FDI, Trade, and Pricing Model D. Riker, 05/21/19 This partial equilibrium (PE) model of the economic impact of several different types of FDI, including foreign acquisitions, with and without technology transfer, and greenfield investment. The model is described in detail in Riker, D. FDI, Trade, and Pricing in a Bertrand Differentiated Products Model. USITC Economics Working Paper 2019-04-A. The user can modify data inputs, the elasticity value, and the tariff rate in the simulation by change the values in the ORANGE - shaded lines in the notebook below tab. The spreadsheet will update the estimated changes in economic outcomes that are reported in the GREEN - shaded cells once the user selects "Evaluate Notebook" under "Evaluation" in the Menu above. This model is provided as a generic analytical tool, and the data and parameter values are fictional and illustrative. Actual data and parameter values should be supplied by the user based on the industry and market to which the model is applied. The model is the result of ongoing professional research of USITC staff and may be updated. The model is not meant to represent in any way the view of the U.S. International Trade Commission or any of its individual Commissioners. The model is posted to promote the active exchange of ideas between USITC staff and experts outside the USITC and to provide useful economic modeling tools to the public. In[856]:= ClearAll[f]; Parameter Inputs Elasticity of Substitution In[857]:= sigma=4; Tariff Rate In[858]:= t=0.20; Data Inputs - Initial Equilibrium Values Domestic Duopoly (X and Y) and 1 Foreign Firm (F) Consumer expenditures in the single market In[859]:= vx0=25; In[860]:= vy0=25; In[861]:= vf0=50; Calculated or Normalized Initial Equilibrium Values Prices In[862]:= px0=1; In[863]:= py0=1; In[864]:= pf0=1; Quantities In[865]:= qx0=vx0/px0; In[866]:= qy0=vy0/py0; In[867]:= qf0=vf0/(pf0 (1+t)); Calibration of Parameters Based on the Initial Equilibrium Initial Marginal Costs In[868]:= mx0=px0 (1-1/(sigma-((sigma-1) vx0)/(vx0+vy0+vf0))); In[869]:= my0=py0 (1-1/(sigma-((sigma-1) vy0)/(vx0+vy0+vf0))); In[870]:= mf0=pf0 (1-1/(sigma-((sigma-1) vf0)/(vx0+vy0+vf0))); In[871]:= bf=(vf0 ((pf0 (1+t))/px0)^(sigma-1))/vx0; In[872]:= by=(vy0 (py0/px0)^(sigma-1))/vx0; In[873]:= P0=(px0^(1-sigma)+by py0^(1-sigma)+bf (pf0 (1+t))^(1-sigma))^(1/(1-sigma)); In[874]:= k=qx0 P0^(-sigma+1) px0^sigma; New Equilibrium Values with Merger of X and F, No Efficiencies In[875]:= sharex=(px/P)^(1-sigma); In[876]:= sharey=(py/P)^(1-sigma) by; In[877]:= sharef=((pf (1+t))/P)^(1-sigma) bf; In[878]:= P=(px^(1-sigma)+by py^(1-sigma)+bf (pf (1+t))^(1-sigma))^(1/(1-sigma)); In[879]:= EqnX1=px==(px-mx0) (sigma-(sigma-1) sharex)-(pf-mf0) (sigma-1) sharex ((pf (1+t))/px)^-sigma bf; In[880]:= EqnY1=py==(py-my0) (sigma-(sigma-1) sharey); In[881]:= EqnF1=pf==(pf-mf0) (sigma-(sigma-1) sharef)-((px-mx0) (sigma-1) sharef (px/(pf (1+t)))^-sigma)/bf; In[882]:= FindRoot[{EqnX1,EqnY1,EqnF1},{px,px0},{py,py0},{pf,pf0}] Out[882]= {px->1.28191,py->1.04721,pf->1.20465} In[883]:= px1=px/.%; In[884]:= py1=py/.%%; In[885]:= pf1=pf/.