI NTL NMC NPP NPI NSC NES NEP NEV & WOI
NPR NIL JDC NIT NON NOP NOC NEO NPV NRS IMI NW | Humko Products Chemical Div- Sheffield Chemical Co. Div- National Distillers & Chemical Corp.: A-B Chemical Corp. Div National Petro Chemical Corp. Div U.S. Industrial Chemicals Co. Div National Lead Co National Milling & Chemical Co., Inc National Plastic Products Co., Inc National Polychemicals, Inc Nease Chemical Co., Inc | P.O. Box 630, Norwich, NY 13815. 99 Park Ave., New York, NY 10016. 99 Park Ave., New York, NY 10016. 111 Broadway, New York, NY 10006. 4601 Flat Rock Rd., Philadelphia, PA 19127. Odenton, MD 21113. 51 Emmes St., Wilmington, MA 01887. 750 3d Ave., New York, NY 10017. P.O. Box 221, State College, PA 16801. Route 17 and Averill Ave., Harriman, NY 10926. Neville Island P.O., Pittsburgh, PA 15225. 1501 Mariposa St., San Francisco, CA 94107. Mill St. and N. Transit Rd., Lockport, NY 14094. 301 S. Howard St., Dallas, TX 75221. P.O. Box 233, Cordova, IL 61242. P.O. Box 1007, Oshkosh, WI 54901. 60 Park Pl., Newark, NJ 07101. 405 S. Motor Ave., Azusa, CA 91703. 475 10th Ave., New York, NY 10001. 1675 Commercial St., N.E., Salem, OR 97303. 2121 Norse Ave., Cudahy, WI 53110. 19 S. Canal St., Lawrence, MA 01843. 120 N. Aurora St., W. Chicago, IL 60185. | | SHF USI NTL NMC NPP NPI NSC NES NEP NEV & WOI NPR NIL JDC NIT NON NOP NOC NEO NPV NRS LMI NW NPC | Humko Products Chemical Div | P.O. Box 630, Norwich, NY 13815. 99 Park Ave., New York, NY 10016. 99 Park Ave., New York, NY 10016. 111 Broadway, New York, NY 10006. 4601 Flat Rock Rd., Philadelphia, PA 19127. Odenton, MD 21113. 51 Emmes St., Wilmington, MA 01887. 750 3d Ave., New York, NY 10017. P.O. Box 221, State College, PA 16801. Route 17 and Averill Ave., Harriman, NY 10926. Neville Island P.O., Pittsburgh, PA 15225. 1501 Mariposa St., San Francisco, CA 94107. Mill St. and N. Transit Rd., Lockport, NY 14094. 301 S. Howard St., Dallas, TX 75221. P.O. Box 233, Cordova, IL 61242. P.O. Box 1007, Oshkosh, WI 54901. 60 Park Fl., Newark, NJ 07101. 405 S. Motor Ave., Azusa, CA 91703. 475 10th Ave., New York, NY 10001. 1675 Commercial St., N.E., Salem, OR 97303. 2121 Norse Ave., Cudahy, WI 53110. 19 S. Canal St., Lawrence, MA 01843. 120 N. Aurora St., W. Chicago, IL 60185. P.O. Box 99, Anacortes, WA 98221. | | SHF USI NTL NMC NPP NPI NSC NES NEP NEV & WOI NPR NIL JDC NIT NON NOP NOC NEO NPV NRS IMI NW | Humko Products Chemical Div- Sheffield Chemical Co. Div- National Distillers & Chemical Corp.: A-B Chemical Corp. Div National Petro Chemical Corp. Div U.S. Industrial Chemicals Co. Div National Lead Co National Milling & Chemical Co., Inc National Plastic Products Co., Inc National Starch & Chemical Corp Nease Chemical Co., Inc Neville Chemical Co., Inc | P.O. Box 630, Norwich, NY 13815. 99 Park Ave., New York, NY 10016. 99 Park Ave., New York, NY 10016. 111 Broadway, New York, NY 10006. 4601 Flat Rock Rd., Philadelphia, PA 19127. Odenton, MD 21113. 51 Emmes St., Wilmington, MA 01887. 750 3d Ave., New York, NY 10017. P.O. Box 221, State College, PA 16801. Route 17 and Averill Ave., Harriman, NY 10926. Neville Island P.O., Pittsburgh, PA 15225. 1501 Mariposa St., San Francisco, CA 94107. Mill St. and N. Transit Rd., Lockport, NY 14094. 301 S. Howard St., Dallas, TX 75221. P.O. Box 233, Cordova, IL 61242. P.O. Box 1007, Oshkosh, WI 54901. 60 Park Pl., Newark, NJ 07101. 405 S. Motor Ave., Azusa, CA 91703. 475 10th Ave., New York, NY 10001. 1675 Commercial St., N.E., Salem, OR 97303. 2121 Norse Ave., Cudahy, WI 53110. 19 S. Canal St., Lawrence, MA 01843. 120 N. Aurora St., W. Chicago, IL 60185. P.O. Box 99, Anacortes, WA 98221. 17 Eaton Ave., Norwich, NY 13815. | | SHF USI NTL NMC NPP NPI NSC NES NEP NEV & WOI NPR NIL JDC NIT NON NOP NOC NPV NRSO | Humko Products Chemical Div | P.O. Box 630, Norwich, NY 13815. 99 Park Ave., New York, NY 10016. 99 Park Ave., New York, NY 10016. 111 Broadway, New York, NY 10016. 111 Broadway, New York, NY 10006. 4601 Flat Rock Rd., Philadelphia, PA 19127. Odenton, MD 21113. 51 Emmes St., Wilmington, MA 01887. 750 3d Ave., New York, NY 10017. P.O. Box 221, State College, PA 16801. Route 17 and Averill Ave., Harriman, NY 10926. Neville Island P.O., Pittsburgh, PA 15225. 1501 Mariposa St., San Francisco, CA 94107. Mill St. and N. Transit Rd., Lockport, NY 14094. 301 S. Howard St., Dallas, TX 75221. P.O. Box 233, Cordova, IL 61242. P.O. Box 1007, Oshkosh, WI 54901. 60 Park Fl., Newark, NJ 07101. 405 S. Motor Ave., Azusa, CA 91703. 475 10th Ave., New York, NY 10001. 1675 Commercial St., N.E., Salem, OR 97303. 2121 Norse Ave., Cudahy, WI 53110. 19 S. Canal St., Lawrence, MA 01843. 120 N. Aurora St., W. Chicago, IL 60185. P.O. Box 99, Anacortes, WA 98221. | TABLE 22. -- Synthetic organic chemicals: Directory of manufacturers, 1966--Continued | Identi-
fication
code | Name of company | Office address | |---|--|--| | *************************************** | | | | CMG
HCO | Nyanza, Inc | P.O. Box 349, Ashland, MA 01721.
45 Andrews St., Lowell, MA 01853. | | OMC | Olin Mathieson Chemical Corp | 445 W. 59th St., New York, NY 10019. | | OXR | Onyx Oils & Resins, Inc | 95 Broad St., New York, NY 10004. | | OPC | Orbis Products Corp | 475 10th Ave., New York, NY 10018. | | ORG
BSW | Original Bradford Soap Works, Inc | 1724 Greenleaf Ave., Chicago, IL 60628. 200 Providence St., W. Warwick, RI 02893. | | OSB | C. J. Osborn Co | 1301 W. Blancke St., Linden, NJ 07036. | | ATO | Ottawa Chemical Co | 700 N. Wheeling St., Toledo, OH 43605. | | OTC | Ott Chemical Co | 500 Agard Rd., Muskegon, MI 49945. | | OCF | Owens-Corning Fiberglas Corp | P.O. Box 901, Toledo, OH 43614. | | OXO | Oxo Chemicals Co | P.O. Box 127, Ironton, OH 45638. | | PLB | P-L Biochemicals, Inc | 1037 W. McKinley Ave., Milwaukee, WI 53205. | | AMR | Pacific Resins & Chemical Co | 3400 13th Ave. SW., Seattle, WA 98134. | | PAN
PNT | Pan American Petroleum Corp | P.O. Box 591, Tulsa, OK 74102.