%%%; In[886]:= P1=(px1^(1-sigma)+by py1^(1-sigma)+bf (pf1 (1+t))^(1-sigma))^(1/(1-sigma)); In[887]:= qx1=k P1^(sigma-1) px1^-sigma; In[888]:= qy1=k P1^(sigma-1) py1^-sigma by; In[889]:= qf1=k P1^(sigma-1) (pf1 (1+t))^-sigma bf; Percent Changes in Consumer Prices, No Efficiencies In[890]:= ((px1-px0) 100)/px0 Out[890]= 28.1909 In[891]:= ((py1-py0) 100)/py0 Out[891]= 4.72103 In[892]:= ((pf1 (1+t)-pf0 (1+t)) 100)/(pf0 (1+t)) Out[892]= 20.4645 In[893]:= ((P1-P0) 100)/P0 Out[893]= 17.1243 Percent Changes in Quantities and Employment, No Efficiencies Domestic Shipments In[894]:= ((qx1-qx0) 100)/qx0 Out[894]= -40.5006 In[895]:= ((qy1-qy0) 100)/qy0 Out[895]= 33.5997 Imports In[896]:= ((qf1-qf0) 100)/qf0 Out[896]= -23.7036 Domestic Employment In[897]:= (((qx1+qy1)-(qx0+qy0)) 100)/(qx0+qy0) Out[897]= -3.45048 New Equilibrium Values with Merger of X and F, With Efficiencies Adopting best practices through IP transfer In[898]:= mx3=Min[mx0,mf0]; In[899]:= mf3=Min[mx0,mf0]; In[900]:= my3=my0; In[901]:= P3=(px3^(1-sigma)+by py3^(1-sigma)+bf (pf3 (1+t))^(1-sigma))^(1/(1-sigma)); In[902]:= sharex3=(px3/P3)^(1-sigma); In[903]:= sharey3=(py3/P3)^(1-sigma) by; In[904]:= sharef3=((pf3 (1+t))/P3)^(1-sigma) bf; In[905]:= EqnX3=px3==(px3-mx3) (sigma-(sigma-1) sharex3)-(pf3-mf0) (sigma-1) sharex3 ((pf3 (1+t))/px3)^-sigma bf; In[906]:= EqnY3=py3==(py3-my3) (sigma-(sigma-1) sharey3); In[907]:= EqnF3=pf3==(pf3-mf3) (sigma-(sigma-1) sharef3)-((px3-mx0) (sigma-1) sharef3 (px3/(pf3 (1+t)))^-sigma)/bf; In[908]:= FindRoot[{EqnX3,EqnY3,EqnF3},{px3,px0},{py3,py0},{pf3,pf0}] Out[908]= {px3->1.13128,py3->1.03405,pf3->1.18893} In[909]:= px4=px3/.%; In[910]:= py4=py3/.%%; In[911]:= pf4=pf3/.%%%; In[912]:= P4=(px4^(1-sigma)+by py4^(1-sigma)+bf (pf4 (1+t))^(1-sigma))^(1/(1-sigma)); In[913]:= qx4=k P4^(sigma-1) px4^-sigma; In[914]:= qy4=k P4^(sigma-1) py4^-sigma by; In[915]:= qf4=k P4^(sigma-1) (pf4 (1+t))^-sigma bf; Percent Changes in Consumer Prices, With Efficiencies In[916]:= ((px4-px0) 100)/px0 Out[916]= 13.1283 In[917]:= ((py4-py0) 100)/py0 Out[917]= 3.40513 In[918]:= ((pf4(1+t)-pf0 (1+t)) 100)/(pf0 (1+t)) Out[918]= 18.8927 In[919]:= ((P4-P0) 100)/P0 Out[919]= 12.8243 Percent Changes in Quantities and Employment, With Efficiencies Domestic Shipments In[920]:= ((qx4-qx0) 100)/qx0 Out[920]= -12.3155 In[921]:= ((qy4-qy0) 100)/qy0 Out[921]= 25.6146 Imports In[922]:= ((qf4-qf0) 100)/qf0 Out[922]= -28.1234 Domestic Employment In[923]:= (((qx4+qy4)-(qx0+qy0)) 100)/(qx0+qy0) Out[923]= 6.64954 New Equilibrium Values without Merger, With Greenfield Investment In[924]:= hc=Min[1.10,1+t]; In[925]:= mf5=mf0 hc; In[926]:= my5=my0; In[927]:= mx5=mx0; In[928]:= P5=(px5^(1-sigma)+by py5^(1-sigma)+bf pf5^(1-sigma))^(1/(1-sigma)); In[929]:= sharex5=(px5/P5)^(1-sigma); In[930]:= sharey5=(py5/P5)^(1-sigma) by; In[931]:= sharef5=(pf5 /P5)^(1-sigma) bf; In[932]:= EqnX5=px5==(px5-mx5) (sigma-(sigma-1) sharex5); In[933]:= EqnY5=py5==(py5-my5) (sigma-(sigma-1) sharey5); In[934]:= EqnF5=pf5==(pf5-mf5) (sigma-(sigma-1) sharef5); In[935]:= FindRoot[{EqnX5,EqnY5,EqnF5},{px5,px0},{py5,py0},{pf5,pf0}] Out[935]= {px5->0.992698,py5->0.992698,pf5->1.13461} In[936]:= px6=px5/.%; In[937]:= py6=py5/.%%; In[938]:= pf6=pf5/.%%%; In[939]:= P6=(px6^(1-sigma)+by py6^(1-sigma)+bf pf6^(1-sigma))^(1/(1-sigma)); In[940]:= qx6=k P6^(sigma-1) px6^-sigma; In[941]:= qy6=k P6^(sigma-1) py6^-sigma by; In[942]:= qf6=k P6^(sigma-1) pf6^-sigma bf; Percent Changes in Consumer Prices, With Greenfield Investment In[943]:= ((px6-px0) 100)/px0 Out[943]= -0.730197 In[944]:= ((py6-py0) 100)/py0 Out[944]= -0.730197 In[945]:= ((pf6-pf0 (1+t)) 100)/(pf0 (1+t)) Out[945]= -5.44909 In[946]:= ((P6-P0) 100)/P0 Out[946]= -3.20443 Percent Changes in Quantities and Employment, With Greenfield Investment Domestic Shipments In[947]:= ((qx6-qx0) 100)/qx0 Out[947]= -6.61056 In[948]:= ((qy6-qy0) 100)/qy0 Out[948]= -6.61056 Imports In[949]:= ((0-(qf0)) 100)/(qf0) Out[949]= -100. Domestic Employment In[950]:= (((qf6+qx6+qy6)-(qx0+qy0)) 100)/(qx0+qy0) Out[950]= 87.9527