26 Jefferson St., Passaic, NJ 07056. | | PD | Parke, Davis & Co | P.O. Box 118, Detroit, MI 48232. | | PSC | Passaic Color & Chemical Co | 28-36 Paterson St., Paterson, NJ 07501. | | PAT | Patent Chemicals, Inc | 335 McLean Blvd., Paterson, NJ 07504. | | CCH | Pearsall Chemical Co | P.O. Box 108, Phillipsburg, NJ 08865. | | PEK
PCH | Peck's Products Co Peerless Chemical Co | 610 E. Clarence Ave., St. Louis, MO 63147. 3850 Oakman Elvd., Detroit, MI 48204. | | PEL | Pelron Corp | 7847 W. 47th St., Lyons, IL 60534. | | PEN | S. B. Penick & Co | 100 Church St., New York, NY 10008. | | PRP | Parsons-Plymouth Div | 100 Church St., New York, NY 10008. | | PAS | Pennsalt Chemicals Corp | 3 Penn Center, Philadelphia, PA 19102. | | PAI
PAR | Pennsylvania Industrial Chemical Corp | 120 State St., Clairton, PA 15025. | | PER | Pennsylvania Refining Co | Union Bank Bidg., Butler, PA 16001. 2510 Highland Ave., Norwood, OH 45212. | | UDI | Petrochemicals Co., Inc | 1825 E. Spring St., Long Beach, CA 90806. | | PTT | Petro-Tex Chemical Corp | P.O. Box 2584, Houston, TX 77001. | | PFN | Pfanstiehl Laboratories, Inc | 1219 Glen Rock Ave., Waukegan, IL 60085. | | PCW | Pfister Chemical WorksChas. Pfizer & Co., Inc | P.O. Box 326, Ridgefield, NJ 07657. | | PFZ
PHR | Pharmachem Corp | 235 E. 42d St., New York, NY 10017. Broad and Wood Sts., Bethlehem, PA 18018. | | PFP | Phelan-Faust Paint Manufacturing Co.,
Phelan's Resins & Flastics Div. | Oak St. and Buff Rd., P.O. Box 189, Burlington,
IA 52602. | | PLC | Phillips Petroleum Co | 841-A Adams Bldg., Bartlesville, OK 74003. | | PNX | Phoenix Oil Co | 9505 Cassius Ave., Cleveland, OH 44105. | | PIC
PBY | Pierce Organics, Inc Pillsbury Co., Chemical Div | P.O. Box 98, Rockford, IL 61105. | | PIL | Pilot Chemical Co | 608 2nd Ave. S., Minneapolis, MN 55402.
11756 Burke St., Santa Fe Springs, CA 90670. | | PCI | Pioneer Chemical Works, Inc | Route 73, Maple Shade, NJ 08052. | | PPL | Pioneer Plastics Corp., Chemical Div | Pionite Rd., Auburn, ME 04210. | | PIT | Pitt-Consol Chemical Co | 191 Doremus Ave., Newark, NJ 07105. | | PPG
PLS | Pittsburgh Plate Glass Co | 1 Gateway Center, Pittsburgh, PA 15222.
1607 Geele Ave., Sheboygan, WI 53082. | | PMC | Plastics Manufacturing Co | 2700 S. Westmoreland, Dallas, TX 75224. | | PLU | Plumb Chemical Corp | 4837 James St., Philadelphia, PA 19137. | | PFW | Polak's Frutal Works | 33 Sprague Ave., Middletown, NY 10940. | | PYL | Polychemical Laboratories, Inc | 490 Hunts Point Ave., New York, NY 10059. | | POL
PII | Polymer Corp | 2120 Fairmont Ave., Reading, PA 19603. | | PYR | Poly Resins | Viaduct Rd., Springdale, CT 06879. 11655 Wicks St., Sun Valley, CA 91352. | | PYZ | Polyrez Co., Inc | P.O. Box 320, Woodbury, NJ 08096. | | PVI | Polyvinyl Chemicals, Inc | 730 Main St., Wilmington, MA 01887. | | GRS | Pontiac Refining Corp | 3400 Lawrence Dr., Corpus Christi, TX 78403. | | PRT
PMP | Pratt & Lambert, Inc | 75 Tonawanda St., Buffalo, NY 14207.
917 W. Juneau Ave., Milwaukee, WI 53201. | | PPC | Premier Petrochemical Co | P.O. Box 100, Pasadena, TX 77501. | | PG | Procter & Gamble Co | Ivorydale Technical Ctr., Rm. 2S25, Cincinnati, OH 45217. | | PC | Proctor Chemical Co., Inc | P.O. Box 399, Salisbury, NC 28144. | | PRD | Productol Chemical Co., Inc | 615 S. Flower St., Los Angeles, CA 90017. | | PRC | Products Research & Chemical Corp | 2919 Empire Ave., Burbank, CA 91504. | | PUB
P T O | Publicker Industries, Inc | 1429 Walnut St., Philadelphia, PA 19102.
 Rm. 72.2 - Carr. No. 2, Arecibo, PR 00613. | | | | l | | PRX & | Purex Corp., Ltd | 5101 Clark Ave., Lakewood, CA 90712, and 2260 N. Elston | TABLE 22. -- Synthetic organic chemicals: Directory of manufacturers, 1966--Continued | Identi-
fication
code | Name of company | Office address | |-----------------------------
--|--| | QCP | Quaker Chemical Corp | Elm and Sandy Sts., Conshohocken, PA 19428. | | OKO | Quaker Oats Co | 345 Merchandise Mart Plaza, Chicago, IL 60654. | | | K. J. Quinn & Co., Inc | 195 Canal St., Malden, MA 02148. | | QUN | v. a. Antini & co., mic | 179 Valiat 8009 Matter, MA Octao. | | DC4 | R. S. A. Corp | 600 Com Mill Pisson Pd Andoloss NV 10502 | | RSA I | | 690 Saw Mill River Rd., Ardsley, NY 10502. | | RLS | Rachelle Laboratories, Inc | 700 Henry Ford Ave., Long Beach, CA 90810. | | RAB | Raybestos-Manhattan, Inc., Raybestos Div | 75 E. Main St., Stratford, CT 06601. | | RET | Rayette-Faberge, Inc | 261 E. 5th St., St. Paul, MN 55101. | | RED | Red Spot Paint & Varnish Co., Inc | 110 Main St., Evansville, IN 47708. | | RPC | Refined Products Co | 624 Schuyler Ave., Lyndhurst, NJ 07071. | | REH | Reheis Chemical Co., Div. of Armour Pharma- | 325 Snyder Ave., Berkeley Heights, NJ 07922. | | | ceutical Co. | 705 N. D. J. WILL W. J. W. 10600 | | RCI | Reichhold Chemicals, Inc | 525 N. Broadway, White Plains, NY 10602. | | VAR | Varcum Chemical Div | Niagara Falls, NY 14302. | | RIL | Reilly Tar & Chemical Corp | 11 S. Meridan St., Indianapolis, IN 46204. | | REL | Reliance Universal, Inc | 4730 Crittenden Dr., P.O. Box 21067, Louisville, KY | | | | 40221, and 6901 Cavalcade, Houston, TX 77001. | | R.EM | Remington Arms Co., Inc | 939 Barnum Ave., Bridgeport, CT 06602. | | REN | Renroh Resins | P.O. Box 1191, New Bern, NC 28560. | | RTF | Retzloff Chemical Co | P.O. Box 45296, Houston, TX 77045. | | RCC | Rexall Chemical Co | 8480 Beverly Blvd., Los Angeles, CA 90048. | | FBF | Fiberfil Div | 1701 N. Heidelbach Ave., Evansville, IN 47717. | | REZ | Rezolin, Inc | 1651 18th St., Santa Monica, CA 90404. | | RDA | Rhodia, Inc | 600 Madison Ave., New York, NY 10022. | | RCD | Richardson Co | 2700 W. Lake St., Melrose Park, IL 60160. | | PLA | Richardson Polymers Div | 345 Morgan Lane, West Haven, CT 06516. | | RIK | Riker Laboratories, Div. of Rexall Drug & | 19901 Nordhoff St., Northridge, CA 91324. | | | Chemical Co. | | | RT | F. Ritter & Co | 4001 Goodwin Ave., Los Angeles, CA 90039. | | RTC | Ritter Chemical Co., Inc | 403 W. Main St., Amsterdam, NY 12010. | | IOC | Ritter Pfaudler Corp., Ionac Chemical Co. Div. | Birmingham, NJ 08011. | | RIV | Riverdale Chemical Co | 220 E. 17th St., Chicago Heights, IL 60411. | | RBC | Roberts Chemicals, Inc | P.O. Box 546, Nitro, WV 25143. | | ROC | Rock Hill Printing & Finishing Co | Rock Hill, SC 29730. | | ORT | Roehr Chemicals, Inc | 52-20 37th St., Long Island City, NY 11101. | | RGC | Rogers Corp | Rogers, CT 06263. | | RH | Rohm & Haas Co | Independence Mall West, Philadelphia, PA 19105. | | RSB | Rosenberg Bros. & Co | 100 Landing Ave., Smithtown, NY 11787. | | ROY | Royce Chemical Co | Carlton Hill P.O., E. Rutherford, NJ 07073. | | RUC | Rubicon Chemicals, Inc | P.O. Box 517, Geismar, LA 70734. | | | • | | | LKY | St. Regis Paper Co., Lake States Div | 603 W. Davenport St., Rhinelander, WI 54501. | | SAL | Salsbury Laboratories | 500 Gilbert St., Charles City, IA 50616. | | ន | Sandoz, Inc | P.O. Box 357, Fair Lawn, NJ 07410, and Route 10, | | | | Hanover, NJ 07936. | | SAR | Sertomer Resins, Inc | P.O. Box 56, Essington, PA 19029. | | SCF | Schaefer Varnish Co., Inc | 1350 S. 15th St., Louisville, KY 40210. | | SCN | Schenectady Chemicals, Inc | Congress St. and 10th Ave., Schenectady, NY 12301. | | SBC | Scher Bros., Inc | P.O. Box 538, Allwood Station, Clifton, NJ 07012. | | SCR | R. P. Scherer Corp | 9425 Grinnell Ave., Detroit, MI 48213. | | SCH | Scheller Prog. Tro | 1011 Morris Ave., Union, NJ 07083. | | SCO | Schooler Bros., Inc | Collins and Westmoreland Sts., Philadelphia, PA 19134. | | SEA | Seaboard Chemicals, Inc | 30 Foster St., Salem, MA 01970. | | SRL | G. D. Searle & Co | P.O. Box 5110, Chicago, IL 60680. | | SED | Seidlitz Paint & Varnish Co | 18th and Garfield Sts., Kansas City, MO 64141. | | SEK | Sekisui Plastics Corp | 666 Dietrich Ave., Hazelton, PA 18201. | | SEL | Selney Co., Inc | 65 9th St., Brooklyn, NY 11215. | | SEY | Seydel-Woolley & Co., Inc | 748 Rice St. NW., Atlanta, GA 30318. | | SHM | Shamrock Oil & Gas Corp | P.O. Box 631, Amarillo, TX 79105. | | SHA | Shanco Plastics & Chemicals, Inc | 2716 Kenmore Ave., Tonawanda, NY 14150. | | SHO | Shell Oil Co | 52 W. 52d St., New York, NY 10019. | | SHC | Shell Chemical Co. Div | 113 W. 52d St., New York, NY 10019. | | SHP | Shepherd Chemical Co | 5000 Poplar St., Cincinnati, OH 45212. | | SW | Sherwin-Williams Co | 101 Prospect Ave. NW., Cleveland, OH 44101. | | SHL | Shulton, Inc | 697 Route 46, Clifton, NJ 07015. | | SID | George F. Siddall Co., Inc | P.O. Box 925, Spartanburg, SC 29301. | | SOG | Signal Oil & Gas Co | P.O. Box 5008, Harrisburg Station, Houston, TX 77012. | | SIM | Simpson Timber Co | 2301 N. Columbia Blvd., Portland, OR 97217. | | SKC | Sinclair-Koppers Chemical Co | 9822 La Porte Freeway, Houston, TX 77012. | | KPP | Sinclair-Koppers Co | 900 Koppers Bldg., Pittsburgh, PA 15219. | | | | | TABLE 22. -- Synthetic organic chemicals: Directory of manufacturers, 1966--Continued | Identi-
fication
code | Name of company | Office address | |---|---|--| | | | | | SPC | Sinclair Paint Co | 3960 E. Washington Blvd., Los Angeles, CA 90023. | | SPI | Sinclair Petrochemicals, Inc | 600 5th Ave., New York, NY 10020. | | SIN | Sinclair Refining Co | | | | | 600 5th Ave., New York, NY 10020. | | SIP | James B. Sipe & Co | P.O. Box 13090, Pittsburgh, PA 15243. | | SKO | Skelly Oil Co | Oil Center Bldg., P.O. Box 1650, Tulsa, OK 74102. | | GFS | G. Frederick Smith Chemical Co | 867 McKinley Ave., Columbus, OH 43223. | | SK | Smith, Kline & French Laboratories | 1500 Spring Garden St., Philadelphia, PA 19101. | | SIM | Socony Mobil Oil Co., Inc.: | 1300 opining darden St., Fintianerphia, PA 19101. | | CAVI. | Mobil Chemical Co. Div | 7301 Bessemer Ave., Cleveland, OH 44127 and Metuchen, | | | Chaminal Cantings Dis. I I I I | NJ 08840. | | COTT | Chemical Coatings Div., Louisville Plant | 1630 W. Hill Street, Louisville, KY 40210. | | SOH | Sohio Chemical Co. & Solar Nitrogen Chemicals, | 1434 Midland Bldg., Cleveland, OH 44115. | | | Inc. | | | SOL | Solar Chemical Corp | Fuller St., Leominster, MA 01453. | | SLC | Soluol Chemical Co., Inc | | | | | Green Hill and Market Sts., P.O. Box 112, W. Warwick, 02893. | | SVT | Solvent Chemical Co., Inc | 341 Commercial St., Malden, MA 02148. | | SFD | Sonford Chemical Co | P.O. Box 127, Port Neches, TX 77651. | | SNC | Sonoco Products Co | Hartsville, SC 29550. | | STC | Sou-Tex Chemical Co., Inc | | | | | E. Catawba Ave., Mount Holly, NC 28120. | | SAC | Southeastern Adhesives Co | P.O. Box 791, Lenoir, NC 28645. | | SEP | Southeast Polymers, Inc | P.O. Box 309, Chattanooga, TN 37401. | | SOS | Southern Sizing Co | P.O. Box 987, East Point, GA 30044. | | SPL, | Spaulding Fibre Co., Inc | 310 Wheeler St., Tonawanda, NY 14150. | | OMS | | | | 1 | E. R. Squibb & Sons, Inc | 745 5th Ave., New York, NY 10022. | | STA | A. E. Staley Manufacturing Co | 22d and Eldorado Sts., Lecatur, IL 62525 | | UBS | UBS Chemical Co. Div | 491 Main St., Cambridge, MA 02142. | | SMC | Stamford Chemical Co | 45 Jefferson St., P.O. Box 1131, Stamford, CT 06940. | | CLN | Standard Brands, Inc., Clinton Corn Processing | 1251 Bosson Channel Brokers Clark TA 50722 | | 1 | | 1251 Beaver Channel Parkway, Clinton, IA 52733. | | | Co. Div. | | | SCP | Standard Chemical Products, Inc | 1301 Jefferson St., Hoboken, NJ 07030. | | SCC | Standard Chlorine Chemical Co., Inc | 1025 Belleville Turnpike, Kearny, NJ 07032. | | SOC | Standard Oil Co. of California, Chevron Chemical Co. | 200 Bush St., San Francisco, CA 94120. | | SIO | Standard Oil Co. of Chio | Midland Bldg., Cleveland, OH 44115. | | SPY | Standard Pyroxoloid Corp | | | STG | 04 | 85 Pleasant St., Leominster, MA 01453. | | DIG | | 342 N. Western Ave., Chicago, IL 60612. | | | Stauffer Chemical Co.: | | | CHO (| Calhio Chemicals, Inc. Div | 380 Madison Ave., New York, NY 10017. | | SF | Industrial Chemical Div | 380 Madison Ave., New York, NY 10017. | | SFA | Specialty Chemical Div | 200 Maddings Ave. No. 15 1 10017. | | | | 380 Madison Ave., New York, NY 10017. | | SH | Stein, Hall & Co., Inc | 605 3d Ave., New York, NY 10016. | | STP | Stepan Chemical Co.: | • | | i | Industrial Chemicals Div., Millsdale Works | Elwood, IL 60421. | | MYW | Maywood Div | l | | - 1 | Sterling Drug, Inc.: | 100 W. Hunter Ave., Maywood, NJ 07607. | | SDG | | OO Paris Area War II a amanda | | | Glenbrook Laboratories Div | 90 Park Ave., New York, NY 10018. | | | Hilton-Davis Chemical Co. Div | 2235 Langdon Farm Rd., Cincinnati, OH 45237. | | SDH | | 1341311 | | SLV | | Military Rd., Rothschild, WI 54474. | | | | Military Rd., Rothschild, WI 54474. | | SLV
TMS | Salvo Chemical DivThomasset Colors Div | 120 Lister Ave., Newark, NJ 07105. | | SLV
TIMS
SDW | Salvo Chemical Div Thomasset Colors Div
Winthrop Laboratories Div | 120 Lister Ave., Newark, NJ 07105.
90 Park Ave., New York, NY 10016. | | SLV
TMS | Salvo Chemical Div Thomasset Colors Div Winthrop Laboratories Div Stresen-Reuter International, International | 120 Lister Ave., Newark, NJ 07105. | | SLV
TMS
SDW
SRR | Salvo Chemical Div | 120 Lister Ave., Newark, NJ 07105.
90 Park Ave., New York, NY 10016. | | SLV
TMS
SDW
SRR
SUG | Salvo Chemical Div Thomasset Colors Div Winthrop Laboratories Div Stresen-Reuter International, International | 120 Lister Ave., Newark, NJ 07105.
90 Park Ave., New York, NY 10016. | | SLV
TMS
SDW
SRR | Salvo Chemical Div Thomasset Colors Div Winthrop Laboratories Div Stresen-Reuter International, International Minerals & Chemical Group. Sucro-Chemical Div. of Colonial Sugars Co | 120 Lister Ave., Newark, NJ 07105. 90 Park Ave., New York, NY 10016. 400 W. Roosevelt Ave., Bensenville, IL 60106. P.O. Drawer G, Gramercy, LA 70052. | | TMS
SDW
SRR
SUG
SBP | Salvo Chemical Div Thomasset Colors Div Winthrop Laboratories Div Stresen-Reuter International, International Minerals & Chemical Group. Sucro-Chemical Div. of Colonial Sugars Co Sugar Beet Products Co | 120 Lister Ave., Newark, NJ 07105. 90 Park Ave., New York, NY 10016. 400 W. Roosevelt Ave., Bensenville, IL 60106. P.O. Drawer G, Gramercy, LA 70052. 302 Waller St., Saginaw, MI 48605. | | SLV
TIMS
SDW
SRR
SUG
SBP
SVC | Salvo Chemical Div | 120 Lister Ave., Newark, NJ 07105. 90 Park Ave., New York, NY 10016. 400 W. Roosevelt Ave., Bensenville, IL 60106. P.O. Drawer G, Gramercy, LA 70052. 302 Waller St., Saginaw, MI 48605. 410 N. Hart St., Chicago, IL 60622. | | SLV
TIMS
SDW
SRR
SUG
SBP
SVC
SUM | Salvo Chemical Div | 120 Lister Ave., Newark, NJ 07105. 90 Park Ave., New York, NY 10016. 400 W. Roosevelt Ave., Bensenville, IL 60106. P.O. Drawer G, Gramercy, LA 70052. 302 Waller St., Saginaw, MI 48605. 410 N. Hart St., Chicago, IL 60622. 11 William St., Belleville, NJ 07109. | | SLV
TMS
SDW
SRR
SUG
SBP
SVC
SUM
TNC | Salvo Chemical Div | 120 Lister Ave., Newark, NJ 07105. 90 Park Ave., New York, NY 10016. 400 W. Roosevelt Ave., Bensenville, IL 60106. P.O. Drawer G, Gramercy, LA 70052. 302 Waller St., Saginaw, MI 48605. 410 N. Hart St., Chicago, IL 60622. 11 William St., Belleville, NJ 07109. 185 Foundry St., Newark, NJ 07105. | | SLV
TIMS
SDW
SRR
SUG
SBP
SVC
SUM | Salvo Chemical Div | 120 Lister Ave., Newark, NJ 07105. 90 Park Ave., New York, NY 10016. 400 W. Roosevelt Ave., Bensenville, IL 60106. P.O. Drawer G, Gramercy, LA 70052. 302 Waller St., Saginaw, MI 48605. 410 N. Hart St., Chicago, IL 60622. 11 William St., Belleville, NJ 07109. 185 Foundry St., Newark, NJ 07105. | | SLV
TMS
SDW
SRR
SUG
SBP
SVC
SUM
TNC | Salvo Chemical Div | 120 Lister Ave., Newark, NJ 07105. 90 Park Ave., New York, NY 10016. 400 W. Roosevelt Ave., Bensenville, IL 60106. P.O. Drawer G, Gramercy, LA 70052. 302 Waller St., Saginaw, MI 48605. 410 N. Hart St., Chicago, IL 60622. 11 William St., Belleville, NJ 07109. 185 Foundry St., Newark, NJ 07105. 441 Tompkins Ave., Staten Island, NY 10305. | | SLV
TMS
SDW
SRR
SUG
SBP
SVC
SUM
TNC
SNA
SNW | Salvo Chemical Div | 120 Lister Ave., Newark, NJ 07105. 90 Park Ave., New York, NY 10016. 400 W. Roosevelt Ave., Bensenville, IL 60106. P.O. Drawer G, Gramercy, LA 70052. 302 Waller St., Saginaw, MI 48605. 410 N. Hart St., Chicago, IL 60622. 11 William St., Belleville, NJ 07109. 185 Foundry St., Newark, NJ 07105. 441 Tompkins Ave., Staten Island, NY 10305. Wood River Junction, RI 02894. | | SLV
TMS
SDW
SRR
SUG
SBP
SVC
SUM
TNC
SNA
SNW
TV | Salvo Chemical Div | 120 Lister Ave., Newark, NJ 07105. 90 Park Ave., New York, NY 10016. 400 W. Roosevelt Ave., Bensenville, IL 60106. P.O. Drawer G, Gramercy, LA 70052. 302 Waller St., Saginaw, MI 48605. 410 N. Hart St., Chicago, IL 60622. 11 William St., Belleville, NJ 07109. 185 Foundry St., Newark, NJ 07105. 441 Tompkins Ave., Staten Island, NY 10305. Wood River Junction, RI 02894. 135 W. Lake St., Northlake, IL 60164. | | SLV
TMS
SDW
SRR
SUG
SBP
SVC
SUM
TNC
SNA
SNA
SNW
TV
CFC | Salvo Chemical Div | 120 Lister Ave., Newark, NJ 07105. 90 Park Ave., New York, NY 10016. 400 W. Roosevelt Ave., Bensenville, IL 60106. P.O. Drawer G, Gramercy, LA 70052. 302 Waller St., Saginaw, MI 48605. 410 N. Hart St., Chicago, IL 60622. 11 William St., Belleville, NJ 07109. 185 Foundry St., Newark, NJ 07105. 441 Tompkins Ave., Staten Island, NY 10305. Wood River Junction, RI 02894. 135 W. Lake St., Northlake, IL 60164. 1106 Harrison Ave., Kearny, NJ 07029. | | SLV
TMS
SDW
SRR
SUG
SBP
SVC
SUM
TNC
SNA
SNA
SNW
TV
CFC | Salvo Chemical Div | 120 Lister Ave., Newark, NJ 07105. 90 Park Ave., New York, NY 10016. 400 W. Roosevelt Ave., Bensenville, IL 60106. P.O. Drawer G, Gramercy, LA 70052. 302 Waller St., Saginaw, MI 48605. 410 N. Hart St., Chicago, IL 60622. 11 William St., Belleville, NJ 07109. 185 Foundry St., Newark, NJ 07105. 441 Tompkins Ave., Staten Island, NY 10305. Wood River Junction, RI 02894. 135 W. Lake St., Northlake, IL 60164. 1106 Harrison Ave., Kearny, NJ 07029. | | SLV
TMS
SDM
SRR
SUG
SBP
SVC
SUM
TNC
SNA
SNW
TV
CFC
SKG | Salvo Chemical Div | 120 Lister Ave., Newark, NJ 07105. 90 Park Ave., New York, NY 10016. 400 W. Roosevelt Ave., Bensenville, IL 60106. P.O. Drawer G, Gramercy, LA 70052. 302 Waller St., Saginaw, MI 48605. 410 N. Hart St., Chicago, IL 60622. 11 William St., Belleville, NJ 07109. 185 Foundry St., Newark, NJ 07105. 441 Tompkins Ave., Staten Island, NY 10305. Wood River Junction, RI 02894. 135 W. Lake St., Northlake, IL 60164. 1106 Harrison Ave., Kearny, NJ 07029. 720 E. Sunkist St., Ontario, CA 91764. | | SLV
TMS
SDW
SRR
SUG
SBP
SVC
SUM
TNC
SNA
SNW
TV
CFC
SKG
SUN | Salvo Chemical Div | 120 Lister Ave., Newark, NJ 07105. 90 Park Ave., New York, NY 10016. 400 W. Roosevelt Ave., Bensenville, IL 60106. P.O. Drawer G, Gramercy, LA 70052. 302 Waller St., Saginaw, MI 48605. 410 N. Hart St., Chicago, IL 60622. 11 William St., Belleville, NJ 07109. 185 Foundry St., Newark, NJ 07105. 441 Tompkins Ave., Staten Island, NY 10305. Wood River Junction, RI 02894. 135 W. Lake St., Northlake, IL 60164. 1106 Harrison Ave., Kearny, NJ 07029. 720 E. Sunkist St., Chtario, CA 91764. 1608 Walnut St., Philadelphia, PA 19103. | | SLV
TMS
SDW
SRR
SUG
SBP
SVC
SUM
TNC
SNA
SNW
TV
CFC
SKG
SUN
SNO | Salvo Chemical Div | 120 Lister Ave., Newark, NJ 07105. 90 Park Ave., New York, NY 10016. 400 W. Roosevelt Ave., Bensenville, IL 60106. P.O. Drawer G, Gramercy, LA 70052. 302 Waller St., Saginaw, MI 48605. 410 N. Hart St., Chicago, IL 60622. 11 William St., Belleville, NJ 07109. 185 Foundry St., Newark, NJ 07105. 441 Tompkins Ave., Staten Island, NY 10305. Wood River Junction, RI 02894. 135 W. Lake St., Northlake, IL 60164. 1106 Harrison Ave., Kearny, NJ 07029. 720 E. Smkist St., Ontario, CA 91764. 1608 Walnut St., Philadelphia, PA 19103. P.O. Box F, Claymont, DE 19703. | | SLV TMS SDW SRR SUG SBP SVC SUM TNC SNA SNW TV CFC SKG SKUN SNO DXS | Salvo Chemical Div | 120 Lister Ave., Newark, NJ 07105. 90 Park Ave., New York, NY 10016. 400 W. Roosevelt Ave., Bensenville, IL 60106. P.O. Drawer G, Gramercy, LA 70052. 302 Waller St., Saginaw, MI 48605. 410 N. Hart St., Chicago, IL 60622. 11 William St., Belleville, NJ 07109. 185 Foundry St., Newark, NJ 07105. 441 Tompkins Ave., Staten Island, NY 10305. Wood River Junction, RI 02894. 135 W. Lake St., Northlake, IL 60164. 1106 Harrison Ave., Kearny, NJ 07029. 720 E. Sunkist St., Ontario, CA 91764. 1608 Walnut St., Philadelphia, PA 19103. P.O. Box F, Claymont, DE 19703. P.O. Box 2039, Tulsa, OK 74102. | | SLV TMS SDW SRR SUG SBP SVC SUM TNC SNA TNC SNA SNW TTV CFC SKG SUN SNO DXS SNT | Salvo Chemical Div———————————————————————————————————— | 120 Lister Ave., Newark, NJ 07105. 90 Park Ave., New York, NY 10016. 400 W. Roosevelt Ave., Bensenville, IL 60106. P.O. Drawer G, Gramercy, LA 70052. 302 Waller St., Saginaw, MI 48605. 410 N. Hart St., Chicago, IL 60622. 11 William St., Belleville, NJ 07109. 185 Foundry St., Newark, NJ 07105. 441 Tompkins Ave., Staten Island, NY 10305. Wood River Junction, RI 02894. 135 W. Lake St., Northlake, IL 60164. 1106 Harrison Ave., Kearny, NJ 07029. 720 E. Sunkist St., Ontario, CA 91764. 1608 Walnut St., Philadelphia, PA 19103. P.O. Box F, Claymont, DE 19703. P.O. Box 2039, Tulsa, OK 74102. | | SLV TMS SDW SRR SUG SBP SVC SUM TNC SNA SNW TV CFC SKG SKUN SNO DXS | Salvo Chemical Div———————————————————————————————————— | 120 Lister Ave., Newark, NJ 07105. 90 Park Ave., New York, NY 10016. 400 W. Roosevelt Ave., Bensenville, IL 60106. P.O. Drawer G, Gramercy, LA 70052. 302 Waller St., Saginaw, MI 48605. 410 N. Hart St., Chicago, IL 60622. 11 William St., Belleville, NJ 07109. 185 Foundry St., Newark, NJ 07105. 441 Tompkins Ave., Staten Island, NY 10305. Wood River Junction, RI 02894. 135 W. Lake St., Northlake, IL 60164. 1106 Harrison Ave., Kearny, NJ 07029. 720 E. Sunkist St., Ontario, CA 91764. 1608 Walnut St., Philadelphia, PA 19103. P.O. Box F, Claymont, DE 19703. P.O. Box 2039, Tulsa, OK 74102. P.O. Box 2608, Corpus Christi, TX 78403. | | SLV TMAS SDW SRR SUG SBP SVC SUM TNC SNA SNW TCFC SKG SUN SNO SNO SNO SNO SNO SNO SNO SNO SNO SN | Salvo Chemical Div | 120 Lister Ave., Newark, NJ 07105. 90 Park Ave., New York, NY 10016. 400 W. Roosevelt Ave., Bensenville, IL 60106. P.O. Drawer G, Gramercy, LA 70052. 302 Waller St., Saginaw, MI 48605. 410 N. Hart St., Chicago, IL 60622. 11 William St., Belleville, NJ 07109. 185 Foundry St., Newark, NJ 07105. 441 Tompkins Ave., Staten Island, NY 10305. Wood River Junction, RI 02894. 135 W. Lake St., Northlake, IL 60164. 1106
Harrison Ave., Kearny, NJ 07029. 720 E. Sunkist St., Ontario, CA 91764. 1608 Walnut St., Philadelphia, PA 19103. P.O. Box F, Claymont, DE 19703. P.O. Box 2039, Tulsa, OK 74102. | TABLE 22. -- Synthetic organic chemicals: Directory of manufacturers, 1966--Continued | Identi-
fication
code | Name of company | Office address | |-----------------------------|---|--| | | | | | SYN
SYV | Synthron, Inc | Ryan Ave., Ashton, RI 02805.
917 Washington St., Wilmington, DE 19899. | | TCC | Tanatex Chemical Corp | P.O. Box 388, Lyndhurst, NJ 07071. | | CST | Charles S. Tanner Co | P.O. Box 3867, Park Place, Greensville, SC 29608. | | HN | Tenneco Chemicals, Inc | 300 E. 42d St., New York, NY 10017. | | BKS | Berkshire Color Div | 12th and Bern Sts., Reading, PA 19604. | | CIK | Cal/Ink Div | 711 Camelia St., Berkeley, CA 94710. | | HNW | Newport Div | P.O. Box 911, Pensacola, FL 32502. | | NYC | New York Color Div | 374 Main St., Belleville, NJ 07109. | | . NIX | Nixon-Baldwin Div | Nixon, NJ 08818. | | HNX | Nuodex Div | P.O. Box 2, Piscataway, NJ 08854. | | CRY | Tenneco Manufacturing Co., Tenneco Plastics Div. | P.O. Box 2, Piscataway, NJ 08854. | | TOC | Tenneco Oil Co., Refining & Marketing Accounting. | P.O. Box 2511, Houston, TX 77001. | | TEN | Tennessee Copper Co | Copperhill, TN 37317. | | TX | Texaco, Inc | 1111 Rush Ave., Houston, TX 77052. | | TSA | Texas Alkyls, Inc | P.O. Box 600, Deer Park, TX 77536. | | TUS | Texas-U.S. Chemical Co Tex Chem Co | P.O. Box 667, Port Neches, TX 77651.
20-21 Wagaraw Rd., Fair Lawn, NJ 07410. | | TXC
TCI | Texize Chemicals, Inc | P.O. Box 368, Greenville, SC 29602. | | TXT | Textilana Corp | 12607 Cerise Ave., Hawthorne, CA 90250. | | TXN | Textilana-Nease, Inc | 1240 S. 88th St., Edwardsville, KS 66022. | | TKL | Thiokol Chemical Corp | P.O. Box 27, Bristol, PA 19007. | | SOR | Thomason Industries, Inc., Southern Resin Div. | P.O. Drawer 1600, Fayetteville, NC 28301. | | THC | Thompson Apex Co., Div. of Continental Oil Co. | 505 Central Ave., Pawtucket, RI 02862. | | THM | Thompson Chemical Corp | 3028 Locust St., St. Louis, MO 63103. | | TMH | Thompson-Hayward Chemical Co | 5200 Speaker Rd., Kansas City, KS 66110. | | TIC | Ticonderoga Chemical Corp | Marguerite Ave., Leominster, MA 01453. | | TID
TZC | Tidewater Oil Co Tizon Chemical Corp | Delaware City, DE 19706.
Locktown Rd., Flemington, NJ 08822. | | TRC | Toms River Chemical Corp | P.O. Box 71, Toms River, NJ 08753. | | ACT | Arthur C. Trask Co | 327 S. LaSalle St., Chicago, IL 60604. | | TGL | Triangle Chemical Co | 206 Lower Elm St., P.O. Box 4528, Macon, GA 31208. | | Trj | Trojan Powder Co | 17 N. 7th St., Allentown, PA 18105. | | TRO | Troy Chemical Co | 338 Wilson Ave., Newark, NJ 07105. | | TCH
JTC | Trylon Chemical Corp | P.O. Box 5101, Station B, Greenville, SC 29606. Pleasant View Terrace, Ridgefield, NJ 07451. | | PCC | USS Chemicals Div. of U.S. Steel Corp | Grant Bldg., Pittsburgh, PA 15219. | | UHL | Paul Uhlich & Co., Inc | 90 West St., New York, NY 10006. | | UNG | Ungerer & Co | 161 Avenue of the Americas, New York, NY 10013. | | NCI | Union-Camp Corp., Chemical DivUnion Carbide Corp.: | P.O. Box 6170, Jacksonville, FL 32205. | | UCC | Chemicals Div | 270 Park Ave., New York, NY 10017. | | UCP | Plastics DivSilicones Div | 270 Park Ave., New York, NY 10017.
270 Park Ave., New York, NY 10017. | | UCS
UOC | Union Oil Co. of California | 461 S. Boylston St., Los Angeles, CA 90017. | | UNS | Union Starch & Refining Co., Inc | 301 Washington St., Columbus, IN 47201. | | USR | Uniroyal, Inc., Uniroyal Chemical Div | Naugatuck, CT 06771. | | URC | United Carbon Co | P.O. Box 149, Baytown, TX 77520. | | UNN | United Chemical Corp. of Norwood | P.O. Box 327, Endicott St., Norwood, MA 02062. | | UNP | United Chemical Products Corp | York and Colgate Sts., Jersey City, NJ 07302. | | ROM | United Merchants & Mfgrs., Inc., Roma Chemical Div. | 749 Quequechan St., Fall River, MA 02721. | | UNO | United Oil Manufacturing Co | 2d and Cascade Sts., Erie, PA 16512. | | USB | U.S. Borax Research Corp | 3075 Wilshire Blvd., Los Angeles, CA 90005. | | USO | U.S. Oil Co | P.O. Box 4228, E. Providence, RI 02914. | | UPR
UPF | U.S. Peroxygen Corp | 850 Morton Ave., Richmond, CA 94804.
3300 lst Ave. N., Birmingham, AL 35202. | | UPL | United States Plywood Corp., California Div., | P.O. Box 2317, Redding, CA 96001. | | UVC | Shasta Operations. Universal Chemicals Corp | P.O. Box 1224, Ashton, RI 02865. | | | Universal Cil Products Co | 30 Algonquin Rd., Des Plaines, IL 60018. | | UPM
TBK | Chemical Div | State Highway 17, E. Rutherford, NJ 07073. | | UPJ | Up john Co | 7000 Portage Rd., Kalamazoo, MI 49001. | | CWN | Carwin Organic Chemicals | Sackett Point Rd., North Haven, CT 06473. | | UTR | Utah Resin Co., Inc | 604-605 Kearns Bldg., Salt Lake City, UT 84101. | | | • | | TABLE 22. -- Synthetic organic chemicals: Directory of manufacturers, 1966-- Continued | Identi-
fication
code | Name of company | Office address | |-----------------------------|---|---| | | | | | VAL | Valchem | 1407 Broadway, New York, NY 10018. | | VSV | Valentine Sugars, Inc., Valite Div | 726 Whitney Bldg., New Orleans, LA 70130. | | VLN | Valley Nitrogen Producers, Inc | P.O. Box 128, Helm, CA 93627. | | VDM | Van De Mark Chemical Co | N. Transit Rd., Lockport, NY 14094. | | VNC | Vanderbilt Chemical Corp | | | VND | Van Dyk & Co., Inc | 33 Winfield St., E. Norwalk, CT 06855. | | | | 11 William St., Belleville, NJ 07109. | | VAC | Varney Chemical Corp | 2001 Afton Rd., Janesville, WI 53545. | | VEL | Veliscol Chemical Corp | 341 E. Ohio St., Chicago, IL 60611. | | | Industrial Chemicals Div | 4902 Central Ave., Chattanooga, TN 37410. | | MHI | Ventron Corp., Metal Hydrides Div | 12-24 Congress St., Beverly, MA 01915. | | VB . | Vermilye-Bell | 21707 Bothell Way, Bothell, WA 98011. | | VPC | Verona-Pharma Chemical Corp | P.O. Box 385, Springfield Rd., Union, NJ 07083. | | VPT | Vickers Refining Co., Inc | P.O. Box 2240, Wichita, KS 67201. | | VIN | Vineland Chemical Co | W. Wheat Rd., Vineland, NJ 08360. | | VGC | Virginia Chemicals, Inc | | | SIC | Vistron Corp., Silmar Div | West Norfolk, VA 23703. | | | | 12335 S. Van Ness Ave., Hawthorne, A 90250. | | VTV | Vitra-Var Corp., Div. of Textron Industries, | 177 Oakwood Ave., Orange, NJ 07050. | | FRO | Inc.
Vulcan Materials Co., Chemical Div | P.O. Box 545, Wichita, KS 67201. | | | Welles & Wiemen Tree | | | 1497777 | Wallace & Tierman, Inc.: | 05 1/ 1 5/ 2 5/ 2 5/ 2 5/ 2 5/ 2 5/ 2 5/ | | WTH | Harchem Div | 25 Main St., Belleville, NJ 07109. | | WTL | Lucidol Div | 1740 Military Rd., Buffalo, NY 14240. | | WJ | Warner-Jenkinson Manufacturing Co | 2526 Baldwin St., St. Louis, MO 63106. | | WMIP | Warner Machine Products, Inc., Warner Chemical Div. | 1200 Rochester Ave., Muncie, IN 47302. | | WSN | Washine Chemical Corp | 165 Main St., Lodi, NJ 07644. | | WCA | West Coast Adhesives Co | | | EW | Westinghouse Electric Corp., Insulating | 11104 NW. Front Ave., Portland, OR 97231. | | EM . | | Manor, PA 15665. | | wad | Materials Div Benolite. | 70/ 7 10/3 61 17 17 17 17 17 17 | | WES | Weston Chemical Corp | 104 E. 40th St., New York, NY 10016. | | AVW | West Virginia Pulp & Paper Co., Poly- | P.O. Box 5207, N. Charleston, SC 29406. | | | chemicals Div. | | | WRD | Weyerhaeuser Co., Wood Products Div | 118 S. Palmetto St., Marshfield, WI 54449. | | WEG | White & Bagley Co | P.O. Box 1171, Worcester, MA 01601. | | WHI | White & Hodges, Inc | 576 Lawrence St., Lowell, MA 01852. | | WLI | White Laboratories, Inc | Galloping Hill Rd., Kenilworth, NJ 07033. | | WHL | Whitmoyer Laboratories, Inc | 19 N. Railroad St., Myerstown, PA 17067. | | WHC | Whittaker Corp., Narmco Research & Develop- | | | 4110 | ment Div. | 3540 Aero Ct., San Diego, CA 92123. | | MALL | | (C) 47.01 Ct P - 1 - 3/1 007.00 | | WHW | Whittemore-Wright Co., Inc | 62 Alford St., Boston, MA 02129. | | WIC | Wica Chemicals, Inc | P.O. Box 506, Charlotte, NC 28201. | | MIM | Wilmot & Cassidy, Inc | 108 Provost St., Brooklyn, NY 11222. | | | Wilson & Co., Inc.: | | | WIL | Wilson Laboratories Div | 4221 S. Western Blvd., Chicago, IL 60609. | | WM | Wilson-Martin Div | Jackson and Swanson Sts., Philadelphia, PA 19148. | | WTC | Witco Chemical Co., Inc | P.O. Box 305, Paramus, NJ 07652. | | SON | Sonneborn Div | 277 Park Ave., New York, NY 1001'. | | WCC | Witfield Chemical Corp | P.O. Box 1243, Wilmington, CA 90744. | | WOB | Woburn Chemical Corp | 1200 Harrison Ave., Harrison, NJ 07029. | | WAW | W. A. Wood Co | | | | | 108 Spring St., Everett, MA 02149. | | WRC | Wood Ridge Chemical Corp | Park Pl. E., Wood Ridge, NJ 07075. | | WON | Woonsocket Color & Chemical Co | 176 Sunnyside Ave., Woonsocket, RI 02895. | | WBC | Worthington Biochemical Corp | Route 9, Freehold, NJ 07728. | | WYN | Wyandotte Chemicals Corp | 1609 Biddle Ave., Wyandotte, MI 48192. | | WYC | Wycon | P.O. Box 1087, Colorado Springs, CO 80901. | | WAY | Young Aniline Works, Inc | 2731 Boston St., Baltimore, MD 21224. | ### APPENDIX ## U.S. Imports of Benzenoid Intermediates and Finished Benzenoid Products Table 23 summarizes, for 1965 and 1966, U.S. imports of benzenoid chemicals and products entered under the Tariff Schedules of the United States (TSUS), schedule 4, part 1, subparts B and C. The data, which were obtained by analyzing invoices covering imports through U.S. customs districts, are given in detail in a separate report of the Tariff Commission.¹ In 1966, general imports of benzenoid intermediates entered under schedule 4, part 1B, comprised 665 items with a total weight of 68.9 million pounds and an invoice value of \$31.2 million. In 1965, imports consisted of 642 items with a
total weight of 38.0 million pounds and an invoice value of \$19.5 million. About half of the benzenoid chemicals and products imported in 1966 were declared to be "competitive" (duty based on "American selling price"). In 1966, imports of these products from Canada amounted to 23 percent of the total; imports from that country amounted to 15.6 million pounds, compared with 13 million pounds in 1965. In 1966, imports from Italy amounted to 5.8 million pounds, compared with 8.1 million pounds in 1965. Imports from West Germany amounted to 14.5 million pounds, compared with 7.2 million pounds in 1965. Imports from Japan totaled 14.4 million pounds in 1966, compared with 3.3 million pounds in 1965; and imports from the United Kingdom amounted to 8.1 million pounds, compared to 2.2 million pounds in 1965. Sizable quantities of intermediates were also imported in 1966 from Switzerland (2.0 million pounds), France (3.5 million pounds), and Sweden (0.9 million pounds). The most important intermediates imported in 1966 were phenol, styrene, adipic acid, alkylbenzene, phthalic anhydride, Bisphenol A, polyalkylbenzene, ethylbenzene and 3-hydroxy- TABLE 23.--Benzenoid intermediates and finished benzenoid products: U.S. general imports, classified by use, 1965 and 1966 | | 1965 | 1965 | | 1966 | | |---------------------------------------|---------------------|------------------|---------------------|------------------|--| | Product | Quantity | Invoice
value | Quantity | Invoice
value | | | | 1,000 | 1,000 | 1,000 | 1,000 | | | | pounds | dollars | pounds | dollars | | | Intermediates ¹ | 37,975 | 19,483 | 68,919 | 31,217 | | | Finished benzenoid products, total | 31,941 | 45,425 | 47,875 | 56,859 | | | Dyes, total | 12,276 | 20,505 | 13,715 | 25,817 | | | Acid | 1,808 | | 2,555 | ••• | | | Azoic dyes | 22 | ••• | 14 | • • • | | | Azoic components: | | | | | | | Fast color bases | 416 | ••• | 520 | • • • | | | Fast color salts | 185 | ••• | 269 | ••• | | | Naphthol AS and its derivatives | 1,093 | ••• | 1,558 | ••• | | | Basic | 1,227 | ••• | 1,136 | • • • | | | Direct | 931 | • • • | 1,159 | • • • | | | Disperse | 1,880 | • • • | 2,494 | • • • | | | Fiber-reactive | 652 | ••• | 1,249 | | | | Fluorescent brightening agents | 229 | ••• | 247 | • • • | | | Mordant | 221 | • • • | 362 | ••• | | | Solvent | 168 | • • • | 265 | ••• | | | Sulfur | 37 | ••• | 45 | ••• | | | Vat | 3,374 | ••• | 1,761 | ••• | | | All other | ² 33 | ••• | ² 81 | ••• | | | Benzenoid pigments (toners and lakes) | 797 | 1,510 | 1,010 | 1,73 | | | Medicinals and pharmaceuticals | 3,408 | 12,551 | 4,674 | 10,85 | | | Flavor and perfume materials | 1,908 | 2,522 | 2,564 | 4,03 | | | All other | ³ 13,552 | 8,337 | ³ 25,912 | 14,41 | | Includes small quantities of rubber-processing chemicals. Source: Compiled from the records of the U.S. Bureau of Customs. ² Includes ingrain dyes. ³ Includes organic pesticides and related products, plasticizers, surface active agents, and textile assistant. ¹ Imports of Benzenoid Chemicals and Products, 1966, TC Publication 216, 1967 [processed]. 2-naphthoic acid (B.O.N.). In 1966, imports of phenol amounted to 8.6 million pounds and came from the United Kingdom, France and West Germany. Imports of styrene amounted to 8.5 million pounds and all came from Canada. Imports of adipic acid in 1966 totaled 5.3 million pounds, compared with 13.7 million pounds in 1965 and all came from Canada. Imports of alkylbenzene in 1966 amounted to 5.1 million pounds and imports of phthalic anhydride amounted to 4.6 million pounds. All of the alkylbenzene and most of the phthalic anhydride came from Japan. In 1966, imports of 4,4'-Isopropylidenediphenol (Bisphenol A), which came principally from the Netherlands and France, totaled 4.2 million pounds; imports of polyalkylbenzene, which came from Italy, totaled 3.7 million pounds; imports of ethylbenzene, which came from Canada, totaled 1.2 million pounds; and imports of B.O.N., which came from West Germany, Italy and Japan, totaled 917,000 pounds. Imports in 1966 of all finished benzenoid chemicals and products that are dutiable under Part 1C comprised 2,401 items, with a total weight of 47.9 million pounds and an invoice value of \$56.9 million. In 1965, imports consisted of 2,223 items, with a total weight of 31.9 million pounds and an invoice value of \$45.4 million. The most important group of finished benzenoid products imported in 1966 was benzenoid dyes. Imports of dyes amounted to \$25.8 million (invoice value), or 45.4 percent of the value of all imports under part 1C. In 1965, imports of dyes amounted to \$20.5 million (invoice value), or 45.1 percent of the value of all imports under part 1C. Imports of medicinals and pharmaceuticals, the next most important group of products entered under part 1C in 1966, decreased in 1966, compared with 1965. In 1966, imports of medicinals and pharmaceuticals were valued at \$10.9 million (invoice value), or 19.1 percent of the total value of imports under part 1C. In 1965, imports of medicinals and pharmaceuticals were valued at \$12.6 million or 27.6 percent of total value of imports under part 1C. In 1966, imports of benzenoid pigments were valued at \$1.7 million, compared with \$1.5 million in 1965. Imports of benzenoid flavor and perfume materials in 1966 (\$4.0 million) were 60 percent more than in 1965 (\$2.5 million). Imports of other benzenoid products in 1966, entered under part 1C (chiefly polyamide resins and pesticides) were valued at \$14.4 million, compared with \$8.3 million in 1965. # REPORTS OF THE UNITED STATES TARIFF COMMISSION ON THE OPERATION OF THE TRADE AGREEMENTS PROGRAM - *Operation of the Trade Agreements Program, June 1934 to April 1948 (Rept. No. 160, 2d ser., 1949): - Part I. Summary - Part II. History of the Trade Agreements Program - Part III. Trade-Agreement Concessions Granted by the United States - Part IV. Trade-Agreement Concessions Obtained by the United States - Part V. Effects of the Trade Agreements Program on United States Trade - *Operation of the Trade Agreements Program: Second Report, April 1948-March 1949 (Rept. No. 163, 2d ser., 1950) - *Operation of the Trade Agreements Program: Third Report, April 1949-June 1950 (Rept. No. 172, 2d ser., 1951) - *Operation of the Trade Agreements Program: Fourth Report, July 1950-June 1951 (Rept. No. 174, 2d ser., 1952) - *Operation of the Trade Agreements Program: Fifth Report, July 1951-June 1952 (Rept. No. 191, 2d ser., 1954) - *Operation of the Trade Agreements Program: Sixth Report, July 1952-June 1953 (Rept. No. 193, 2d ser., 1954) - *Operation of the Trade Agreements Program: Seventh Report, July 1953-June 1954 (Rept. No. 195, 2d ser., 1955) - *Operation of the Trade Agreements Program: Eighth Report, July 1954-June 1955 (Rept. No. 197-2d ser., 1956) - *Operation of the Trade Agreements Program: Ninth Report, July 1955-June 1956 (Rept. No. 199, 2d ser., 1957) - *Operation of the Trade Agreements Program: 10th Report, July 1956-June 1957 (Rept. No. 202, 2d ser., 1959) - *Operation of the Trade Agreements Program: 11th Report, July 1957-June 1958 (Rept. No. 204, 2d ser., 1959) - *Operation of the Trade Agreements Program: 12th Report, July 1958-June 1959 (TC Publication 9, 1961) - *Operation of the Trade Agreements Program: 13th Report, July 1959-June 1960 (TC Publication 51, 1962) - Operation of the Trade Agreements Program: 14th Report, July 1960-June 1962 (TC Publication 120, 1964), 35¢ - *Operation of the Trade Agreements Program: 15th Report, July 1962-June 1963 (TC Publication 147, 1965) - Operation of the Trade Agreements Program: 16th Report, July 1963-June 1964 (TC Publication 164, 1966), 30¢ - Operation of the Trade Agreements Program: 17th Report, July 1964-December 1965 (TC Publication 192), 35¢ NOTE.—The reports preceded by an asterisk (*) are out of print. Those followed by a price may be purchased from the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402. See inside front cover for additional reports. All U.S. Tariff Commission reports reproduced by the Government Printing Office may be consulted in the official depository libraries throughout the United States.